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Abstract: The roles played by learning and memorization represent an
important topic in deep learning research. Recent work on this subject
has shown that the optimization behavior of DNNs trained on shuffled la-
bels is qualitatively different from DNNs trained with real labels. Here, we
propose a novel permutation approach that can differentiate memorization
from learning in deep neural networks (DNNs) trained as usual (i.e., us-
ing the real labels to guide the learning, rather than shuffled labels). The
evaluation of weather the DNN has learned and/or memorized, happens in
a separate step where we compare the predictive performance of a shallow
classifier trained with the features learned by the DNN, against multiple
instances of the same classifier, trained on the same input, but using shuf-
fled labels as outputs. By evaluating these shallow classifiers in validation
sets that share structure with the training set, we are able to tell apart
learning from memorization. Application of our permutation approach to
multi-layer perceptrons and convolutional neural networks trained on im-
age data corroborated many findings from other groups. Most importantly,
our illustrations also uncovered interesting dynamic patterns about how
DNNs memorize over increasing numbers of training epochs, and support
the surprising result that DNNs are still able to learn, rather than only
memorize, when trained with pure Gaussian noise as input.

1. Introduction

Recently, the roles of learning and memorization in deep neural networks (DNNs)
have been investigated by several groups[8, 2]. Surprising empirical results by
Zhang et al[8] showed that DNNs are able to fit pure noise, establishing that the
effective capacity of DNNs is sufficient for memorizing the entire data set, and
raising the question whether memorization played a similar role in real data-
sets. Further investigations by Arpit et al[2], showed, nonetheless, that there are
qualitative differences on how DNNs learn when trained on real data compared
to noisy versions of the data.

Intuitively, the term “learning” captures the idea that the algorithm is able
to discover patterns in the training inputs that are associated with the labels.
“Memorization”, on the other hand, can be understood as the ability to discover
patterns that are unrelated to the labels. Note that memorization can be directly
assessed by evaluating the predictive performance of a trained algorithm on a
data-set that shares some structure with the training set. For instance, Zhang
et al[8] were able to establish the memorization issue in DNNs by inspecting
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the training error, rather than the validation or test error, of models trained on
shuffled labels.

While the label shuffling technique adopted by Zhang et al[8], is able to show
beyond any doubts that DNNs can easily memorize, it does not provide insights
about the interplay between memorization and learning in DNNs trained with
the real labels. As shown by Arpit et al[2], DNNs behave differently when trained
in noise vs real labels. In particular, their results suggest that DNNs trained on
real labels tend to learn simple patterns first, before starting to memorize.

Here, we propose a novel permutation approach to assess the interplay be-
tween memorization and learning in DNNs trained with real labels (as opposed
to shuffled labels). Its construction involves the generation of perturbed ver-
sions of the training data, denoted the “shared structure validation sets” (or
“s-validation sets”, for short), and the comparison of the predictive perfor-
mance of a shallow classifier trained with the features learned by the DNN,
against multiple instances of the same classifier, trained on the same input, but
using shuffled labels as outputs. By evaluating these shallow classifiers in the
s-validation sets, we are able to tell apart learning from memorization (as fully
described in the next sections). Most importantly, because our assessments are
based on the features learned by DNNs trained as usual, our approach can assess
the memorization and learning processes that occur naturally during training
(rather than assessing memorization under the more unusual setting of training
with shuffled labels).

Our methodology can be used to compare how different combinations of net-
work architectures, optimizers, and regularization techniques are able to favor
or reduce memorization. We illustrate its application to multi-layer perceptrons
(MLPs) and convolutional neural networks (CNNs), with and without dropout
regularization[6], using the Fashion-MNIST data-set[7]. Most importantly, we
also investigate the role of learning and memorization with noise data by re-
placing the image’s pixels by pure Gaussian noise, and evaluating the same
architecture/regularization combinations used to fit the real data-sets.

While our main goal here is to introduce this novel tool (rather than pro-
vide an exhaustive empirical study comparing how DNNs trained with different
combinations of architectures/regularizers/optimizers memorize and learn), our
examples illustrate and corroborate the findings from Arpit et al[2] that DNNs
are able to memorize without hindering their ability to learn, and that regu-
larization (in our case dropout) can effectively reduce memorization in DNNs.
But, most interestingly, application of our method across a sequence of increas-
ing training epochs show interesting dynamic patterns of how DNNs memorize
over training time. Furthermore, our illustrations using noise inputs support
the surprising result that that DNNs can still learn, rather than only memorize,
when trained with noise inputs.

The implementation of our permutation approach involves a series of steps
that we described in the detail in the next sections. But first, we provide more
detailed (while still informal) working definitions of learning and memorization,
and describe their connection to generalization.
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2. Learning vs memorization and their connection to generalization

The goal of any supervised learning algorithm is to learn patterns in the input
data that are associated with the concepts expressed by the labels. For instance,
in image applications one might be interested in training an algorithm to dis-
tinguish images of dogs from images of cats, and the goal is to train a classifier
that can learn patterns in the image pixels that are associated with the concept
of a “dog” versus the concept of a “cat”.

The ability to learn such patterns depends, of course, on the input data
having some structure that is shared among images containing the same label
concept. Throughout this text we refer to this shared structure as the label
structure of the data. Observe, nonetheless, that labeled images might contain
additional structure associated with their background, that we denote the back-
ground structure of the data1.

Here, we adopt the operational “definition” of learning as the ability of a
machine learning algorithm to discover patterns in the training inputs that are
associated with the label concepts. In other words, learning boils down to discov-
ering label structure in the training data. Memorization, on the other hand, can
be “defined” as the ability to discover patterns in the training inputs that are
unrelated to the label concepts. In other words, memorization can be equated
to learning the background structure of the training data. (As will be explained
in later sections, memorization can be assessed by evaluating classification per-
formance in data-sets that shares background structure with the training data.)

Note that these definitions of learning and memorization are restricted to
processes that happen during training, and only depend on the training data.
Generalization, which corresponds to an ability to correctly predict the label of
an unseen input sample (with a probability better than a random guess), rep-
resents a separate concept, and is all about recognizing label structures learned
during training in independent validation and test sets.

In general, we do not expect that models that have only memorized the labels,
will be able to generalize when evaluated in independent validation or test sets
(because validation and test sets usually share label structure with the training
set, but not a whole lot of background structure). Models that have learned the
labels, on the other hand, will usually be able to generalize because they are able
to recognize label structures in the validation and test sets that are similar to
the label structure that they learned in the training set. Observe, however, that
even the best trained algorithms won’t be able to generalize if the validation
and test sets do not share label structures with the training set.

1Observe that while these working “definitions” of label and background structure are
undeniably fuzzy, they are still helpful as instructive concepts. Note, as well, that one can still
think about label and background structure concepts in other types of problems, including
speech recognition, medical diagnostic applications, and etc.
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3. The shared structure validation set

We use data perturbation to generate a validation set that shares structure
with the training set (the s-validation set). More specifically, each sample of
the training set is perturbed in order to generate a corresponding sample in
the s-validation set (hence, training and s-validation sets have the exact same
number of samples, and the same labels). For instance, in image applications,
we can shuffle a fixed proportion of pixels in the training image, to generate the
corresponding image in the s-validation set. (Alternatively, one could rotate the
images in the training set to generate the images in the s-validation set.) Note
that the s-validation set shares both background and label structure with the
training set, while the validation and test sets share mostly label structure with
the training set.

Clearly, by increasing the amount of perturbation, we can generate s-validation
sets that share decreasing amounts of structure with the training set. (Note
that by perturbing too much the training inputs, we risk whipping out the label
structure of the training data, possibly making the predictive performance in
the s-validation set worse than in the validation set.) In practice, we generate
multiple s-validation sets using increasing amounts of perturbation, but starting
with light perturbations. As will be made clear by our illustrative examples, the
real use of our approach is to compare the relative amounts of memorization
and learning across distinct DNNs, trained and evaluated in the same training
and s-validation sets, rather than attempting to quantify the absolute amount
of memorization happening in a DNN.

4. Overall description of the procedure

The implementation of our permutation approach involves five key steps. Here,
we provide an overall description of the mechanics of the process:

i. We generate the s-validation sets, as described in the previous section.
In our experiments we use s-validation sets generated by shuffling 5%,
and 10% of the pixels of the original training images. (We also generated
a completely scrambled s-validation set, where we shuffled 100% of the
image pixels, in order to perform some sanity checks).

ii. We fit a DDN to the training data. Note that the DNN is trained as usual,
using the original (unshuffled) training labels, and is potentially able to
learn and memorize.

iii. We generate the training set of learned-features by propagating the raw
input samples from the training set through the trained DNN, and ex-
tracting the feature values generated by the last hidden-layer of the DNN
(before the output layer). Similarly, we generate the s-validation sets
of learned-features by propagating the raw input samples from the s-
validation sets through the trained DNN, and extracting the features from
the last hidden-layer of the DNN. (We also generate validation sets of
learned-features in a similar way. Even though this data is not used by
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our permutation approach, we still evaluate validation errors as sanity
checks in our examples.)

iv. Once, we have the training and s-validation sets of learned-features, we: fit
a shallow machine learning classifier (e.g., random forest) to the training
features; generate predictions using the s-validation features; and evalu-
ate these predictions against the training labels (which correspond to the
s-validation labels) using a classification performance metric (e.g., classi-
fication accuracy). We denote this performance metric value, the observed
s-validation performance score.

v. Finally, we generate a permutation null distribution to assess whether the
DNN has learned and/or memorized using Algorithm 1, described in the
next section.

5. A permutation null distribution for detecting learning vs
memorization in DNNs

Once we have generated the training and s-validation sets of learned-features
(according to step iii described above), and have computed the observed perfor-
mance scores associated with each s-validation set (according to step iv above),
we can generate permutation null distributions to tell apart learning from mem-
orization in DNNs, as described in Algorithm 1.

In order to understand the rationale behind Algorithm 1, observe that:

1. The learned-features, used as input in Algorithm 1, represent a transfor-
mation from the raw data inputs. Since the DNN used to generate the
learned-features is trained with the real labels, and can potentially learn
and/or memorize, it follows that the features learned by the DNN can
harbor transformed versions of the label structures and/or background
structures originally present in the raw input data. Hence, we can still as-
sess if the DNN has learned and/or memorized, by training shallow models
with the learned-features.

2. Furthermore, observe that when we train a shallow classifier using the
learned-features as inputs and the real labels as outputs, and we evalu-

Algorithm 1 Learning vs memorization null distribution
1: Inputs: Number of permutations, B. Training set labels. Training and s-validation sets

of features learned by the DNN.
2: for i = 1 to B do
3: Shuffle the training labels.
4: Fit a shallow classifier to the shuffled training labels (using the training set of learned-

features as inputs).
5: Generate label predictions using the s-validation set of learned-features.
6: Evaluate the classification performance of the s-validation predictions against the shuf-

fled training labels.
7: Save the performance score computed in step 6.
8: end for
9: Output: Performance metric values saved in step 7.
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ate its performance with the s-validation features (as described in step
iv above), we have that the observed s-validation scores can potentially
capture the contributions of both learning and memorization (since the
s-validation features can share both label and background structure with
the training features).

3. Finally, observe that when we train shallow models using shuffled labels, as
described in steps 3 and 4 of Algorithm 1, we prevent the shallow classifier
from learning, since the label shuffling effectively destroys the association
between the training features and the labels, making it impossible for
the classifier to discover the label structure of the training set. Observe,
however, that if the DNN has memorized, then the permutation null dis-
tribution will be centered at a classification performance value better than
what we would have obtained using random guesses, since the classifier can
still recognize background structures in the s-validation features that are
similar to background structures that it learned from the training features.
On the other hand, if the DNN has not memorized, than the permutation
null distribution will be centered around the baseline random guess value,
since there is no shared background structure between the training and
s-validation features that the shallow classifier can detect.

With the above remarks in mind, we have that by inspecting the value of a
given observed s-validation score, and the location of the respective permutation
null distribution (relative to the random guess baseline value), we can determine
whether the DNN:

a. Has memorized and learned - in which case the permutation null distribu-
tion will be centered at classification performance values (e.g., accuracy)
higher than the baseline random guess value (e.g., 0.5, in binary classifica-
tion problem with balanced proportions of positive and negative labels),
while the observe s-validation performance score will likely be even higher
than the values achieved by the permutation null.

b. Has memorized, but not learned - in which case the permutation null dis-
tribution will be centered at classification performance values higher than
the baseline random guess value, while the observe s-validation perfor-
mance score will likely fall right inside the range of the permutation null
distribution.

c. Has learned, but not memorized - in which case the permutation null dis-
tribution will be centered around the baseline random guess classification
performance value, while the observe s-validation performance score will
be better than the random guess.

d. Has neither learned, nor memorized - in which case both the permutation
null distribution and the observed s-validation score will be distributed
around the baseline random guess value.

Lastly, we point out that while the null distribution generated by Algorithm 1
can be used to perform a formal permutation test, comparing the null hypothesis
that the DNN has not learned, against the alternative hypothesis that the DNN
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has learned (irrespective of whether it has also memorized), in practice the
corresponding permutation p-values are not really meaningful, since the different
s-validation sets could lead to different results, depending on the amount of
perturbation used to generate the s-validation sets. As we already mentioned
before, the real use of our approach is to compare different DNNs, rather than
quantify the absolute amount of learning and memorization achieve by a given
DNN.

6. Illustrations with image data

We illustrate the application of our permutation approach in binary classifi-
cation problems employing both MLPs and CNNs, with and without dropout
regularization. For each DNN example we extracted 16 learned features and
generate null distributions over a grid of increasing training epochs (so that we
could investigate the dynamics of how DNNs memorize over extended periods of
training). Because, in addition to training the DNN, we also had to generate per-
mutation distributions of shallow classifiers over a long grid of training epochs,
we adopted neural networks with relatively small number of hidden layers and
small numbers of units per layer (details are provided in the figure captions). Re-
ducing the computational burden was also the reason why we focused on binary
classification. Our illustrations were based on the classification of pullovers vs
coats using the Fashion-MNIST data-set. We selected the Fashion-MNIST data
because their images have higher complexity (compared to MNIST), and we
selected the pullovers vs coats comparison because it seemed to provide a more
challenging comparison than other possible comparisons. All experiments were
run in R[4] using the keras package[1] (a R wrapper of Keras[3]). Except when
stated otherwise, all examples were trained in a subset of 2,000 training images
(1,000 per class), over 100,000 training epochs for MLPs and 10,000 epochs for
CNNs, and optimized using standard stochastic gradient-descent with learning
rate 0.01, using mini-batches of 128 images.

Figure 1 compares 4 MLPs (containing 2 or 4 hidden-layers, and trained with
and without dropout) against 2 CNNs (with and without dropout). The blue,
cyan, and grey boxplots in each panel represent the permutation null distribu-
tions computed with s-validation sets generated by shuffling 5%, 10%, and 100%
of the pixels of the original training images, while the curves with corresponding
colors represent the observed s-validation accuracies across the training epochs.
The red curve, on the other hand, reports the accuracies computed in an inde-
pendent validation set. The null distributions were generated by fitting random
forest classifiers to 100 random permutations of the trainining/s-validation la-
bels (and using the learned-features as inputs).

In all examples we observe that the DNNs were learning since the observed
s-validation accuracy values (blue, and cyan curves) tend to be well above the
range of the corresponding null distributions (blue, and cyan boxplots), just
after a few epochs of training. Furthermore, the accuracies in the validation
set (red curves) show that the examples are generalizing too. In all examples,



Chaibub Neto E./Learning vs memorization in DNNs using s-validation sets 8

●

●

●●

●●

●

●●

●

● ●

● ●

●

● ●
●●

●

0.5

0.6

0.7

0.8

0.9

1.0

MLP, 2 hidden−layers, no dropout

ac
cu

ra
cy

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
1e

+
05

●

●
●

● ●● ●

●

●

●

●

●

●

●

● ●

● ●

● ●

●

●

●
●

0.5

0.6

0.7

0.8

0.9

1.0

●

●
●

●

●

● ●

●

● ●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●

● ●

0.5

0.6

0.7

0.8

0.9

1.0

(a)

training epochs

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

MLP, 4 hidden−layers, no dropout

ac
cu

ra
cy

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
1e

+
05

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
0.5

0.6

0.7

0.8

0.9

1.0

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

● ●

●

●
●●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

(b)

training epochs

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

● ●

●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

CNN, no dropout

ac
cu

ra
cy

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0.5

0.6

0.7

0.8

0.9

1.0

●

● ●
●

● ●

●●

●

●●

● ●

●

●

●

●●

●

●

●
●

●

● ●
●●

●●●

● ●

●

●

●
●

●

●

●●
●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

(c)

training epochs

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●●

●●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●

●

0.5

0.6

0.7

0.8

0.9

1.0

MLP, 2 hidden−layers, dropout

ac
cu

ra
cy

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
1e

+
05

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

● ●

●

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●
●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

(d)

training epochs

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●●

● ●

●
●●

●

●

●
● ●

0.5

0.6

0.7

0.8

0.9

1.0

MLP, 4 hidden−layers, dropout
ac

cu
ra

cy

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
20

00
0

30
00

0
40

00
0

50
00

0
60

00
0

70
00

0
80

00
0

90
00

0
1e

+
05

●

●

●

●●

●

●
●

●

●
●●

●

●

●
●
●

●

●

●

●●

●
●

● ●
●
●

●

●

●

●
●

●●●●

●

●

●

●●
●

●●

●

● ●

●

●●

0.5

0.6

0.7

0.8

0.9

1.0

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●
●

●

● ● ●

●

●

●
●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

(e)

training epochs

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

CNN, dropout

ac
cu

ra
cy

1 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

●

●

●

●●

●

●

●
●●
●

●
●

●

●

●
●
●

●●
●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

●
●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

(f)

training epochs

Fig 1. Classification of pullovers vs coats based on MLPs and CNNs. The blue, cyan, and
grey boxplots and lines in each panel represent, respectively, the permutation null distribu-
tions and observed s-validation accuracies generated by shuffling 5%, 10%, and 100% of the
pixels of the original training images. The red curves show the validation set accuracies.
The DNNs architecture used to generate the results in panels a-f are described next. Panel a:
Input→Dense(256, relu)→Dense(16, relu)→Dense(2, sigmoid). Panels b: Input→Dense(256,
relu)→Dense(128, relu)→Dense(64, relu)→Dense(16, relu)→Dense(2, sigmoid). Panel
c: Input→Conv2d(32, (3, 3), relu)→Conv2d(64, (3, 3), relu)→MaxPooling2d((2,
2))→Dense(16, relu)→Dense(2, sigmoid). Panel d: Input→Dense(256,
relu)→Dropout(0.25)→Dense(16, relu)→Dropout(0.5)→Dense(2, sigmoid). Panel e:
Input→Dense(256, relu)→Dropout(0.25)→Dense(128, relu)→Dropout(0.5)→Dense(64,
relu)→Dropout(0.5)→Dense(16, relu)→Dropout(0.5)→Dense(2, sigmoid). Panel
f: Input→Conv2d(32, (3, 3), relu)→Conv2d(64, (3, 3), relu)→MaxPooling2d((2,
2))→Dropout(0.25)→Dense(16, relu)→Dropout(0.5)→Dense(2, sigmoid). Here, Dense(U,
A) represents a dense layer with number of units given by U, and activation function given
by A; Dropout(R) represents a dropout layer with dropout rate R; Conv2d(F, S, A) represent
a convolutional layer with number of filters given by F, strides given by S, and activation
given by A; and MaxPooling2d(P) represents the max-pooling operation with pool-size P.

we also observe higher amounts of memorization in s-validation sets that share
more structure with the training set (note how the blue boxplots dominate the
cyan, that dominate the grey boxplots). This is expected since a higher amount
of shared structure between the training and s-validation sets makes it easier for
the random forest classifier to recognize the background structure it has learned
from the training features, and correctly classify the shuffled labels. Observe, as
well, that by shuffling 100% of the pixels of the training images (grey boxplots),
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we generate a s-validation set that barely shares any structure with the training
set. As expected, because the random forest is unable to learn background or
label structure in this case, the grey boxplots and the observed accuracies (grey
curve) end up being distributed around 0.5, the random guess accuracy value for
this problem (note that we have a balanced number of pullover and coat cases).
Most importantly, the examples show that increasing the number of hidden
layers (in the MLPs) and adopting dropout regularization (in both MLPs and
CNNs) helps reduce the amount of memorization. Figure 2 shows that these
results still hold for MLPs even when adopt a s-validation set generated but
shuffling only 1% of the training image pixels.

The examples in Figures 1 clearly illustrate that our permutation approach
cannot generally be used to quantify the absolute amount of memorization that
is going on in a given DNN, since the location of the permutation distributions
depend on the amount of perturbation used the generate the s-validation sets.
(The one exception is the case where a DNN is not memorizing at all, since in
this case the permutation null distribution will be centered around the baseline
random guess value, independent of the amount of perturbation used to gen-
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Fig 2. Panels a, b, c, and d show the same examples as in panels a, b, d, and e of Figure 1,
but including one extra s-validation set (dark-blue), generated by perturbing only 1% of the
pixels of the training images. Note that while the amount of memorization is considerably
higher, we still observe similar patterns.
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erate the s-validation set.) In any case, because all 6 DNNs were trained and
evaluated using the same data, we can still evaluate their relative merits. For
instance, the MLP in panel e, is clearly memorizing less than the MLP in panel
a. Interestingly, the fact that a DNN is memorizing less than another, does not
seen to implicate that it will generalize better (note the similar validation ac-
curacies of all 4 MLP examples, in panels a, b, d, and e). Furthermore, even
though the CNNs seen to memorize more than the MLPs, they still achieve
better generalization. These observations suggest (as pointed out in Arpit et al)
that perhaps the capacity of the DNNs is so high that memorization does not
seen to hinder their ability to learn and generalize.

All the results, so far, were generated using 2,000 training images. Figure 3
presents results for the same MLPs trained with 10,000 images. Not surpris-
ingly, we observe a slightly decrease in the amount of memorization and a slight
improvement in generalization, but overall we observe the same patterns as
before.

Up to this point, all reported examples were optimized using stochastic gradi-
ent descent. Quite interestingly, inspection of how the amount of memorization
tend to vary as we increase the number of training epochs shows a very inter-
estingly pattern. The blue and cyan boxplots clearly show that the accuracies
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Fig 3. Panels a, b, c, and d show the same examples as in panels a, b, d, and e of Figure 1,
but generated using a five fold increase in the number of training images.
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in the s-validation set tend to quickly increase during the first few hundreds of
training epochs, before they tip over and continue to decrease over the many
thousand additional training epochs (except for the CNN in Figure 1c). This
observation suggests that the DNNs tend to quickly learn a lot of background
structure during the first epochs of training, but then as the training goes on,
the network is able to keep “forgetting” about the background structure. Note
that this pattern is consistent with recent work on the information-theoretic
aspects of learning with DNN[5], that has shown that the training of DNNs
goes first through a “memorization” phase, where the DNN quick memorizes
the input data during the first epochs of training, followed by an “information-
compression” phase, where the DNN tends to slowly forget about irrelevant
structure in the input data by compressing the information via the stochastic
relaxation process that naturally takes place in the stochastic gradient descent
algorithm. Furthermore, comparison of panels a and b (no dropout case), as
well as, panels d and e (dropout case) show that by increasing the number of
hidden layers in the MLPs from 2 to 4 we obtain a speed up in how fast the
MLPs “forgets”, consistent again with results in[5], where it was shown that
increasing the number of hidden layers can boost the efficiency of the stochastic
relaxation process.

Figure 4, on the other hand, shows that DNNs trained with adaptive learning
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Fig 4. Panels a, b, c, and d show the same examples as in panels a, b, d, and e of Figure 1,
but trained with the rmsProp optimizer, instead of standard stochastic gradient descent.
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rate optimizers, such as rmsProp, can follow different memorization dynamics.

7. Illustrations with Gaussian noise

Here, we investigate how DNNs learn and/or memorize when trained with pure
Gaussian noise as input data. We trained the same DNNs presented in Fig-
ure 1, using the same label data, but where we replaced the raw input pixels
with Gaussian noise for the training and validation sets. Again, we generated
s-validation sets by shuffling 5%, 10%, and 100% of the Gaussian noise values
of the training inputs. Hence, even though the raw input data corresponds to
pure Gaussian noise, the training and s-validation sets still share a lot of struc-
ture (except, of course, when we shuffle 100% of the values), while training and
validation sets are completely unrelated.

Because it has been shown before that DNNs are also able to reach zero
training error when trained with noise inputs (Zhang et al[8]), we expected
that the DNNs would be able to strongly memorize the random gaussian inputs
(i.e., we expected that the permutation null distributions would be centered
around high accuracy levels). However, we did not expect that the DNNs would
be able to learn from the Gaussian noise inputs (i.e., we expected that the
observed accuracies of the s-validation sets would fall right inside the range of
the respective permutation null distributions). However, as clearly shown by
the results reported in Figure 5, the DNNs were able not only to memorize,
but also to learn with the Gaussian noise inputs. (Note that, in all cases, the
observed s-validation accuracies were well above the range of the corresponding
permutation null distributions. Note, as well, that he validation accuracies were,
as expected, still distributed around 0.5, since none of the random structure that
the DNN managed to learn from the Gaussian noise in the training set is shared
by the Gaussian noise in the validation set.)

As before, increasing the number of layers and including dropout regulariza-
tion helped reduce the amount of memorization. Interestingly, the DNNs trained
with dropout showed a curious pattern, where during the initial epochs of train-
ing they were not learning while showing a decrease in memorization (note how
the observed s-validation accuracies tended to be inside the range of the cor-
responding null distributions), but then they started to quickly memorize and
learn (around 40 epochs in panel d, 400 epochs in panel e, and 10 epochs in panel
f), before they finally started to “forget” what they had memorized (around 300
epochs in panel d, 1,000 epochs in panel e, and 200 epochs in panel f), while still
retaining what they had learned (note that the observed s-validation accuracies
remain close to 1).

These surprising results suggest that the effective capacity of the DNNs is
so high, that not only they manage to learn random “label structure” in pure
Gaussian noise, but also they can even learn additional random “background
structure”, while learning the “label structure”.
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Fig 5. Panels a-f show the same examples as in panels a-f of Figure 1, but where the input
data was replaced by pure Gaussian noise.

8. Discussion

Here, we proposed a novel permutation approach to empirically compare and
better understand how distinct DNNs memorize and learn over increasing num-
bers of training epochs. Our methodology is based on 2 key ideas. The first, is
to generate validation sets that share structure with the training set in order to
assess memorization. The second, is to assess memorization and learning using
shallow models built with the features learned by DNNs trained with real la-
bels, in order the assess the normal contributions of learning and memorization
in DNNs trained as usual. Note that while one could still use the s-validation
set idea to generate permutation null distributions to detect memorization us-
ing the DNNs directly (i.e., by evaluating the predictive performance, on the
s-validation sets, of DNNs trained on shuffled labels), this alternative permu-
tation strategy would still only be able assess the memorization behavior that
occurs in the absence of learning (which is qualitatively different from the be-
havior that occurs under normal training conditions, as shown by Arpit et al[2]).

While our main objective was to introduce the tool, our illustrative examples
provide interesting new insights about the few models we investigated here. We
believe that researchers interested in understanding how DNNs work will find
this tool useful.
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