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Universal Hypothesis Testing with Kernels:

Asymptotically Optimal Tests for Goodness of Fit

Shengyu Zhu 1 Biao Chen 2 Pengfei Yang 3 Zhitang Chen 1

Abstract

We characterize the asymptotic performance of

nonparametric goodness of fit testing, otherwise

known as the universal hypothesis testing that

dates back to Hoeffding (1965). The exponential

decay rate of the type-II error probability is used

as the asymptotic performance metric, hence an

optimal test achieves the maximum decay rate

subject to a constant level constraint on the type-

I error probability. We show that two classes

of Maximum Mean Discrepancy (MMD) based

tests attain this optimality on R
d, while a Ker-

nel Stein Discrepancy (KSD) based test achieves

a weaker one under this criterion. In the finite

sample regime, these tests have similar statistical

performance in our experiments, while the KSD

based test is more computationally efficient. Key

to our approach are Sanov’s theorem from large

deviation theory and recent results on the weak

convergence properties of the MMD and KSD.

1. Introduction

Goodness of fit tests play an important role in ma-

chine learning and statistical analysis. Given a model

distribution P and sample {xi}ni=1 := xn originat-

ing from an unknown distribution Q, the goal is to

decide whether to accept the null hypothesis that Q
matches P , or the alternative hypothesis that Q and

P are different. Traditional (parametric) approaches

may require space partitioning or closed-form integrals

(Beirlant et al., 1994; Györfi & Van Der Meulen, 1991;

Baringhaus & Henze, 1988; Bowman & Foster, 1993).

They become computationally intractable in machine

learning applications that involve high dimensional data

and complicated models, such as large graphical mod-

els and deep generative models (Koller & Friedman, 2009;

Salakhutdinov, 2015; Sutherland et al., 2017).
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Recently, several efficient tests have been proposed based

on Reproducing Kernel Hilbert Space (RKHS) embedding.

One is to conduct a Maximum Mean Discrepancy (MMD)

based two-sample test by drawing samples from the model

distribution P (Lloyd & Ghahramani, 2015). A difficulty

with this approach is to determine the number of samples

drawn from P relative to n, the sample number of the

test sequence. Other tests are based on classes of Stein

transformed RHKS functions (Chwialkowski et al., 2016;

Liu et al., 2016; Gorham & Mackey, 2017; Oates et al.,

2017; Gorham & Mackey, 2015), where the test statistic

is the norm of the smoothness-constrained function with

largest expectation under Q, referred to as the Kernel Stein

Discrepancy (KSD). The KSD has zero expectation un-

der P and does not require computing integrals or drawing

samples. Additionally, constructing explicit features of dis-

tributions achieves a linear-time goodness of fit test that is

also more interpretable (Jitkrittum et al., 2017).

Despite being efficient and well-behaved in practice, fairly

little is known about the statistical optimality of these ker-

nel embedding based tests in a nonparametric setting. Cur-

rent statistical characterization is limited to consistency,

that is, the test type-II error probability decays to zero

in the large sample limit under a pre-defined significance

level, an upper bound on the type-I error probability. This

is established using the convergence of the test statistic to

the population statistic (the MMD or KSD between P and

Q) under suitable assumptions. Consistency, while being

a desired property of statistical tests, does not serve as a

meaningful criterion for claiming optimality—a consistent

test need not be optimal. An alternative and more insight-

ful approach, one adopted in the current paper, is to study

the decay rate of the type-II error probability. However,

the current literature lacks such a characterization as the

asymptotic distribution of the test statistics either has no

closed form (Chwialkowski et al., 2016) or is hard to an-

alyze (Liu et al., 2016; Jitkrittum et al., 2017). In light of

the important role and good performance of these kernel

tests, the present work seeks an exact characterization on

the decay rate of the type-II error probability and further a

practically meaningful optimality criterion.

Indeed, there is a long-standing open problem related to op-

http://arxiv.org/abs/1802.07581v1
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timal goodness of fit tests in information theory and statis-

tics (Csiszár & Shields, 2004; Cover & Thomas, 2006),

dating back to Hoeffding’s test (Hoeffding, 1965). Given a

known distribution P , the hypothesis testing H0 : xn ∼ P
and H1 : xn ∼ Q can be extremely hard when Q is ar-

bitrary but unknown, as opposed to the simple case when

Q is known. With independent sample and a known Q,

Stein’s lemma (cf. Lemma 1) states that the type-II er-

ror probability vanishes at most exponentially fast with

the exponential decay rate, referred to as the error expo-

nent, being the Kullback-Leibler divergence (KLD) be-

tween P and Q. This motivates the so-called universal

hypothesis testing problem: does there exist a nonpara-

metric goodness of fit test that achieves the same optimal

error exponent as the simple hypothesis testing problem

where Q is known? Over the years, universally optimal

tests only exist when the sample space is finite (Hoeffding,

1965; Unnikrishnan et al., 2011). For continuous sample

space like R, attempts have been largely fruitless with the

only exception of the works by Zeitouni & Gutman (1991);

Yang & Chen (2017). The results were obtained at the cost

of a weaker optimality and the proposed test is rather com-

plicated due to the use of Lévy-Prokhorov metric.

In this work, we first show a simple kernel test, compar-

ing the MMD between the reference distribution and the

sample empirical distribution with a proper threshold, as

an optimal approach to universal hypothesis testing on Pol-

ish, locally compact Hausdorff space, e.g., Rd. Taking into

account the computation difficulty of non-Gaussian distri-

butions, we further cast the original problem into a two-

sample problem as in (Lloyd & Ghahramani, 2015). We

show that the same optimality can be attained provided that

ω(n) independent samples are drawn from P . In particu-

lar, when distributions are defined on R
d, the biased and

unbiased two-sample tests in (Gretton et al., 2012a) with

Gaussian kernels can be used to achieve the asymptotic op-

timality, regardless of the kernel parameters. We then dis-

cuss other distance measures for constructing goodness of

fit tests. The level constraint on the type-I error probability

then becomes difficult to meet for all possible sample sizes.

As such, we relax the constraint to an asymptotic one and

further show that a KSD based test also achieves the opti-

mal type-II error exponent. Key to our approach is a useful

large deviation tool, Sanov’s theorem, together with recent

results on the weak convergence properties of the MMD

(Sriperumbudur, 2016; Simon-Gabriel & Schölkopf, 2016)

and the KSD (Gorham & Mackey, 2017).

We remark that the techniques of utilizing Sanov’s theorem

and the weak convergence property may be of independent

interest, and may be used to evaluate other kernel tests.

Other related work. Minimizing the type-II error proba-

bility (or equivalently, maximizing test power) subject to a

given level has been studied for kernel choice in goodness

of fit testing (Jitkrittum et al., 2017) and two-sample test-

ing (Gretton et al., 2012b; Sutherland et al., 2017), based

on the asymptotic distribution of the test statistics. The

characterization of type-II error probability depends on the

sample size as well as the specific kernel for use. Instead,

we directly investigate the acceptance region under the al-

ternative hypothesis assisted by Sanov’s theorem. Our tests

attain the optimal error exponent and are independent of

specific kernels as long as they meet the assumptions.

Another criterion, asymptotic Bahadur efficiency, is used

for comparing test performance in (Jitkrittum et al., 2017).

The proposed linear-time test is shown to always have

greater relative efficiency than the linear-time test in

(Liu et al., 2016) under a mean-shift alternative, regardless

of the choice of parameters for that test. It is not clear

whether this claim holds for general alternatives and fur-

ther if the proposed test is optimal under this criterion.

Paper outline. We begin with a brief review of the MMD

and a formal statement of the universal hypothesis testing

problem in Section 2. Section 3 presents two classes of ker-

nel tests to universal hypothesis testing and discusses their

implications to goodness of fit testing. Section 4 discusses

the KSD and other distance measures in constructing good-

ness of fit tests. All the necessary proofs are provided in

Section 5. We perform synthetic experiments in Section 6

to validate our findings and conclude the paper in Section 7.

2. Preliminary and Problem Statement

We briefly review kernel mean embedding and the MMD.

We then introduce goodness of fit testing, followed by a

formal statement of the universal hypothesis testing.

2.1. Maximum Mean Discrepancy

Let Hk be a Reproducing Kernel Hilbert Space (RKHS) de-

fined on a topological space X with reproducing kernel k.

Let P be the set of all Borel probability measures defined

on X . The mean embedding of P ∈ P in Hk is a unique el-

ement µk(P ) ∈ Hk such that Ey∼P f(y) = 〈f, µk(P )〉Hk

for all f ∈ Hk (Berlinet & Thomas-Agnan, 2011). We as-

sume that k is bounded continuous, hence the existence of

µk(P ) is guaranteed by the Riesz representation theorem.

The MMD between two probability measures P and Q is

defined as the RHKS-distance between their mean embed-

dings. An expression of the MMD is

MMD[Hk, P,Q]

= (Eyy′k(y, y′) +Exx′k(x, x′)− 2Eyxk(y, x))
1/2

,

where y, y′ i.i.d. ∼ P and x, x′ i.i.d. ∼ Q. In the sequel,

we will write MMD[Hk, P,Q] := dk(P,Q). We also refer

the reader to a recent overview by Muandet et al. (2017).
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If the mean embedding µk is an injective map, then the

kernel k is said to be characteristic and the MMD dk be-

comes a metric on P (Sriperumbudur et al., 2010). Re-

cently, Simon-Gabriel & Schölkopf (2016, Theorem 55)

and Sriperumbudur (2016, Theorem 3.2) have explored a

weaker metrizable property of dk. Throughout the rest of

this paper, let X be a Polish space. Consider the weak

topology on P induced by the weak convergence: Pl → P
weakly if and only if Ey∼Pl

f(y) → Ey∼P f(x) for every

bounded continuous function f : X → R. The following

theorem states when dk metrizes this weak convergence.1

Theorem 1 (Simon-Gabriel & Schölkopf (2016);

Sriperumbudur (2016)). If X is Polish, locally com-

pact Hausdorff, and k is continuous and characteristic,

then dk metrizes the weak convergence on P .

The above theorem indicates that the metric dk induces the

same topology as that of weak convergence. An example

of Polish, locally compact Hausdorff space is Rd, and both

Gaussian and Laplacian kernels defined on it are continu-

ous and characteristic (Sriperumbudur, 2016).

2.2. Statistical Testing

Given the distribution P and independent sample xn from

an unknown distribution Q, we want to determine whether

to accept H0 : P = Q or H1 : P 6= Q. A decision

rule (test) Ω(n) = (Ω0(n),Ω1(n)) partitions Xn into two

disjoint sets with Ω0(n)∪Ω1(n) = Xn. If xn ∈ Ωi(n), i =
0, 1, a decision is made in favor of hypothesis Hi. We say

that Ω0(n) is an acceptance region for the null hypothesis

H0 and Ω1(n) the corresponding critical region. There are

two types of errors: a type-I error is made when P = Q is

rejected while H0 is true, and a type-II error occurs when

P = Q is accepted despite H1 being true. The type-I and

type-II error probabilities are respectively

αn = P (Ω1(n)) = Pxn∼P (xn ∈ Ω1(n)) ,

βn = Q(Ω0(n)) = Pxn∼Q (xn ∈ Ω0(n)) .

In general, the two types of error probabilities can not be

minimized simultaneously. Typical approach is to set an

upper bound α on the type-I error probability and consider

only level α tests, i.e., tests with αn ≤ α. A level α test is

consistent when it has vanishing type-II error in the large

sample limit. Such tests are said to be exponentially con-

sistent if the type-II error probability additionally vanishes

exponentially fast with respect to the sample size, i.e., when

0 < lim inf
n→∞

− 1

n
log βn := β < ∞.

1Indeed, Simon-Gabriel & Schölkopf (2016) show that X
only needs to be locally compact Hausdorff. We require X be
Polish in order to utilize some large deviation results.

The above limit is called type-II error exponent. Clearly,

β = 0 implies that the type-II error probability is bounded

away from 0 or decays to 0 sub-exponentially, while β =
∞ indicates it vanishes more than exponentially fast.

2.3. Universal Hypothesis Testing

We first present Stein’s lemma on the optimal exponential

decay rate of any level α test for simple hypothesis test-

ing between two known distributions. Let D(P‖Q) denote

the KLD between two distributions P and Q defined on a

Polish space X . The lemma is stated below.

Lemma 1 (Stein’s Lemma (Dembo & Zeitouni, 2009;

Cover & Thomas, 2006)). Let xn i.i.d. ∼ R. Consider hy-

pothesis testing between H0 : R = P and H1 : R = Q,

with 0 < D(P‖Q) < ∞. Given 0 < α < 1, let

Ω∗(n, P,Q) = (Ω∗
0(n, P,Q),Ω∗

1(n, P,Q)) be the optimal

level α test with which the type-II error probability is mini-

mized for each n. Then the type-II error probability decays

to 0 exponentially at a rate of D(P‖Q) as n → ∞, that is,

lim
n→∞

− 1

n
logQ(Ω∗

0(n, P,Q)) = D(P‖Q).

Let Ω(n) be a goodness of fit test of level α. When xn

i.i.d. ∼ Q under the alternative hypothesis, the correspond-

ing type-II error probability βn = Q(Ω0(n)) can not be

lower than Q(Ω∗
0(n, P,Q)). As a result, Stein’s lemma

indicates that the type-II error exponent is bounded by

D(P‖Q). The problem is to find a test Ω(n) such that for

any given P ,

αn ≤ α,

lim inf
n→∞

− 1

n
log βn = D(P‖Q),

for arbitrary Q satisfying 0 < D(P‖Q) < ∞, giving rise

to the name universal hypothesis testing.

3. Maximum Mean Discrepancy Based Tests

for Universal Hypothesis Testing

In this section, we study two classes of MMD based good-

ness of fit tests that are universally asymptotically optimal,

followed by discussions on related aspects.

We summarize the assumptions that are made in the last

section and that will be used throughout this section: the

sample space X is Polish, locally compact Hausdorff; P
is the set of all Borel probability measures defined on X ;

kernel k is bounded continuous and characteristic. This

ensures that the MMD dk metrizes weak convergence.

3.1. Simple Kernel Tests

The first test is based on the MMD between the target dis-

tribution P and the empirical distribution of sample xn.
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Though easy to come up with, its optimality for the uni-

versal hypothesis testing problem remains unknown.

To proceed, let Q̂n denote the empirical measure of xn, i.e.,

Q̂n = 1
n

∑n
i=1 δxi

with δx being Dirac measure at x. We

have a simple kernel test with acceptance region

Ω0(n) =
{

xn : dk(P, Q̂n) ≤ γn

}

,

where γn is a threshold and d2k(P, Q̂n) is computed by

1

n2

n
∑

i=1

n
∑

j=1

k(xi, xj) +Eyy′k(y, y′)− 2

n

n
∑

i=1

Eyk(xi, y),

with y, y′ i.i.d. ∼ P . Throughout this paper, we will sim-

ply use dk(P, Q̂n) ≤ γn to represent the set Ω0(n). On the

one hand, we want the threshold γn to be small so that the

test type-II error probability is low; on the other hand, the

threshold cannot be too small in order to satisfy the level

constraint on the type-I error. The balance between the two

error probabilities is attained with a threshold that dimin-

ishes at an appropriate rate.

Theorem 2. For P ∈ P and xn i.i.d. ∼ Q ∈ P , assume

that D(P‖Q) < ∞. Also assume 0 ≤ k(·, ·) ≤ K with K
being a constant value. For a given level α, 0 < α < 1,

set γn =
√

K/n(2 +
√

2 logα−1). Then the kernel test

dk(P, Q̂n) ≤ γn is optimal to universal hypothesis testing.

That is, when the null hypothesis H0 : P = Q is true,

P
(

dk(P, Q̂n) > γn

)

≤ α;

and if the alternative hypothesis H1 : P 6= Q holds,

lim inf
n→∞

− 1

n
Q
(

dk(P, Q̂n) ≤ γn

)

= D(P‖Q).

A proof is provided in Section 5.1. Sim-

ilar to (Gretton et al., 2012a), by replacing
1
n2

∑n
i=1

∑n
j=1 k(xi, xj) in d2k(P, Q̂n) with

1
n(n−1)

∑n
i=1

∑

j 6=i k(xi, xj), we can obtain an unbi-

ased test statistic, denoted as d2u(P, Q̂n). We remark that

d2u(P, Q̂n) is not a squared quantity and can be negative,

due to the unbiasedness. Our result is summarized as

follows.

Corollary 1. Under the same conditions as in Theorem 2,

the test d2u(P, Q̂n) ≤ γ2
n+K/n is a level α asymptotically

optimal test for universal hypothesis testing.

The tests in this section still require computing integrals,

namely, Eyk(xi, y) and Eyy′k(y, y′). Our purpose here

is to show that the universally optimal error exponent is

indeed achievable, giving a reasonable criterion to claim

optimality for goodness of fit tests as well as a solution to

an open problem. In the next section, we consider another

class of MMD based tests, achieving this error exponent

without the need for computing integrals.

3.2. Kernel Two-Sample Tests

In the context of model criticism, Lloyd & Ghahramani

(2015) cast goodness of fit testing into a two-sample prob-

lem where one also draws samples ym from distribution P .

A question that arises is the choice of number of samples,

which is not obvious due to the lack of an explicit crite-

rion. In light of universal hypothesis testing, we could ask

how many samples would suffice to attain the optimal error

exponent D(P‖Q).

Denote by P̂m the empirical measure of ym. We consider

a two-sample test with acceptance region

Ω0(m,n) = {(ym, xn) : dk(P̂m, Q̂n) ≤ γm,n},
where

γm,n =
(

(K/m)
1
2 + (K/n)

1
2

)(

2 +
√

2 log(2α−1)
)

,

d2k(P̂m, Q̂n) =

m
∑

i=1

m
∑

j=1

k(yi, yj) +

n
∑

i=1

n
∑

j=1

k(xi, xj)

− 2

mn

m
∑

i=1

n
∑

j=1

k(yi, xj),

and K is a finite bound on kernel k(·, ·). The statistic

d2k(P̂m, Q̂n) for estimating squared MMD was originally

proposed in (Gretton et al., 2012a). Notice that the type-I

and type-II error probabilities depend on both P and Q in

the two-sample testing. Although additional randomness

is introduced, it does not hurt the statistical optimality in

terms of the type-II error exponent, as stated below.

Theorem 3. Assume the same conditions as in Theorem 2,

and that ym i.i.d. ∼ P and xn i.i.d. ∼ Q. Let Ω1(m,n) =
Xm+n \ Ω0(m,n) be the critical region. Then under the

null hypothesis H0 : P = Q,

Pymxn(Ω1(m,n)) ≤ α;

and under the alternative hypothesis H1 : P 6= Q,

lim inf
n→∞

− 1

n
logPymxn(Ω0(m,n)) = D(P‖Q),

provided that limn→∞
m
n = ∞.

We present a proof in Section 5.2. Similar to previ-

ous simple kernel tests, we can also replace the first two

terms in d2k(P̂m, Q̂n) with 1
m(m−1)

∑n
i=1

∑

j 6=i k(yi, yj)

and 1
n(n−1)

∑n
i=1

∑

j 6=i k(xi, xj). This leads to an unbi-

ased statistic which we denote as d2u(P̂m, Q̂n) and that has

nearly optimal variance (Gretton et al., 2012a). The corol-

lary below shows its universally asymptotic optimality.

Corollary 2. Under the same assumptions as in Theo-

rem 3, the test d2u(P̂m, Q̂n) ≤ γ2
m,n + K/m + K/n has

its type-I error probability below α and type-II error expo-

nent being D(P‖Q), given that m/n → ∞ as n → ∞.
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3.3. Discussions

We make the following remarks on the MMD based tests.

Threshold choice. The distribution-free thresholds used

in the MMD based tests are generally too conservative, as

the actual distribution P is not taken into account. Al-

ternatively, we may use Monte Carlo or bootstrap meth-

ods to empirically estimate the threshold (Gretton et al.,

2012a; Chwialkowski et al., 2016; Jitkrittum et al., 2017),

making the tests (asymptotically) level α. Notice that these

methods introduce additional randomness on the threshold

choice and further on the type-II error probability.2 A sim-

ple fix is to take the minimum of the Monte Carlo or boot-

strap threshold and the distribution-free threshold, guaran-

teeing a vanishing threshold and hence the optimal error

exponent. In practice, the bootstrap threshold is mostly

smaller than the distribution-free threshold.

Finite vs. asymptotic regime. A finitely positive error ex-

ponent β = D(P‖Q) implies that the error probability de-

cays with O
(

e−n(β−ǫ)
)

where ǫ ∈ (0, β) can be arbitrar-

ily small. It further implies that kernels in our tests affect

only the sub-exponential term in the type-II error proba-

bility as long as they are bounded continuous and charac-

teristic. When n is small, the sub-exponential term may

dominate and the test performance does depend on kernels.

Selecting a proper kernel is an ongoing research topic and

we refer the reader to related works such as (Gretton et al.,

2012b; Sutherland et al., 2017; Jitkrittum et al., 2017).

Non i.i.d. data. We notice that Chwialkowski et al. (2016)

consider non-i.i.d. data by use of wild bootstrap. In general,

statistical optimality with non-i.i.d. data, including sample

ym if drawn using the Markov Chain Monte Carlo method,

is difficult to establish even for simple hypothesis testing.

Fair alternative. A notion of fair alternative with fixed

KLD was raised in (Ramdas et al., 2015) for the two-

sample testing as dimension increases. In light of our re-

sults or Stein’s lemma, the same fair alternative can also be

considered for goodness of fit testing.

4. Kernel Stein Discrepancy (KSD) and Other

Distance Measures

We discuss other distance measures that may also be used

to construct goodness of fit tests in a similar manner to

the MMD. We present a sufficient condition for a test to

achieve the optimal type-II error exponent under a fixed

significance level. The proof follows the same idea of The-

2We emphasize the subtlety here. That the bootstrap threshold
decays to zero in the limit suffices to meet an asymptotic constant
constraint, but does not guarantee the desired type-II decay rate.
In other words, we also require a decay rate characterization on
the bootstrap threshold, which is usually difficult.

orem 2 and is omitted.

Proposition 1. Consider X = R
d. Let xn, P , Q and Q̂n

be assumed in Theorem 2. Let d(·, ·) be some metric of

weak convergence of probability measures. For a fixed α ∈
(0, 1), a test Ω(n) = (Ω0(n),Ω1(n)) has level α and is

universally asymptotically optimal if

(a) P (Ω1(n)) ≤ α,

(b) Ω0(n) ⊂ {xn : d(P, Q̂n) ≤ γn}, γn → 0 as n → ∞.

For distributions defined on R
d, many other distance mea-

sures metrize weak convergence, including Lévy-Prohorov

metric, bounded Lipschitz metric, and Wasserstein dis-

tance. The total variation distance is an upper bound on

the MMD up to a constant (Sriperumbudur et al., 2010),

and the KSD can be lower bounded in terms of the MMD

or the bounded Lipschitz metric (involving some unknown

constants) (Gorham & Mackey, 2017, Theorems 5, 7, and

8). Therefore, comparing these distance measures between

P and Q̂n with a vanishing threshold meets Condition (b).3

However, to our best knowledge, there does not exist a uni-

form or distribution-free threshold that makes the tests meet

Condition (a). As such, these distance measures do not give

rise to asymptotically optimal tests with a fixed level.

We may, nevertheless, relax Condition (a) to an asymptotic

case, i.e, lim supn→∞ P (Ω1(n)) ≤ α. We will focus on

the KSD as other distance measures are generally hard to

compute in practice. Let p and q be the respective density

functions for P and Q defined on R
d. Chwialkowski et al.

(2016) and Liu et al. (2016) define the KSD as

dS(P,Q) = max
‖f‖Hk

≤1
Ex∼Q [sp(x)f(x) +∇xf(x)] ,

where ‖f‖Hk
≤ 1 are functions from the unit ball in a

RKHS Hk, and sp(x) = ∇x log p(x) is the score func-

tion of p(x). With a C0-universal kernel (Carmeli et al.,

2010) and Ex∼Q‖∇x log p(x) − ∇x log q(x)‖2 ≤ ∞,

Chwialkowski et al. (2016, Theorem 2.2) show that

dS(P,Q) = 0 if and only if P = Q. The squared KSD

can also be written as

d2S(P,Q) = Ex∼QEx′∼Q hp(x, x
′),

where hp(x, y) = sTp (x)sp(y)k(x, y)+sTp (y)∇xk(x, y)+

sTp (x)∇yk(x, y)+trace(∇x,yk(x, y)). Then d2S(P,Q) can

be estimated by d2S(P, Q̂n) = 1
n2

∑n
i=1

∑n
j=1 hp(xi, xj),

3Specifically, let dBL and dS denote the bounded Lipschitz
metric and the KSD, respectively. Gorham & Mackey (2017,

Theorems 7 and 8) showed that dBL(P, Q̂n) ≤ g(dS) where
g(dS) → 0 as dS → 0. Thus, there exists γ′

n such that

{xn : dS(P, Q̂n) ≤ γn} ⊂ {xn : dBL(P, Q̂n) ≤ γ′

n} and
γ′

n → 0 as n → ∞.
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which is a degenerate V-statistic under the null hypothesis

(Chwialkowski et al., 2016).

An acceptance threshold for d2S(P, Q̂n) can be empiri-

cally computed through bootstrap (Arcones & Gine, 1992;

Chwialkowski et al., 2014; Leucht et al., 2012), and the re-

sulting test satisfies the given level asymptotically. As dis-

cussed in Section 3.3, bootstrap introduces randomness on

the threshold and further on the type-II error probability,

making it difficult to verify Condition (b). Our approach

still requires a (deterministically) vanishing threshold that

satisfies the asymptotic constraint on the type-I error. Here

we use the result of Chwialkowski et al. (2016, Proposi-

tion 3.2), which establishes that nd2S(P, Q̂n) converges

weakly to some distribution under the null hypothesis.

We assume a fixed α-quantile γα of the limiting cumula-

tive distribution function, so that limn→∞ P (d2S(P, Q̂n) >
γα/n) = α. Thus, if we pick γn = o(n), e.g., γn =

(1 +
√

logα−1)n−1/2, we get γn > γα/n in the limit and

thus limn→∞ P (d2S(P, Q̂n) > γn) ≤ α.

We summarize the above discussions in the following the-

orem.

Theorem 4. Let P and Q be defined on R
d, and consider

the test d2S(P, Q̂n) ≤ γn with γn = (1+
√

logα−1)n−1/2.

(a) If h is Lipschitz continuous, Ex∼Qhp(x, x) <
∞, and a technical condition on τ -mixing holds

(Chwialkowski et al., 2016, Proposition 3.1), then

lim
n→∞

P (d2S(P, Q̂n) > γn) ≤ α.

(b) If 1) d = 1, k(x, y) = Φ(x − y) for some Φ ∈ C2

(twice continuous differentiable) with a non-vanishing

generalized Fourier transform; 2) k(x, y) = Φ(x−y)
for some Φ ∈ C2 with a non-vanishing generalized

Fourier transform, and (Q̂n)n≥1 is uniformly tight; 3)

k(x, y) = (c2+‖x−y‖22)η for c > 0 and η ∈ (−1, 0)
(Gorham & Mackey, 2017, Theorems 5, 7, and 8),

then under H1 : P 6= Q with D(P‖Q) < ∞,

lim inf
n→∞

− 1

n
logQ(d2S(P, Q̂n) ≤ γn) = D(P‖Q).

Similar to the distribution-free thresholds in Section 3, γn
is usually not good enough for finite sample cases. A sim-

ple fix is to take the minimum of this threshold and the

bootstrap one.

5. Proofs of the Main Results

5.1. Proofs of Simple Kernel Tests

We first present the following lemma for deriving a suitable

threshold to make the test satisfy the given level constraint.

Lemma 2. Assume 0 ≤ k(·, ·) ≤ K . Given ym i.i.d. ∼ P ,

denote by P̂m the empirical measure of ym. It follows that

Pym

(

dk(P, P̂m) > 2 (K/m)
1
2 + ǫ

)

≤ exp

(

− ǫ2m

2K

)

.

Proof. Apply Mcdiarmid’ inequality and Rademacher av-

erage, following the same idea of (Gretton et al., 2012a,

Theorem 7).

We also need two large deviation results: lower semi-

continuity of KLD and Sanov’s theorem .

Lemma 3 (Van Erven & Harremos (2014)). For a fixed

Q ∈ P , D(·‖Q) is a lower semi-continuous function with

respect to the weak topology of P . That is, for any ǫ > 0,

there exists a neighborhood U ⊂ P of P such that for any

P ′ ∈ U , D(P ′‖Q) ≥ D(P‖Q)− ǫ if D(P‖Q) < ∞, and

D(P ′‖Q) → ∞ as P ′ tends to P if D(P‖Q) = ∞.

Theorem 5 (Sanov’s Theorem (Sanov, 1958;

Dembo & Zeitouni, 2009)). Let xn i.i.d. ∼ Q ∈ P .

For a set Γ ⊂ P ,

lim sup
n→∞

− 1

n
logPxn(Q̂n ∈ Γ) ≤ inf

R∈int Γ
D(R‖Q),

lim inf
n→∞

− 1

n
logPxn(Q̂n ∈ Γ) ≥ inf

R∈cl Γ
D(R‖Q).

where int Γ and cl Γ are the interior and closure of Γ with

respect to the weak topology on P , respectively.

Outline of proof. Sanov’s theorem states that the proba-

bility of Q̂n ∈ Γ vanishes at least exponentially fast if the

underlying distribution Q /∈ cl Γ. Notice that deciding if

xn ∈ {xn : dk(P, Q̂n) ≤ γn} is equivalent to deciding

if its empirical measure Q̂n ∈ {P ′ : dk(P, P
′) ≤ γn}.

Thus, if Q is eventually excluded by the closure of {P ′ :
dk(P, P

′) ≤ γn}, we get an exponential decay rate of type-

II error probability. The rest is to show that the error expo-

nent reaches D(P‖Q) using the weak metrizable property

of the MMD and the lower semi-continuity of the KLD.

Proof of Theorem 2. That the test dk(P, Q̂n) ≤ γn has

level α can be directly seen from Lemma 2. Since Stein’s

lemma gives an upper bound on the type-II error exponent

for any level α test, i.e., β ≤ D(P‖Q), what remains is to

show β ≥ D(P‖Q).

By our assumption, dk metrizes weak convergence on P
(cf. Theorem 1). For any constant γ > 0, there exists an

integer n0 such that γn < γ for all n > n0. Therefore,

β = lim inf
n→∞

− 1

n
logQ

(

dk(P, Q̂n) ≤ γn

)

≥ lim inf
n→∞

− 1

n
logQ

(

dk(P, Q̂n) ≤ γ
)

≥ inf
{P ′∈P:dk(P,P ′)≤γ}

D(P ′‖Q), (1)
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where the last inequality is from Sanov’s theorem and that

{P ′ ∈ P : dk(P, P
′) ≤ γ} is closed with respect to weak

topology. Since γ can be arbitrary, we have

β ≥ lim
γ→0+

inf
{P ′∈P:dk(P,P ′)≤γ}

D(P ′‖Q).

Using the lower semi-continuity of the KLD in Lemma 3

and the assumption that D(P‖Q) < ∞, the limit on the

right-hand side is greater than D(P‖Q) − ǫ for arbitrarily

given ǫ > 0. This further implies β ≥ D(P‖Q).

Proof of Corollary 1. We first have

∣

∣

∣
d2u(P, Q̂n)− d2k(P, Q̂n)

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

n2(n− 1)

n
∑

i=1

∑

j 6=i

k(xi, xj)−
1

n2

n
∑

i=1

k(xi, xi)

∣

∣

∣

∣

∣

∣

≤K/n.

It holds that

{xn : d2k(P, Q̂n)≤ γ2
n} ⊂ {xn : d2u(P, Q̂n)≤ γ2

n+K/n}
⊂ {xn : d2k(P, Q̂n)≤ γ2

n+2K/n}.

Thus, under H0 : P = Q, we have

P
(

d2u(P, Q̂n) > γ2
n +K/n

)

≤ P
(

d2k(P, Q̂n) > γ2
n

)

≤ α,

where the last inequality is from Lemma 2 and the fact that

dk(P, Q̂n) ≥ 0. The type-II error exponent follows from

lim inf
n→∞

− 1

n
logQ

(

d2u(P, Q̂n) ≤ γ2
n +K/n

)

≥ lim inf
n→∞

− 1

n
logQ

(

d2k(P, Q̂n) ≤ γ2
n + 2K/n

)

≥D(P‖Q).

The last inequality can be shown by similar argument of

Eq. (1) as γ2
n + 2K/n → 0 as n → ∞. Applying Stein’s

lemma completes the proof.

5.2. Proof of Two-Sample Tests

Proof of Theorem 3. That the two-sample test is level α
can be verified by (Gretton et al., 2012a, Theorem 7).

We can write the type-II error probability as

Pymxn(Ω0(m,n)) = βu
m,n + βl

m,n,

where

βu
m,n =Pymxn

(

dk(P̂m, Q̂n)≤ γm,n, dk(P, P̂m)>γ′
m,n

)

,

βl
m,n =Pymxn

(

dk(P̂m, Q̂n)≤ γm,n, dk(P, P̂m)≤ γ′
m,n

)

,

and γ′
m,n = 2

√

K/m+
√

2KnD(P‖Q)/m. It suffices to

show that max{βu
m,n, β

l
m,n} decreases exponentially as n

scales. We first have

βu
m,n ≤ Pym

(

dk(P, P̂m) > γ′
m,n

)

≤ e−nD(P‖Q). (2)

The last inequality is also due to Lemma 2. Thus, βu
m,n

vanishes at least exponentially fast with the error exponent

being D(P‖Q).

For βl
m,n, we have it equal to

∑

{P̂m:dk(P,P̂m)≤γ′
m,n}

P
(

P̂m

)

Q
(

dk(P̂m, Q̂n) < γm,n

)

≤ sup
{P̂m:dk(P,P̂m)≤γ′

m,n}

Q
(

dk(P̂m, Q̂n) < γm,n

)

≤ Q
(

dk(P, Q̂n) ≤ γm,n + γ′
m,n

)

,

where the last inequality is because dk is a metric. Similar

to Eq. (1), we get

lim inf
n→∞

− 1

n
log βl

n,m ≥ D(P‖Q),

because γm,n + γ′
m,n → 0 as n → ∞. Together with

Eq. (2), we have under H1 : P 6= Q,

lim inf
n→∞

− 1

n
logPymxn (Ω0(m,n)) ≥ D(P‖Q).

We next show the other direction under H1. We have

Pymxn

(

dk(P̂m, Q̂m) ≤ γm,n

)

(a)

≥ Pymxn

(

dk(P̂m, P ) ≤ γ′
m, dk(P, Q̂n) ≤ γ′

n

)

= P
(

dk(P̂m, P ) ≤ γ′
m

)

Q
(

dk(P, Q̂n) ≤ γ′
n

)

,

where (a) is because dk is a metric, and we choose

γ′
m = (2 +

√

2 log(2α−1))
√

K/m and γ′
n = (2 +

√

2 log(2α−1))
√

K/n so that γm,n = γ′
m + γ′

n. Then

Lemma 2 implies P (dk(P̂m, P ) ≤ γ′
m) > 1 − α/2 and

P (dk(P, Q̂n) ≤ γ′
n) > 1 − α/2. Together with Stein’s

Lemma, we get

lim inf
n→∞

− 1

n
logPymxn

(

dk(P̂m, Q̂n) ≤ γm,n

)

≤ lim inf
n→∞

− 1

n
log

(

(1− α/2)Q
(

dk(P, Q̂n) ≤ γ′
n

))

≤D(P‖Q).

Proof of Corollary 2. We have
∣

∣

∣
d2u(P̂m, Q̂n)− d2k(P̂m, Q̂n)

∣

∣

∣
≤ K/n+K/m.

The rest follows the same idea of Corollary 1, along with

(Gretton et al., 2012a, Theorem 7)
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6. Experiments

We present empirical results to validate our theo-

retic findings. We note that there have been exten-

sive experiments on performance comparisons of the

MMD based two-sample tests and the KSD based

tests in (Chwialkowski et al., 2016; Liu et al., 2016;

Jitkrittum et al., 2017), where the number m of samples

drawn from P is usually fixed. Our focus will be to com-

pare statistical performance of KSD based tests and the

tests of dk(P, Q̂n) and dk(P̂m, Q̂n) in the finite sample

regime.

We evaluate the following tests with a fixed level α =

0.1, all using Gaussian kernel k(x, y) = e−‖x−y||22/(2w):

1) Simple: the simple kernel test dk(P, Q̂n). The thresh-

old is estimated by drawing i.i.d. samples under the model

P , i.e., the Monte Carlo method. The number of trials is

500. 2) Two-sample: the two-sample test dk(P̂m, Q̂n)
with m = n1.5. Threshold is obtained from the boot-

strap method in (Gretton et al., 2012a), with 500 boot-

strap replicates. 3) KSD: a KSD based test. We sim-

ply use the test proposed in (Chwialkowski et al., 2016),

as other KSD based tests (Liu et al., 2016; Jitkrittum et al.,

2017) have comparable performance in terms of the type-

II error probability. We use wild bootstrap method

(Chwialkowski et al., 2016) with 500 replicates to estimate

the α-quantile.

Gaussian vs. Laplace. We consider a one-dimensional

problem in which P : N (0, 2
√
2) and Q : Laplace(0, 2),

a zero-mean Laplace distribution with scale parameter 2.

The parameters are chosen so that P and Q have the same

mean and variance. We repeat 500 trials of each hypothe-

sis with respect to different sample sizes, and pick a fixed

bandwidth w = 1 for all the kernel tests. We also evaluate

the likelihood ratio test LR, an oracle approach assuming

both P and Q are known. In Figure 1a, the test LR has

the lowest type-II error rate as expected, while Simple

and Two-sample perform slightly better than KSD. All

the kernel tests have the type-I error rates around the given

level α = 0.1, shown in Figure 1b.
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Figure 1. Gaussian vs. Laplace.

Gaussian Mixture. We next consider a similar experiment

setting to (Liu et al., 2016). We draw i.i.d. sample xn from

Q :
∑5

k=1 akN (x;µk, σ
2) with ak = 1/5, σ2 = 1, and µk

randomly drawn from Uniform[0, 10]. We then generate P
by adding standard Gaussian noise (perturbation) to µk. In

(Liu et al., 2016), the number of samples ym drawn from

P is fixed while varying the observed sample number n.

Here we pick m = n1.5 and report the type-II error rates in

Figure 2, averaged over 500 random trials.

With the median heuristic for bandwidth choice, KSD and

Two-sample perform similarly whereas Simple has its

type-II error probability decreasing slowly, as shown in

Figure 2a. Picking a fixed bandwidth w = 1 for Simple

again achieves a better performance. In light of the role of

kernels, we then search over the kernel bandwidths in [0, 8]
for a fixed sample size n = 50. In Figure 2b, Simple and

Two-smaple tend to have lower type-II error rates when

w is small, while KSD achieves lower error rates around

w = 5. The optimal type-II error rates of Simple and KSD

are close and are slightly lower than that of Two-sample.

Drawing more samples ym from P may reduce the gap but

also increases the computation cost. Besides, we observe

that KSD is more computationally efficient in this experi-

ment, as it does not need to draw samples.
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Figure 2. Gaussian mixture. (a) median bandwidth for Simple,

Two-sample, and KSD, and a fixed bandwidth w = 1 for

Simple; (b) fixing n = 50 and varying kernel bandwidths.

7. Concluding Remarks

In this paper, we have shown that two classes of MMD

based tests are universally asymptotically optimal for good-

ness of fit testing, and that a KSD based test achieves a

weaker optimality in the sense that a relaxed level con-

straint is placed on the type-I error probability. In the fi-

nite sample regime, these kernel tests have similar perfor-

mance, while the KSD based test is more efficient. Our

work not only solves a long-standing open problem in in-

formation theory and statistics, but also provides theoretic

guarantee for these kernel tests in terms of statistical per-

formance. We believe that the technique of using Sanov’s

theorem and the weak convergence properties of the MMD

and the KSD can be further used to evaluate other kernel

tests.
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