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Abstract

Here we show how reversible computation processes, like Margolus
diffusion[l], can be envisioned as physical turning operations on a 2-
dimensional rigid surface that is cut by a regular pattern of intersecting
circles. We then briefly explore the design-space of these patterns, and
report on the discovery of an interesting fractal subdivision of space by
iterative circle packings. We devise two different ways for creating this
fractal, both showing interesting properties, some resembling properties
of the dragon curve. The patterns presented here can have interesting
applications to the engineering of modular, kinetic, active surfaces.

Introduction

In cellular automata theory, reversible computation processes have been devised
on a regular grid of cells to simulate, in a discrete fashion, diffusion [I} [2] or
systems capable of universal computation[3] [I]. Some of these processes take
the form of alternating the application of the automaton rules in 2 distinct
subdivisions of the square grid of the automaton (figure la). In each timestep,
the update rules are designed to be reminiscent of an exchange of values between
neighbouring positions of the grid. By doing this, the number of positions
with the same state does not change, and conservation of simulated particles
is warranted. An interesting analogy to this procedure that we can think of is
to cut a physical surface by two identical square packings of circles, the second
one shifted in respect to the first one so that the circles of these two packings
intersect perpendicularly (figure 1b). This allows, by independent rotation of
the circles of either one or the other packing, for specific degrees (multiples of
the right angle), the shuffling of the lenses to different positions. If we assign



boolean values to the lenses, The act of shuffling them by rotation using the
same rules as the automaton we are trying to recapitulate can give the correct
evolution of the system. This discovery made us wonder how such a system can
be physically realised. A surface can be cut out this way and the pieces can
possibly be designed as to allow for rotation with minimal interlocking due to
misalignment. This can give a modular, kinetic tiling where a specific lens can
move to any other lens position, not unlike how the pieces of a Rubik’s cube
move. We have yet to find an interesting engineering approach to make these
pieces mobile in a regular fashion. Another question that arises is what other
patterns using circles can lead to a well structured grid of positions that could
recapitulate known cellular automata. A candidate pattern is to start with a
hexagonal circle packing and then increase (figure 1c), or double the radius of
the circles (figure 1d). In the last tiling (figure 1d), essentially every position of
the surface is kinetic.

We were further interested in how we can produce fully kinetic tiled surfaces,
so we explored a bit more the design space without considering its possible
connection to automata theory. As the circles do not have to be the same size,
and smaller circles could give an arbitrarily better precision of movement to
tiles, we strived to find a natural geometric construction using circle packings
that in theory could move, by rotating the circles, any position of the divided
space to any other. We found the following natural fractal construction to be
interesting.

First fractal definition

The fractal “T” can be made by taking an infinite circle packing in 2D space (cir-
cles of the same radius, touching each other, with their centers defining a isosce-
les triangular lattice), and applying to it, in each iteration of the fractal, the
/ .
following transformation: [ x, } = [ 7/3 ] [ CO‘.S(W/G) sin(m/6) } { * }
Y 7/3 —sin(m/6) cos(m/6) Yy

This simply states that we take the starting circle packing N,, and we make
a new one N, 1 by turning it by 30 degrees, and scaling it by tan(30°). This
leads to a second, smaller circle packing, with few of the smaller circles having
the same center as the big ones and all the others being at the intersection of
any three of the larger ones (figure 2a-d). This transformation can be applied
iteratively on each new circle packing, to get the fractal T with any number
of levels (or its inverse to get the N,_; level) . Figure 2e represents the frac-
tal after infinite iterations. We observed that the space is not homogeneously
subdivided, so canonical rotations might lead to “jamming” of the circles of dis-
tant fractal levels. After 3 iterations of the fractal, some circles are not radialy
symmetric anymore, in terms of inner pieces arrangement.

Second fractal definition

The fractal T can also be made by applying a production rule to each circle of
the original circle packing separately. Each cirlce must have a vector denoting



its polarity. The polarity vectors for the circles of the original circle packing are
all the same, pointing all in the same direction of one of the angle bisectors of
the triangular lattice defined by their centers. We can then define the following
fractal construction {2 for each of the circles. For each circle of radius r,,, polarity
angle p,,, we create three new circles of radius r,41 = r, - tan(w/6), touching
externally serially, their centers on the line defined by the polarity angle p,.
The center of the middle circle has the same center as the original bigger circle,
and one new circle is above and one bellow. The polarity of the new circles
i$ Ppy1 = pn + 7/6 (they are rotated +30° degrees after placement) (figure
3a). We can then apply the same procedure on the new circles to get multiple
iterations of the fractal {2, getting in each iteration a curve which we would
like to name Athena’s curve ( “A”)[1], reminiscent of the dragon curve[d] (figure
3c). Like the latter, A is able to tile the 2D space, in any iteration, to give a
complete circle packing (figure 3b). The sum over the iterations of Athena’s
curve (the fractal £2), when applied to all circles of the original circle packing N,
gives the fractal T. An interesting property of Athena’s curve is that the total
area that the circles occupy, E(A;), is invariable to the iteration number z, as
E(A,) =3% -7 (r-(tan(n/6))*)? = 772, where r is the original circle’s radius,
and the produced circles do not overlap. The length of the curve L(A,;) however
diverges to infinity as L(A,) = 3% -2 -7 -7 - (tan(n/6))* = 2-7 - 3@/ An
intriguing open problem is to find what is the area the fractal {2, in its combined
infinite iterations, encompasses.

Discussion

Here we present a mapping, from discrete reversible computational processes,
made in cellular automata, to the shuffling of pieces created by cutting a two-
dimensional surface by overlaping circle packings. We find this connection amus-
ing, as it means that we can simulate block automatons in a physical setting.
This surface geometry might have interesting applications. For example one
can envision a surface cut in this manner to be kinetic, its pieces being free to
move about, mobilised by a robotic understructure, without sacrificing the sur-
face integrity. Pieces that need to be replaced can then move to the periphery,
and changed there. Pieces that have specific properties, on the other hand, can
be directed to the part of the surface that are needed most. At the same time,
block automaton rules can be applied and the pieces will recapitulate, with their
movement, biophysical processes.

We strived to find a recursive subdivision of space, using this general for-
mula of overlaying circle packings, that would be able to move, by the rotation
of the circles, the pieces formed, effortlessly. This is an interesting open prob-
lem, namely, if it is feasible to construct a fractal subdivision of space, using
circles, that keeps the radial symmetry of the pieces inside each circle.

Aknowledgements: I would like to thank Eugenio Azpeitia for helping in
creating the second fractal definition, using Lpy, and for interesting discussions.
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Figure 1: From cellular automata to the shuffling of pieces in regular circle
packings. A: In the Margolus diffusion block cellular automaton, the grid is
partitioned in blocks of four, and each timestep the subdivision is shifted by di-
agonaly. The update rules of the cellular automaton(bottom, addopted from[T])
are applied. Notice how in all cases the change in values can be envisioned as
a rotation of the 4-block. B: Analogous system made by two square circle
packings (red, blue). If we cut the surface in this way, canonical rotation of the
circles lead to the free movement of the lenses. The rules of the block automaton
can be applied. C: Starting from one triangular circle packing, by extending
the radii, we can make a modular, kinetic surface where the main pieces move
on a honeycomb grid. D: By cutting the surface in this way, every position is
free to move about using rotations of the circles.
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Figure 2: A-D: The fractal T after applying the production rule 0-3 times. E:
The fractal T after infinite iterations. The transparency of the circle coloring is
increased at every level. Visualisation were made using Processing[5]



Figure 3: “How to squash a mathematical tomato” A: A circle becomes an
Athena’s curve, after applying the production rule the denoted times. The area
of the resulting circles stays the same. Two different colors at each side of the
circles serve to denote polarity axes. B: Athena’s curves can tile the space,
interlocking perfectly with eachother. C: Athena’s curve after 11 applications
of the production rule. Images were made using Lpy[6]



