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Identifying H∞-Models: An LMI Approach
Gray C. Thomas and Luis Sentis

Abstract—Practical application of H∞ robust control relies
on system identification of a valid model-set, described by a
norm-bounded differential inclusion, which explains all possible
behavior for the control plant. This is usually approximated
by measuring the plant repeatedly and finding a model that
explains all observed behavior. Typical modern approaches must
anticipate the uncertainty-shaping aspects of the final model
in order to maintain tractability. This paper offers a linear
matrix inequality constrained optimization for the MIMO model
fitting problem that does not require such knowledge. We do
this with a novel “Quadric Inclusion Program” which replaces
the least squares problem in traditional model identification—
however rather than linear equation models, it returns linear
norm-bounded inclusion models. We prove several key properties
of this algorithm and give a geometric interpretation for its
behavior. While we stress that the models are outlier-sensitive by
design, we offer a method to mitigate the effect of measurement
noise. The paper includes an example of how the theory could be
applied to frequency domain data. Time-domain data could also
be used, provided a state vector is constructed from measured
signals and their derivatives to use as regressors for a vector of
maximal derivatives.

I. INTRODUCTION

SYSTEM identification of a valid H∞ plant model marks
the first obstacle to applying the robust H∞ control theory

of e.g. [1], [2], [3]. If this model is not believable then H∞
synthesis provides guesses rather than guarantees—with the
parameters of the uncertainty acting as tunable knobs. In
many cases this is an acceptable strategy, but in some cases
uncertainty demands more accurate measurement. Guesswork
is done conservatively, and conservatism in the uncertainty
model can degrade performance. When uncertainty is the
performance-limiting factor, we expect this uncertainty model
to represent some sort of physical limit to the plant.

Most identification stems from the celebrated prediction
error method [4] which produces high quality linear models
complete with a measure of model certainty in the form
of a model parameter covariance matrix. This parameter
covariance, its implication for robust control, its improved
value when using instrumental variables (or orthonormal basis
function parameterizations), and the influence of weighting
functions and closed loop identification controllers on it have
all been extensively studied [5], [6], [7], [8], [9]. This con-
fidence measure is often taken out of context, however, as
it represents only the distribution of models which would
result from the same identification process if the data were
regenerated. Prediction error uncertainty is not capable of
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representing the influence of a nonlinearity [10]. Moreover,
with additional data the model parameter covariance will
decrease even if the error variance is constant—a sought
after property of consistency—but a property which clearly
indicates that the parameter covariance is not a measure of
any physical property.

A paradigm known as stochastic embedding [11], [10], has
been proposed to work around this—adding an additional
source of uncertainty to the computation of parameter covari-
ance. By supposing that the model parameters are sampled
from a distribution with pre-defined covariance, the stochastic
embedding approach estimates the means of these parameter
distributions rather than the parameters themselves—and re-
turns a much more conservative covariance estimate. This co-
variance does not approach zero with more samples—instead
it approaches the a priori covariance. Recent developments
in Stochastic embedding parallel and predate the modeling
assumption of this paper, in that they allow experimenters to
gather data which represents a model-set rather than a specific
model [12], [13].

The primary alternative to prediction error identification
is broad-spectrum frequency-domain estimation [14]. This
approach uses a ratio of the Fast Fourier Transform (FFT)
spectra of the input to the output. To eliminate noise, the
FFT data must be averaged in the frequency domain, often
weighted by the magnitude of the input (or occasionally by the
magnitude of the output)—making a ratio of cross spectrum
to power spectrum. An uncertainty boundary can be obtained
by repeatedly generating estimates of the transfer function
and then drawing a bound around them numerically [2], but
our method takes this further and simultaneously optimizes
the model and the shape matrices. H∞–oriented identification
based on corrupted point-samples of the frequency response
have been analyzed before in a single input, single output
setting [15], [16], but there are no real shape matrices for
SISO systems, and the approach assumes a unique true model
(i.e, not a true model-set).

The popular domain of model validation (through lack
of invalidation) tests a priori model-sets on time domain
data [17]. This approach uses Kalman Yakubovitch Popov
Lemma alchemy to commute frequency domain bounds to
time domain bounds on “uncertainty” signals, and tests for the
satisfiability of those bounds using convex optimization (linear
programming) within a finite horizon. An elegant approach
to be sure, but not one which identifies model-sets. Nor one
which easily could, since adding flexibility in the model-set
would make the problem non-convex.

In an effort to capture a physical component to the H∞
robust model, we assume the system is repeatable (though
potentially corrupted by noise) if a condition vector [18]—
comprised of the factors that cause the real system to deviate

ar
X

iv
:1

80
2.

07
69

5v
1 

 [
m

at
h.

O
C

] 
 2

1 
Fe

b 
20

18



PRE-PRINT MANUSCRIPT 2

from a unique linear model—is held constant. This includes
input signal amplitudes and operating points for sinusoidal
tests on nonlinear systems, and also exogenous signals like
the pressure or Mach number for aircraft. By repeating stepped
sine tests using various condition vectors we obtain a struc-
tured data set which represents not a single model, but a
model-set. Averaging results with the same condition vector
allows us to separate the effects of measurement noise from
plant variability. With data representing plant variability, we
can fitH∞ model-sets to include all observed variation—using
convex programs inspired by the minimal bounding ellipsoid
problem [19]. If the plant is non-linear and the condition
vector includes the signal amplitudes, then the approach is
conceptually similar to bounding the describing function [20]
for some range of input magnitudes.

In this paper, Section II introduces the Quadric Inclu-
sion Program (QIP), a convex program that identifies norm-
bounded linear inclusions (a type of model-set with good
scaling properties) from a regressor of inputs and a vector
of outputs—much like the ordinary least squares algorithm
identifies equality models from a similar starting point. Sec-
tion VII discusses the general applicability of the QIP, and
highlights some open problems. Section VI applies this QIP
to identifying dynamical systems, using an output-based state-
vector construction strategy from nonlinear and adaptive con-
trol theory. While this might suggest a time-domain strategy,
Section VIII provides an example of how frequency domain,
condition-group based data sets in the style of [18] can be
used to fit a state-space uncertain model.

II. THE QUADRIC INCLUSION PROGRAM

In this section we consider the linear norm-bounded inclu-
sion y ∈ {(A + B∆C)x : ∆T∆ � I} with y ∈ Rny and
x ∈ Rnx vectors, A a real matrix of appropriate dimension,
B and C real invertible square matrices, and ∆ unknown but
norm bounded1: ∆T∆ � I . If the linear equation y = Ax is
geometrically analogous to a line, then this inclusion is anal-
ogous to a cone. In this section we present a convex program
which finds the real-valued parameters of the inclusion, the
elements of the A, B, and C matrices, based on a series of
measurements of x and y (with y potentially noisy).

However, we must apply a lossless convexification, as the
problem is not naturally amenable to convex optimization
tools. And for this convexification we need to invoke an
alternative form for this inclusion:

Proposition 1 (Quadratic Form). A pair of input and output
vectors (x, y) satisfies the inclusion

y ∈ {(A+B∆C)x : ‖∆‖ ≤ 1}, (1)

with full rank B and C if and only if it satisfies the following
quadratic form inequality:(
y
x

)T ( −B−TB−1 B−TB−1A
ATB−TB−1 CTC −ATB−TB−1A

)
︸ ︷︷ ︸

Q

(
y
x

)
≥ 0.

(2)
1∆T∆ � I ⇐⇒ ‖∆‖ ≤ 1.

Proof. First, consider x and y which satisfy (1):

∆Cx = B−1(y −Ax), (3)

‖Cx‖2 ≥ ‖∆Cx‖2 = ‖B−1(y −Ax)‖2, (4)

0 ≤ xTCTCx− (y −Ax)TB−TB−1(y −Ax). (5)

Which is equivalent to (2). Conversely, for x and y which sat-
isfy (2) we can choose ∆ = B−1(y−Ax)xTCT /(xTCTCx)
to satisfy both y = Ax+B∆Cx (trivially) and ∆T∆ � I:

∆T∆ =
Cx(y −Ax)TB−TB−1(y −Ax)xTCT

(xTCTCx)2
(6)

= γ
CxxTCT

(xTCTCx)
, (7)

with γ = (y − Ax)TB−TB−1(y − Ax)/(xTCTCx) ≤ 1
as xTCTCx ≥ (y − Ax)TB−TB−1(y − Ax). This is rank
1, positive semi-definite, with γ ≤ 1 as the only non-zero
eigenvalue. This ensures that ∆T∆ � I .

In this form, the inclusion has become a linear inequality
constraint on the elements of Q. But not all symmetric
matrices will have the appropriate structure to be interpreted
as Q for the purpose of backing out the inclusion matrices.
Fortunately, we can re-parameterize around this issue by
decomposing the matrix Q.

Definition 1 (SS-DD). The matrix Q can be expressed as the
difference of two positive semi-definite matrices. Using linear
matrix inequality constraints on four new matrix variables, we
can construct a similar structure to Q, which we call the Split
Semi-Definite Decomposition (SS-DD). The following three
equations constrain the new SS-DD variables XB , XA, XAA

and XC :

0 � Q′ ,
(
XB −XA

−XT
A XAA

)
, (8)

0 � XC , (9)

Q =

(
−XB XA

XT
A XC −XAA

)
. (10)

However, the two structures are not exactly the same. All
Quadratic form Q have an SS-DD form, but the converse is
not true in general; the Q of the SS-DD will only match the
Q structure in (2) in a special case:

XAA = XT
AX

−1
B XA, (11)

that is, if we can write the RHS of (8) as(
XB

−XT
A

)(
X−1B

) (
XB −XA

)
, (12)

then the rank of the RHS of (8) is the rank of XB and the
SS-DD structure matches that of (2):

XB = B−TB−1

XA = B−TB−1A
XAA = ATB−TB−1A
XC = CTC

. (13)

The SS-DD is a lossless convexification of the search space,
and we will introduce a convex program which is formatted
to follow the rules of disciplined convex programming [21]
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to find the SS-DD. However, that program must also result in
satisfaction of (11) for all optimal solutions if the variables are
to be interpreted as an inclusion. This is guaranteed for our
QIP, but not for other cost functions or additional constraints
involving the SS-DD.

Problem 1 (Degenerate Quadric2 Inclusion Program). The
inclusion that minimizes a width-like cost3 while including
a list of data point pairs ξi = (xTi , y

T
i ), i = 1, . . . , N can be

found by the following convex optimization program

maximize log(det(XB))

over Q, XB , XA, XAA, XC

subject to SS-DD equations (8)-(10) (14)
1 = tr[XC ]

0 ≤ ξTi Qξi ∀ i ∈ 1 . . . N

Proposition 2. The SS-DD satisfies (11) for all solutions to
Prob. 1 with finite cost.

Proof. In the general case where (11) does not hold, we can
define an equation error matrix

X̃AA , XAA −XT
AX

−1
B XA � 0, (15)

which is p.s.d. since it is a Schur complement of Q′, the matrix
in (8). Suppose X̃AA has a non-zero eigenvalue λ > 0 and
corresponding eigenvector v. Now consider another potential
solution identical in all ways but one to the previous solution:
X ′AA = XAA − vλvT . Since the other matrices are the same,
the new solution trivially satisfies all constraints which do
not involve XAA, leaving (8)—satisfied by Schur complement
since X̃AA− vλvT � 0, and the inclusion inequalities, which
the new solution relaxes to (recall that xi is the lower part of
ξi):

0 ≤ ξTi Qξi + xTi vλv
Txi. (16)

Relaxing constraints increases the objective function for our
maximization problem. Assuming that the objective was pre-
viously bounded by the inclusion inequalities in all the various
ways it could increase, at least one of them must have
been relaxed by the change (albeit potentially through re-
arrangement of the XC matrix), demonstrating that a higher
objective solution must exist—a contradiction of the premise
that optimal solutions can have non-zero equation error for
equation (11).

Remark 1 (Trivial Solution). A trivial solution to the con-
straints always exists, with Q′ = 0, XC = λI : tr[XC ] = 1.
This is the worst possible solution, since it represents an inclu-
sion with infinite uncertainty magnitude, and it has infinitely
negative optimization function value.

Remark 2 (Linear Solutions). If there are insufficient data
points, or if the data points share a perfect linear relationship,
XB will have an unbounded eigenvalue. In this situation, the

2Named for the geometric shape explained in the next subsection.
3GM{σ(B)}‖C‖Frobenius, where GM denotes the geometric mean;

σ(B), the spectrum, or set of singular values. Cone-width analogy explained
in the next subsection.

optimization function value will be infinite and the solution4

will not be unique.
The next three sections explain the cost function, prove

consistency of estimation, and relax the degenerate quadric
inclusion program to allow for Gaussian measurement noise
in y.

III. A GEOMETRIC NOTION OF CONE WIDTH FOR
DEGENERATE QUADRIC “CONES”

The set of all points (x, y) satisfying the quadratic in-
equality (2) has a geometric interpretation—a shape which is
technically a degenerate quadric. Quadrics in 2D space are
familiar to many: non-degenerate varieties include ellipses,
hyperbola, and circles; but cones are degenerate. Degenerate
quadrics are a general class of hyperdimensional shapes: they
are described by a symmetric matrix quadratic form inequality
relative to zero. Non-degenerate quadrics are similar, but with
this inequality relative to some non-zero constant. With some
positive and some negative eigenvalues (separated in the SS-
DD), our degenerate quadrics have a useful analog in the
simple 2D cone.

Definition 2 (Cone width for a toy cone). Consider the follow-
ing 2D cone in real scalar x, y space: |y−Ax| ≤ r(x) = w|x|.
We call r(x) the “radius” of the cone opening as a function of
x, and w the “width” of this cone. We can equivalently define
this width as

√
E(r(x)2) if x ∼ N (0, 1), where E is expected

value, and N (0, 1) is the normal distribution with mean 0 and
variance 1.

Proof.
√

E (r(x)2) =
√
w2E(|x|2) = w.

Definition 3 (Characteristic radius of a cross section). Con-
sider a special case SS-DD satisfying (10)–(13) such that it
is equivalent to an inclusion. If we specify a particular input
x, the space of included y can be interpreted as a geometric
shape: a hyper-ellipsoid. The characteristic radius R(x) of this
cross section is defined as the radius of the hyper-ball that has
equal hyper-volume to this hyper-ellipsoid. The hyper ellipsoid
can be described as

(y−Ax)TXB(y−Ax) ≤ G2(x), G(x) ,
√
xTXCx; (17)

and the characteristic radius,

R(x) = G(x) (det(X−1B ))
1

2ny , (18)

where y ∈ Rny .

Definition 4 (Generalized Cone Width). The generalized cone
width is the square root of the expected value of the squared
characteristic radius given inputs drawn from the standard
multivariate normal distribution. That is

W ,
√

E (R2(x)) | E
(
xxT

)
= I (19)

Theorem 3 (Generalized Cone Width). The generalized cone
width of a special case SS-DD form satisfying (10)–(13)

W = (det
(
X−1B

)
)

1
2ny

√
tr (XC). (20)

4if one is returned at all—data sets like this typically cause numerical
solvers to fail.
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Proof. The width,

W =
√

E (R2(x)) = (det(X−1B ))
1

2ny

√
E(G2(x)); (21)

E
(
G2(x)

)
= E

(
xTXCx

)
(22)

= tr[XCE
(
xxT

)
] = tr[XC ]. (23)

Substitution yields (20).

We use the following corollary to avoid having both XC

and XB in the cost function of the QIP.

Corollary 3.1. if tr(XC) = 1,

log(W ) = − 1

2ny
log(det(XB)) (24)

Proof. log(W ) = log
(

(det
(
X−1B

)
)

1
2ny

√
tr (XC)

)
=

1
2ny

log
(
det
(
X−1B

))
+ 1

2 log (tr (XC)) =
−1
2ny

log (det (XB)) + 1
2 log (1) and log(1) = 0.

The maximization objective log(det(XB)) in Prob. 1 is a
negative multiple of this expression for generalized cone width
(and therefore minimizes it).

IV. PROOF OF CONSISTENT ESTIMATION

In this section we use properties of the generalized cone
width to prove that, when data is generated from a norm-
bounded linear inclusion, the estimates from the degenerate
QIP converge, in a certain sense, to equivalence with the true
inclusion. This is essentially a property of the choice of cost
function, and could be otherwise stated “every norm-bounded
inclusion is optimal for the data it produces”.5

Norm-bounded linear inclusions are functionally equiva-
lent (include the same points) up to an orthogonal pre-
multiplication of C, an orthogonal post-multiplication of B,
and reciprocal scaling of C and B, and the cone width does
not to change due to any such alteration.

Corollary 3.2. Generalized cone width is the product of the
geometric mean of the singular values of B, and the 2-norm
of the singular values (the Frobenius norm) of C

Proof. Converting the model-set from standard form (1) to
the special case of the SS-DD form (10)–(11) and applying
Thm. 3,

W = (detBBT )
1

2ny

√
tr[CTC], (25)

=
∏

λ∈σ(B)

(
λ

1
ny

)√ ∑
γ∈σ(C)

γ2. (26)

Where the spectrum of a matrix σ(·) is the set of the singular
values of that matrix (with repetition).

Multiplication by a orthogonal matrix cannot change the
singular values of a matrix, and cannot influence the cone
width.

5Without this property one could imagine a cost function that always opts
for sphere-like models, scaled identity matrices for B and C: any information
about the shape of the uncertainty in the data would be ignored.

Corollary 3.3. The generalized cone width is invariant to
scaling C and B by reciprocal values.

Proof. W ′ = GM{σ(α−1B)}‖αC‖Frobenius = α
αW.

The cone width also satisfies an intuitive notion that a
cone can only contain another cone if it is wider. In terms
of inclusions, this geometric containment becomes a concept
of implication: if one inclusion is implied by a second, this is
equivalent to saying that the second inclusion is geometrically
contained within the first.

Lemma 1. An inclusion y ∈ {(Ao +Bo∆Co)x : ∆T∆ � I}
(subscript o for outer) contains another inclusion y ∈ {(Ai +
Bi∆Ci)x : ∆T∆ � I} (subscript i for inner) if and only if

‖Ã+ B̃∆C̃‖ ≤ 1 ∀ ∆ | ‖∆‖ ≤ 1, (27)

with B̃ , B−1o Bi, Ã , B−1o (Ai−Ao)C−1o , and C̃ , CiC
−1
o .

Proof. Geometric containment of inclusion shapes is logical
implication of inclusion inequalities:{

y = Aox+Bo∆oCox
∆T
o ∆o � I

⇐=

{
y = Aix+Bi∆Cix

∆T∆ � I . (28)

The two equalities define a relationship between ∆ and ∆o,
so we can equivalently state{

∆T
o ∆o � I ⇐= ∆T∆ � I

Ao +Bo∆oCo = Ai +Bi∆Ci
. (29)

This is because (28) holds for all x. By algebra, ∆o =
Ã + B̃∆C̃. Re-stating the implication in (29) as ‖∆o‖ ≤
1 ∀ ∆ | ‖∆‖ ≤ 1 we get (27).

This eventually leads to a necessary condition for inclusion
based on a cone width inequality. An intermediate necessary
condition uses the singular values of the B and C matrices.

Lemma 2. If y ∈ {(Ao + Bo∆Co)x : ∆T∆ � I} includes
y ∈ {(Ai+Bi∆Ci)x : ∆T∆ � I} then σmax(B̃)σmax(C̃) ≤
1.

Proof. Assume the contrary (σmax(B̃)σmax(C̃) > 1) and
construct the following:

∆ = B̃T ζB sign(ζTBÃζC)ζTC C̃
T , (30)

where ζB and ζC are unit eigenvectors for B̃B̃T and
C̃T C̃ corresponding to their respective maximum eigenval-
ues: λmax(B̃B̃T )ζB = B̃B̃T ζB , λmax(C̃T C̃)ζC = C̃T C̃ζC ,
ζTBζB = ζTCζC = 1. This choice of ∆ leads to:

1 ≥ ‖Ã+ B̃∆C̃‖ ≥ |ζTB(Ã+ B̃∆C̃)ζC |
= |ζTB(Ã+ B̃B̃T ζB sign(ζTBÃζC)ζTC C̃

T C̃)ζC |
= |ζTBÃζC |+ λmax(B̃B̃T )λmax(C̃T C̃), (31)

≥ (σmax(B̃)σmax(C̃))2 > 1. (32)

A contradiction, as desired.

Proposition 3. If the outer inclusion has a generalized cone
width Wo; and the inner, Wi then Wo ≥Wi.
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Proof. Assume the contrary (Wi > Wo),

2ny

√
detBiBTi ‖Ci‖F >

2ny

√
detBoBTo ‖Co‖F, (33)

ny
√

detBiBTi
ny
√

detBoBTo
‖Ci‖2F > ‖Co‖2F, (34)

tr

(
ny

√
det(B−1o BiBTi B

−T
o )CTi Ci − CTo Co

)
> 0, (35)

tr
(
CTo

(
λmax(B̃B̃T )C̃T C̃ − I

)
Co

)
> 0. (36)

However by Lemma 2, the argument of trace in the above
inequality is negative semi definite, so it can not have a positive
trace—a contradiction.

The special case where the cone widths reach equality marks
the residual set of a Lyapunov-like argument in the consistency
proof. Conveniently, this residual set has only one element.

Proposition 4. If Wo = Wi then our two inclusions are
equivalent in the sense that Ao = Ai, and ∃ λ > 0 :
λBoB

T
o = BiB

T
i , C

T
o Co = λCTi Ci.

Proof. When the two widths are equal, the derivation which
produced (35) yields:

tr

(
CTo

(
ny

√
det (B̃B̃T )C̃T C̃ − I

)
Co

)
= 0. (37)

Yet as before, singular values are limited by the inclusion
constraint, and this guarantees (31) and a long series of matrix
inequalities,

I � |ζTBÃζC |I + λmax(B̃B̃T )λmax(C̃T C̃)I

� λmax(B̃B̃T )C̃T C̃ � ny

√
det (B̃B̃T )C̃T C̃ = I, (38)

with this last equality due to the combination of (37) and the
last inequality above (which can be extended to

CTo

(
ny

√
det (B̃B̃T )C̃T C̃ − I

)
Co � 0, (39)

another negative semi-definite matrix) ultimately forcing the
inner matrix difference to be zero (as it is both negative semi-
definite and has trace zero).

With both the first and last element identity, (38) is actually
a long chain of equalities. This gives

λ , λmax(B̃B̃T ) =
ny

√
det (B̃B̃T ), (40)

|ζTBÃζC | = 0, λC̃T C̃ = I, (41)

from which it follows that CTo Co = λCTi Ci. When the
geometric mean of the eigenvalues is equal to the largest
eigenvalue, all the eigenvalues must be equal; thus B̃B̃T = λI
(or equivalently λBoB

T
o = BiB

T
i ). Since both B̃B̃T and

C̃T C̃ have only one eigenvalue with high multiplicity, the
eigenvectors ζB and ζC can be any unit vectors. This in turn
guarantees Ã = 0, that is, Ao = Ai, completing the conditions
necessary for the two model-sets to be equivalent.

Using these preliminaries, we can prove the following
notion of estimation consistency, noting that without some
knowledge of how frequently the true inclusion generates

extreme data—data on the very edge of the inclusion—it is
impossible to claim any rate of convergence.

Theorem 4 (Estimation Consistency). Consider an infinite list
of input output data ξi = [yTi , x

T
i ]T ∀ i ∈ N points from

the inclusion yi ∈ {(AT + BT∆CT )xi : ∆T∆ � I} with
generalized cone width WT (subscript T for true) in the sense
that any possible output will eventually be produced within
a non-zero tolerance. Suppose that inclusion estimates y ∈
{(An +Bn∆Cn)x : ∆T∆ � I} with generalized cone width
Wn are calculated via Prob. 1 using the subset of data indexes
i = 1, . . . , n as n increases towards infinity.

Then Wn+1 ≥Wn ∀ n ∈ N, and Wn ≤WT .
Most importantly, the identification procedure is consistent

in the sense that if ∃ n′ such that the inclusion width stops
changing, Wn = Wn′ ∀ n ≥ n′, then the n′th result inclusion
must be equivalent to the generating inclusion.

Proof. The first claim follows from the nature of the maxi-
mization: more constraints can only reduce the objective, this
objective is proportional to the negative log of the width, and
log is monotonic. The second is a consequence of the true
inclusion being a feasible solution to the optimization problem:
the optimal solution has the maximal objective over all feasible
solutions. As for the third, suppose to the contrary that the
inclusions are distinct. The n′th result inclusion cannot contain
the true inclusion because it has lesser or equal cone width and
is not the same (by supposition). There must be points within
the true inclusion and outside the n′th result inclusion. And
these points, which will eventually occur for some n > n′,
will not satisfy the inclusion inequalities with the n′th result
inclusion—contradicting the notion that the estimates could
stop changing without reaching the true inclusion.

Convergence to a non-trivial inclusion is an important distin-
guishing aspect of this style of identification. Inclusions which
are built on the error estimates in a least-squares fit [4], [8],
[22] notably lack this property—converging instead towards
a unique model (one element inclusion) as the estimated
parameter covariance vanishes with additional samples.

V. A NON-DEGENERATE QUADRIC FOR NOISY
MEASUREMENTS

We now consider the notion that the measurement ŷ is a
deterministic function of a condition vector c that includes
x, corrupted by stochastic zero-mean measurement noise η
(from a potentially c-dependent distribution): ŷ = f(c) + η.
These assumptions allow us to take advantage of the central
limit theorem: we average multiple samples ŷ to significantly
reduce the effect of noise. As the number of averaged samples
grows, the distribution of the average approaches a Gaussian
distribution and its covariance shrinks towards zero. With
many samples of ŷ, we can find both the sample mean,
ȳ =

∑N
n=1 ŷn/N , and sample covariance—which gives us an

estimate of the distribution of this mean, Ση =
∑N
n=1(ŷn −

ȳ)(ŷn − ȳ)T /(N2 − N). We therefore expect that the noisy
measurement case approaches the noiseless case as the number
of averaged samples increases.
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Yet the practical limits on the number of samples that can
be obtained forces us to consider the intermediate case where
noise is small and Gaussian, but not entirely eliminated. That
is, data ȳ = f(c) + η̄, with η̄ ∼ N (0,Ση). In this scenario,
our degenerate quadric model is inflexible near zero input: a
zero x must produce a zero y, and a near-zero x must produce
a near-zero y unless the cone is preposterously wide. But ȳ
can take on a non-zero value even for zero y. To address this
issue, we introduce the idea of fitting a non-degenerate quadric
relaxation of the model.

The derivation starts with a noise-corrupted version of (2):

ξTQξ =

(
ξ̄ −

(
η̄
0

))T
Q

(
ξ̄ −

(
η̄
0

))
≥ 0; (42)

ξ̄TQξ̄ ≥ 2ξTQ

(
η̄
0

)
−
(
η̄
0

)T
Q

(
η̄
0

)
, (43)

for which we can offer a high-likelihood lower-bound on

each of the two RHS terms. First, 2ξTQ

(
η̄
0

)
is normal,

with zero mean, covariance 4ξTQ

(
Ση 0
0 0

)
Qξ, and stan-

dard deviation 2
∥∥∥(Σ

1/2
η 0

)
Qξ
∥∥∥
2
≤ 2

∥∥∥(Σ
1/2
η 0

)
Qξ
∥∥∥
1
;

the standard deviation is bounded by a linear-programming
compatible expression in Q. Since the inverse survival function
of a normal distribution is linear in the standard deviation,
this expression can be used to lower bound the first term to
arbitrary likelihood. However this term works to make the
model less conservative in doing so, and does not greatly
influence the behavior near the origin, where the effects of
noise are the most problematic. It is therefore reasonable to
take a conservative approach and ignore this term.

The second term is more helpful, and is bounded in magni-
tude by a chi-square distributed value and an expression which
is linear in XB :

−
(
η̄
0

)T
Q

(
η̄
0

)
= η̄TXB η̄,

≤ ‖Σ1/2XBΣ1/2‖‖Σ−11/2η‖
2,

≤ tr [ΣηXB ] ν, ν ∼ χ2
ny
. (44)

Choosing a constant threshold α based on the survival
function of χ2

ny
, the inclusion’s quadratic form inequality

threshold is shifted to provide an arbitrarily low chance of
feasibility problems with low-magnitude inputs:

Problem 2 ((Non-Degenerate) Quadric Inclusion Program).

maximize log(det(XB))

over Q, XB , XA, XAA, XC

subject to SS-DD equations (8)-(10) (45)
1 = tr[XC ]

0 ≤ αtr[XBΣy] + ξTi Qξi ∀ i ∈ 1 . . . N

Note that, since this modification changes the constraints of
the problem, it requires re-examining Prop. 2. Fortunately, (16)
does not gain any terms which would invalidate the proof as a
result of this noise modification, and we can therefore accept
it safely.

Let ξ = [y, x]T , Q =

(
−1 1
1 − 15

16

)
(a) Cone: ξTQξ ≥ 0

(b) Hyperboloid Cone: ξTQξ ≥ −α
(c) Properly Inflated Cone: ξTQξ ≥ −α− 2

√
α|x|/4

Fig. 1. Illustration of a hyperboloid cone. (a) a (degenerate quadric) cone in
2D. Note that ξTAξ ≥ 0 ⇐⇒ |u|/4 > |y − u|. (b) a hyperboloid (non-
degenerate quadric) cone is overlaid over the original cone. (Conic section
ξTAξ = −α is a hyperbola.) (c) a properly (Minkowski sum) inflated cone
(|u|/4 +

√
α > |y − u|) is overlaid on the previous two cones.

As shown in Fig. 1, the non-degenerate quadric can be
visualized as a hyper-dimensional (multi-axially) revolved
hyperbola, which asymptotically approaches the original, de-
generate, quadric at large amplitudes. As noise-magnitude
is reduced through averaging repeated measurements, the
deviation between this approximate “hyperboloid” relaxation
and a potentially more accurate Minkowski-sum style noise-
relaxation becomes less significant. The QIP is not consistent
in the sense that the degenerate QIP is, but the non-degenerate
QIP approaches the degenerate one as noise is averaged away.6

VI. IDENTIFICATION OF DYNAMICAL SYSTEMS

The QIP identifies inclusions in the form y ∈ {(A +
B∆C)x | ‖∆‖∞ ≤ 1}, reminiscent of the ordinary7 least
squares identification of the equality y = Ax. As in standard
identification theory, there are several ways to contrive x and
y to identify the system.

While a discrete time prediction error setup may be the
classic example of system identification using least-squares
fitting, our aim is robust control, and an inclusion-based
version of a prediction error model is not convenient for this
purpose. Instead, our aim is the continuous time norm bounded
linear differential inclusion model which can be used in the
feedback synthesis schemes of, for example, [19]:

ξ̇ = Aξ + Bu+ B′p, (46)
q = C′ξ + D′u, (47)

‖p‖ ≤ ‖q‖. (48)

This is already in the correct form to fit an inclusion, so long
as ξ̇ and ξ are known. More realistically, the only available
state measurement is an output w = Cξ, and we must choose
a state-space representation that allows us to back out the state
and its derivative from these measurements. The classic choice

6Consistency in the presence of deterministic noise may be possible as an
extension of the degenerate QIP, however.

7or weighted by the covariance meta-data associated with x and y
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is to define ξ based on derivatives of w, according to the
relative degree ([23]) of each output.

Based on the (vector) relative degree, (r0, r1, . . . , rp), of a
MIMO system, there exists a representation of the system’s
state based on the system outputs and their derivatives:

ξ , (w0, ẇ0, . . . , w
[r0−1]
0 , . . . , wp, ẇp, . . . , w

[rp−1]
p )T . (49)

This simply represents each output as a perfect rth-order
integrator (integrating an unknown quantity that must involve
the inputs). This, along with the inputs is the QIP regressor
x, and the QIP regressand y is the vector of maximal order
output derivatives:

z ,
(
w

[r0]
0 w

[r1]
1 . . . w

[rp]
p

)T
. (50)

Representing z as a linear inclusion in all lower output
derivatives and the inputs,

z ∈ {(A+B∆C)

(
ξ
u

)
| ‖∆‖∞ ≤ 1}, (51)

we arrive at the desired norm bounded differential inclusion
structure.

Defined this way, the vector equation (46) has many known
rows, corresponding to the equations which define integrator
behavior. The rest of the rows (and all of the C′ and D′

matrices) will consist of elements from the A, B, and C
matrices. Borrowing [23]’s notation,(

A B
)

=
(
diag(A0, A1, . . . , Ap) 0

)
+ SA, (52)

B′ = SB, (53)(
C′ D′

)
= C, (54)

with a row selector matrix that singles out the rows corre-
sponding to the relative degree derivatives of the outputs,

S = diag(S0, S1, . . . , Sp), (55)

Si =
(
0 0 . . . 1

)T ∈ Rri×1, (56)

and independent integrator blocks,

Ai =


0 1

0 1
. . . . . .

0

 ∈ Rri×ri . (57)

Thus, so long as the outputs can be reliably differentiated, a
QIP regression can be constructed to identify the elements of
the system matrices directly. It is conceivable that if some pre-
existing state estimator uses some more complex mechanism
to convert measurements to state history, that too could be
used to make the regressor. Orthonormal basis functions [22],
[24] are another possible source of regressors.

Non-linear regressors are also a possibility if, as is the
case in robotics, a suite of unknown and potentially varying
parameters can be made to appear linearly with a matrix of
well known and well-measured nonlinear coefficients. Dif-
ferentiating the non-linear coefficient matrix with respect to
deviation states would convert this model into the linear
differential inclusion required by H∞ controller synthesis,
albeit with a bounded disturbance term (from everything else).

VII. DISCUSSING THE LIMITATIONS OF QIP

Fig. 2 shows the QIP fit for a standard statistics data set [25].
Unlike Least Squares, the QIP is outlier-sensitive, as it bounds
wort-case behavior. Only two data points in each plot lie on the
non-degenerate quadric boundry, and these data determine the
final result. Hence the caution with which we urge averaging
repeatable tests to ensure that each point in the QIP has as
little noise as possible.

This sensitivity also suggests the possibility of more effi-
cient testing if QIP fitting were paired with a machine learning
system to select the next test condition (perhaps estimating the
parameter–realization maps of [26]), rather than collecting all
data before hand.

A less obvious sensitivity is that the QIP tests the limits
of the numerical interior point solvers. As demonstrated in
Prop. 2, the QIP maintains a large positive semi-definite Q′

matrix with more than half of its eigenvalues zero. Also,
the log of determinant cost function, while technically con-
cave, is near the edge of what interior point solvers can
reliably handle—and the feature is not supported by many
solver packages. This numerical complexity manifests as a
surprisingly unreliable software system for a problem which
is mathematically guaranteed to have a solution. It may take
an effort in special purpose solver design to reach the full
potential of the QIP for general purpose use.

Another numerical hurdle comes with data that contain a
linear equality behavior (a subspace of y which is actually
linear in x) in addition to non-linear (that is, linear inclusion)
behavior. For the QIP to solve such a problem, at least one
eigenvalue of XB must go to infinity. Obviously this will cause
the (floating-point) numerical solvers to fail. A proper solution
might define some maximum eigenvalue for XB , and explicitly
remove the linear relationship if this constraint becomes active.
Or these linear relationships might be identified and removed
as a pre-processing step.

Analyzing the benefits of closed loop model identification
also posses a challenge. It has been shown that performing
closed loop identification can shape the identification of nom-
inal models [27] with H∞ error bounds much the same way it
shapes the amplification of system noise—Identifying a closed
loop system should identify a linear fractional uncertainty for
the open loop system, and potential exploitation of closed loop
identification is very interesting for this reason.

A related concept, for feedback involving uncertain outputs,
is the “uncertainty D-term” in the sense of y ∈ {Ax+Bp; p =
∆q; q = Cx+Dp | ‖∆‖ ≤ 1}. It remains unclear if systems
with D-terms can be identified using QIP-like identification
strategies. Since the QIP does not account for a D-term, an
uncertain feedback arrangement of an identified system will
have a different structure than would by identified by QIP, and
this makes it unlikely that QIP will arrive at models which are
expressed using a D-term, like passivity models.

Another open problem is handling noise in more flexible
ways, allowing noise in the regressor in addition to noise in
the regressand, allowing a notion of consistency despite the
noise, and softening the geometric constraints to reduce the
sensitivity to outliers.
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OLS Fit QIP FitData

Fig. 2. Anscombe’s Quartet [25], a set of four lists of x-y points that have all
the same statistics, yet have very different underlying data. While the OLS fit
(and its parameter certainty) is the same for all four plots, the QIP fit (with
αΣη = 2) responds differently to each shape—in a way which could be said
to be dominated by outliers representing the worst case behavior. The data is
shifted from Anscombe’s original (-3 in y) so that the least squares fit lines
intersect the origin. The QIP Fit features the nominal model, the degenerate
quadric asymptote, and the (non-degenerate) quadric (which must include the
data).

VIII. A FREQUENCY-DOMAIN IDENTIFICATION EXAMPLE

Suppose we have a system that follows the norm-bounded
linear differential inclusion model

ẇ0

ẅ0

ẇ1

ẅ1

 =


0 1 0 0
−1 −.1 1 0
0 0 0 1
1 0 −1 −0.1



w0

ẇ0

w1

ẇ1



+


0 0
0 1
0 0
1 0

(u0u1
)

+


0 0
.125 0

0 0
0 .125

(p0p1
)
, (58)


q0
q1
q2
q3
q4
q5

 =



√
2/2 0 0 0 0 0

0 0 0 0 0
√

2/2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




w0

ẇ0

w1

ẇ1

u0
u1

 , (59)

or (46) and (47) in vector notation, with

w = Cξ, C =

(
1 0 0 0
0 0 1 0

)
, (60)

p = ∆q, ‖∆‖ ≤ 1. (61)

Suppose that sinusoidal input, sinusoidal output tests in
the style of [18] are performed using this model, producing
pairs of input and output phasor vectors. Repetitions of the
same input share a condition vector and can therefore be
used to identify meaningful average and variance statistics for
the condition group. For 20 frequencies log-spaced between
10−.5 and 10.5 rad/sec, we sample 200 condition groups, and

each condition group represents averages of 100 statistically
independent steady state measurements of the output phasor
vector.

The distribution over which we randomly sample ∆ is im-
portant for the convergence rate of the algorithm: we generate
a random matrix with independent and normally distributed
elements, calculate the singular value decomposition of this
matrix, replace the singular values with new ones chosen from
a uniform distribution between -1 and 1, and re-assemble the
matrix (which now has all of its singular values less than or
equal to one). If only extreme deltas with singular values equal
to one were tested, then the rigidly geometric QIP would find
a model close to the true model more quickly. But the worst
case ∆ for any input only occurs when q avoids the null space
of ∆, so even this strategy would be rather inefficient. Thus
our strategy of choosing random ∆ has an exceedingly low
chance of finding the type of outlier which reaches the outer
limit of the true model.

Condition groups are heteroscedastic, and to simulate this
we generate a new random 2 by 2 matrix, Σ1/2, with nor-
mally distributed elements (mean 0, standard deviation .1) to
represent a decomposition of the output covariance matrix
Ση = Σ1/2ΣT1/2 for each condition group. We assume that
the noise covariance matrix does not have an imaginary
component.

For each individual test then, the output phasor ŵ is thus

ŵ = C[jωI −A−B′∆C′]−1(B + B′∆D′)û+ Σ1/2η (62)

with complex η having both imaginary and real parts standard
normal distributed.

For each condition group we construct a state vector phasor
using the relative degree vector (2,2):

ξ̂ =
(
ŵ0 jωŵ0 ŵ1 jωŵ1

)T
, (63)

and we additionally construct the phasor vector of the relative
degree terms (accelerations, in this case)

ẑ =
(
−ω2w0 −ω2w1

)
. (64)

Both real and imaginary parts must independently satisfy
(51), since A+B∆C is real, so a condition group is equivalent
to two QIP data points.

The estimated covariance of ẑ is based on the sample co-
variance of the condition group average ŵ, Σw: Σz = ω4Σw.
Ignoring the cross-coupling between real and imaginary noise
terms, we use the real part of Σz for the purpose of relaxing
the degenerate quadric.

After shuffling the data set, we learn the model on the first
200 points and use this model to cull inliers from the first 800
points, and continue in this fashion—re-learning, expanding
the pool of data, and culling un-interesting points (which
slow down the optimization). A model estimate is returned is
slightly less than half a minute, representing 8,000 data points
(with associated output sample covariance measurements).

The resulting model, (65) and (66), closely matches the true
A and B matrices. The estimated B′ should be interpreted
by its image space, since this matrix is not unique up to an
orthogonal post multiplication. In this case it is clear that by
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ẇ0

ẅ0

ẇ1

ẅ1

 =

 0 1 0 0
−1.000 −0.099 1.000 −0.000

0 0 0 1
0.999 −0.005 −0.996 −0.103


w0

ẇ0

w1

ẇ1

+

 0 0
−0.003 0.997

0 0
1.003 0.001

(u0u1
)

+

 0 0
−0.016 −0.096

0 0
−0.105 0.015

(p0p1
)

(65)


q0
q1
q2
q3
q4
q5

 =


−0.000 0.000 −0.000 0.000 −0.000 −0.000
−0.000 −0.000 −0.000 0.000 −0.000 0.000
−0.006 0.057 0.111 0.071 −0.053 0.038
0.037 0.109 −0.093 0.142 0.106 −0.002
0.317 −0.015 −0.194 −0.034 −0.211 0.410
−0.570 0.030 −0.107 −0.045 0.140 0.459




w0

ẇ0

w1

ẇ1

u0
u1

 (66)

TABLE I
RESULTANT MODEL FOR THE FREQUENCY DOMAIN IDENTIFICATION EXAMPLE.

flipping the order and sign of p0 and p1 the matrix is roughly
4/5 the true width in both dimensions—which indicates a
dearth of extreme points. Finally, the matrix in (66) shows
that the estimated model’s uncertainty is mostly a function of
the first state and second input, as is the case in the true model.
But there is also evidence that the optimization has exploited
a relationship between the first and second outputs8 within the
frequency range of 10−.5 to 10.5 rad/sec.9

IX. CONCLUSION

When people use H∞ control they expect a guarantee of
performance, a responsibility which H∞ control delegates to
the system model-set. Due to the importance of this guarantee,
practitioners will estimate uncertainty which is large enough
to make the system work—sacrificing performance. It was our
aim to extract the best possible performance from a system,
and so we sought leaner, more aggressive model-sets.

This led us to visualize the model-set as a high dimen-
sional degenerate quadric in the space of inputs and outputs.
We introduced the QIP as a lossless convexification for the
problem of fitting a minimal quadric around a list of observed
data points. This new machinery appears to be somewhat more
general our context of identification for robust control, since it
offers a geometry-based alternative to the nearly universal least
squares problem. Even within system identification, there are
many approaches which use least squares and could potentially
identify robust models using a QIP.

Potential theoretical impact aside, the identification proce-
dure works towards taking the guesswork out of employing
robust control. And this is particularly important in domains
for which no strong intuition is to be had. Consider the
problem of designing robustness into a system which is build
upon an unfathomably deep tower of assumptions. Examples
abound within our specialty, robotics: the design of footstep
planners built on whole body robot controllers [29], or another
feedback linearization scheme e.g. [30]; the tracking of unsta-
ble center of mass abstractions including the capture point
[31] or divergent component of motion [32]—especially in
the presence of series elasticity [33]; or even the impedance
control of badly-modeled tendon driven fingers with compliant

8If given the choice of two signals that move together, the Frobenius-norm-
bounded matrix which yields the largest magnitude q is one that uses both
inputs equally.

9Experiments with larger bands are difficult due to as-of-yet unexplained
failures of the CVXOPT, [28], interior point solver.

actuators [34]. In situations like these, we can now bypass
deep understanding of (or accurate guesses for) the likely
uncertainty shape simply by measuring it. This could push
the innovative ideas in [35], which applies robust control to
flexible actuators, and [36], which applies it to whole body
control of a quadruped, towards higher performance controller
designs.
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