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Abstract Detectability is a basic property of dynamic systems: when it holds one

can use the observed output signal produced by a system to reconstruct its current

state.

In this paper, we consider properties of this type in the framework of discrete

event systems modeled by Petri nets (a.k.a. place/transition nets). We first study weak

detectability and weak approximate detectability. The former implies that there ex-

ists an evolution of the net such that all corresponding observed output sequences

longer than a given value allow one to reconstruct the current marking (i.e., state).

The latter implies that there exists an evolution of the net such that all corresponding

observed output sequences longer than a given value allow one to determine if the

current marking belongs to a given set. We show that the problem of verifying the

first property for labeled place/transition nets with inhibitor arcs and the problem of

verifying the second property for labeled place/transition nets are both undecidable.

We also consider a property called instant strong detectability which implies that

for all possible evolutions the corresponding observed output sequence allows one to

reconstruct the current marking. We show that the problem of verifying this property

for labeled place/transition nets is decidable while its inverse problem is EXPSPACE-

hard.

Keywords Labeled Petri net · Inhibitor arc · Weak detectability · Weak approximate

detectability · Instant strong detectability · Decidability

The main results shown in Subsection 3.1 were submitted to WODES’18.

K. Zhang

College of Automation, Harbin Engineering University, Harbin 150001, P.R. China

ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology, 10044

Stockholm, Sweden

E-mail: zkz0017@163.com, kuzhan@kth.se

A. Giua
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1 Introduction

Detectability is a basic property of dynamic systems: when it holds one can use the

observed output signal produced by a system to reconstruct its current state [6,25,23,

24,4,27,34,17,30,12]. This property plays a fundamental role in many related con-

trol problems such as observer design and controller synthesis. Hence for different

applications, it is meaningful to characterize detectability for control systems in dif-

ferent frameworks. This property also has different terminology, e.g., in [6,27,17], it

is called “observability”; in [4,34], it is called “reconstructibility”. In this paper, we

uniformly call it “detectability”, and call the property whether the initial state can be

determined by the observed output signal produced by a system “observability”.

For discrete event systems (DESs), the detectability problem in the framework of

finite automata has been widely studied [25,23,24,31,12,30]. For different uses, de-

tectability is formulated as strong detectability and weak detectability [25], where the

former means in the ω-language (i.e., the set of infinite observed output sequences)

generated by a DES, whether there exists a positive integer k such that each prefix of

each infinite output sequence of the ω-language longer than k can be used to recon-

struct the current state, while the latter means in the ω-language, whether there exists

an infinite output sequence such that each of its prefixes longer than a positive integer

l can be used to do that. Strong detectability can be verified in polynomial time but

weak detectability can only be verified in exponential time currently [25,23]. Check-

ing weak detectability of DESs is PSPACE-complete in the numbers of states and

events even for deterministic DESs whose events are all observable [31], hence it is

unlikely that there exists a polynomial time algorithm for verifying weak detectabil-

ity. Other related results on the complexity of deciding detectability of DESs can be

found in [30,12].

What if the framework of labeled Petri nets (a.k.a. labeled place/transition nets

(labeled P/T nets)) is considered? Although labeled P/T nets have finitely many tran-

sitions (i.e., events), they may have countably infinitely many markings (i.e., states).

Hence the detectability for labeled P/T nets may be more complex. Taking opacity for

example, where opacity is a property whether an intruder (outside a system) can never

determine whether some states of the system prior to the current time step are secret,

although verifying different types of opacity of finite-automaton-based DESs are at

least NP-hard in the numbers of states and events, they are decidable [20,19,18,21]

(stochastic finite automata excluded [22]). However, checking opacity is generally

undecidable [1,8,26]. Then it is interesting to study whether from the perspective of

detectability, whether Petri-net-based DESs are more complex than finite-automaton-

based DESs. In this paper, we obtain several results.

As stated before, weak detectability roughly means reconstructing the current

marking by using observed labeling (i.e., output) sequences. Sometimes, we do not

need to reconstruct the current state but only need to estimate whether the current

state belongs to a given subset of all reachable markings. For example, we determine

whether the current state is normal or not (here we do not need to give a physical

description for “normality” and “abnormality”, we just need to know they stand for

different types of reachable markings.). In this sense, the set of all reachable markings

is partitioned into two disjoint subsets: the subset of normal reachable markings and
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the set of abnormal reachable markings. We call such a detectability weak approxi-

mate detectability. In this paper, we will prove that the weak approximate detectabil-

ity of labeled P/T nets is undecidable1 for any fixed finite cardinality of partition of

reachable markings. On the other hand, when inhibitor arcs are added into labeled

P/T nets, we prove that the weak detectability of labeled P/T nets with inhibitor arcs

is undecidable. These undecidable results are obtained by reducing the well known

undecidable language equivalence problem [7] for labeled P/T nets to the problems

under consideration.

As we have already mentioned, strong detectability implies that there exists a fi-

nite integer k such that each prefix of length greater than k of each infinite labeling

sequence of the ω-language generated by a labeled Petri net allows one to recon-

struct the current marking. However, when we do synthesis for a labeled P/T net, we

wish that the marking can be determined once the net started to run. In this sense,

we study a new detectability that is stronger than the previous strong detectability

which we call instant strong detectability, which means that whether each label-

ing sequence generated by the net can determine the current marking. Actually, a

stronger version of instant strong detectability has been studied in [17], where it is

called “structural observability”, since it implies that the instant strong detectability

is satisfied for all initial markings. It is pointed out that the “structural observability”

is important, because “the majority of existing control schemes for Petri nets rely on

complete knowledge of the system state at any given time step” [17]. In [17], the opti-

mal problem of placing the minimal number of sensors on places/transitions to make

a labeled Petri net structurally observable is studied. The former problem is proved

to be NP-complete, while the latter is shown to be solvable in polynomial time, both

in the numbers of places and transitions. However, the decidability of instant strong

detectability has not been studied yet. In this paper, we will prove that the instant

strong detectability problem is decidable by reducing it to the known decidable home

space problem [2] of Petri nets with respect to a computable semi-linear subset [14]

and deciding its inverse problem is EXPSPACE-hard in the numbers of places and

transitions of the labeled P/T net and the number of tokens of the destination marking

in the coverability problem. by showing that the EXPSPACE-complete coverability

problem [15,11] is polynomial time reducible to the non-instant strong detectability

problem. This home space problem has been used to prove several decidable results

on several other types of detectability of P/T nets with unknown initial markings [6],

where these types of detectability are called (strong) marking observability, uniform

(strong) marking observability, and structural (strong) marking observability. Note

that these types of detectability are decidable may be partially due to that the Petri

nets considered in [6] are unlabeled, although their initial markings are unknown.

The contributions of this paper are as follows: We prove that 1) the weak de-

tectability of ǫ-free (i.e., no transition is labeled as the empty word ǫ) labeled P/T

nets with inhibitor arcs is undecidable, 2) the weak approximate detectability of ǫ-

free labeled P/T nets is undecidable even restricted to a fixed finite cardinality of

partition of the set of reachable markings, and 3) the instant strong detectability of

1 This sentence is short for “The problem of verifying the weak approximate detectability of labeled

P/T nets is undecidable”. In the sequel, we will always use such a short expression. That is, we use “a

property is undecidable” instead of “the problem of verifying the property is undecidable.”
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labeled P/T nets is decidable and its inverse problem is EXPSPACE-hard in the num-

bers of places and transitions of the labeled P/T net and the number of tokens of the

destination marking in the coverability problem.

The remainder of the paper is arranged as follows. Section 2 introduces necessary

preliminaries, Section 3 shows the main results, and Section 4 ends up with a short

conclusion.

2 Preliminaries

For a finite set S, S∗ and Sω are used to denote the sets of finite sequences (called

words) of elements of S including the empty word ǫ and infinite sequences (called

configurations) of elements of S, respectively. For a word s ∈ S∗, |s| stands for

its length, and we set |s′| = +∞ for all s′ ∈ Sω. For s ∈ S and natural number

k, sk and sω denote the k-length word and configuration consisting of copies of s’s,

respectively. For a word (configuration) s ∈ S∗(Sω), a word s′ ∈ S∗ is called a prefix

of s, denoted as s′ ⊑ s, if there exists another word (configuration) s′′ ∈ S∗(Sω) such

that s = s′s′′. For two natural numbers i ≤ j, [i, j] denotes the set of all integers

between i and j; and for a set S, |S| its cardinality.

A net is a quadruple N = (P, T, P re, P ost), where P is a finite set of places

graphically represented by circles; T is a finite set of transitions graphically repre-

sented by bars; P ∪ T 6= ∅, P ∩ T = ∅; P re : P × T → N and P ost : P × T → N

are the pre- and post-incidence functions that specify the arcs directed from places

to transitions, and vice versa, where N stands for the set of natural numbers. The

incidence function is defined as C = P ost − P re.

A marking is a map M : P → N that assigns to each place of a net a natural

number of tokens, graphically represented by black dots. For a marking M ∈ N
P ,

a transition t ∈ T is called enabled at M if M(p) ≥ P re(p, t) for any p ∈ P , and

is denoted by M [t〉, where as usual NP denotes the set of maps from P to N. An

enabled transition t at M may fire and yield a new making M ′(p) = M(p) + C(p, t)
for all p ∈ P , written as M [t〉M ′. As usual, we assume that at each marking and

each time step, at most one transition fires. For a marking M , a sequence t1 . . . tn

of transitions is called enabled at M if t1 is enabled at M , t2 is enabled at the

unique M2 satisfying M [t1〉M2, . . . , tn is enabled at the unique Mn−1 satisfying

M [t1〉 · · · [tn−1〉Mn−1. We write the firing of t1 . . . tn at M as M [t1 . . . tn〉 for short,

and similarly denote the firing of t1 . . . tn at M yielding M ′ by M [t1 . . . tn〉M ′.

T (N, M0) := {s ∈ T ∗|M0[s〉} is used to denote the set of transition sequences en-

abled at M0. Particularly we have M0[ǫ〉M0. A pair (N, M0) is called a Petri net or

a place/transition net (P/T net), where N = (P, T, P re, P ost) is a net, M0 : P → N

is called the initial marking, and the Petri net evolves initially at M0 as transition se-

quences fire. Denote the set of reachable markings of the Petri net by R(N, M0) :=
{M ∈ N

P |∃s ∈ T ∗, M0[s〉M ′}. For a Petri net (N, M0), R(N, M0) is at most

countably infinite.

A labeled P/T net is a quadruple (N, M0, Σ, ℓ), where N is a net, M0 is an initial

marking, Σ is an alphabet (a finite set of labels), and ℓ : T → Σ ∪ {ǫ} is a labeling

function that assigns to each transition t ∈ T a symbol of Σ or the empty word ǫ,
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which means when a transition t fires, its label ℓ(t) can be observed if ℓ(t) ∈ Σ; and

nothing can be observed if ℓ(t) = ǫ. Particularly, a labeling function ℓ : T → Σ
is called ǫ-free, and a P/T net with an ǫ-free labeling function is called an ǫ-free

labeled P/T net. A Petri net is actually an ǫ-free labeled P/T net with an injective

labeling function. A labeling function ℓ : T → Σ ∪ {ǫ} can be recursively extended

to ℓ : T ∗ → Σ∗ as ℓ(st) = ℓ(s)ℓ(t) for all s ∈ T ∗ and t ∈ T . Particularly we let

ℓ(ǫ) = ǫ. For a labeled P/T net G = (N, M0, Σ, ℓ), the language generated by G is

denoted by L(G) := {σ ∈ Σ∗|∃s ∈ T ∗, M0[s〉, ℓ(s) = σ}, i.e., the set of labels of

finite transition sequences enabled at the initial marking M0. We also say for each

σ ∈ L(G), G generates σ. For σ ∈ Σω, we say G generates σ if G generates each

prefix of σ. The set of configurations generated by G (i.e., the ω-language) is denoted

by Lω(G).

Note that for a labeled P/T net G = (N, M0, Σ, ℓ), when we observe a label

sequence σ ∈ Σ∗, there may exist infinitely many firing transition sequences labeled

by σ. However, for an ǫ-free labeled P/T net, when we observe a label sequence σ,

there exist at most finitely many firing transition sequences labeled by σ. Denote by

M(G, σ) := {M ∈ N
P |∃s ∈ T ∗, M0[s〉M, ℓ(s) = σ}, the set of markings in which

G can be when σ is observed. Then for each σ ∈ Σ∗, M(G, σ) is finite for an ǫ-free

labeled P/T net G.

So far we have considered labeled nets whose underlying structures are P/T nets.

We will also consider a larger class of labeled nets whose underlying structures are

P/T nets with inhibitor arcs. Formally a net with inhibitor arcs is a quintuple N ′ =
(P, T, P re, P re′, P ost), where P and T are also finite sets of places and transitions

such that P ∪ T 6= ∅ and P ∩ T = ∅, P re : P × T → N and P ost : P × T → N are

still the pre- and post-incidence functions, P re′ : P × T → {0, 1} is the inhibitor

pre-incidence function such that P re(p, t) · P re′(p, t) = 0 for all p ∈ P and t ∈ T ,

guaranteeing that there exists at most one of a normal arc and an inhibitor arc from

p to t. Here a transition t ∈ T is enabled at a marking M ∈ N
P if and only if

M(p) ≥ P re(p, t) for any p ∈ P satisfying P re(p, t) > 0 and M(p) = 0 for

any p ∈ P satisfying P re′(p, t) > 0. The firing of a transition t ∈ T at a marking

M ∈ N
P yields a marking M ′(p) = M(p)+P ost(p, t)−P re(p, t) if P re′(p, t) = 0

and M ′(p) = P ost(p, t) if P re′(p, t) > 0, where p ∈ P and t ∈ T . Similarly,

a labeled P/T net with inhibitor arcs is a quadruple G′ = (N ′, M0, Σ, ℓ), where

N ′ = (P, T, P re, P re′, P ost) is a net with inhibitor arcs, M0 ∈ N
P is an initial

marking, Σ is again an alphabet, and ℓ : T → Σ ∪ {ǫ} is again a labeling function.

The set T (N ′, M0) of finite transition sequences enabled at M0, the set R(N ′, M0)
of reachable markings, the language L(G′) generated by G′, and the set M(G′, σ) of

markings in which G′ can be when σ ∈ Σ∗ is observed, are defined in an analogue

way as those for labeled P/T nets.

The undecidable results obtained in this paper is obtained by using the following

language equivalence problem.

Proposition 1 [7, Theorem 8.2] It is undecidable to verify whether two ǫ-free labeled

P/T nets with the same alphabet generate the same language.
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On the other hand, the decidable results obtained in this paper are obtained by the

home space problem with respect to a semi-linear subset [2]. Necessary preliminaries

are introduced as follows.

Given a finite set P , a subset E ⊆ N
P is called linear [14] if there exist v, v1, . . . ,

vn ∈ N
P such that

E =

{

v +
n

∑

i=1

kivi|k1, . . . , kn ∈ N

}

,

where v is usually called base and v1, . . . , vn are called periods. More generally, a

subset F ⊆ N
P is called semi-linear if it is a finite union of linear subsets E1, . . . , Eq

of NP , and we call the bases and periods of E1, . . . , Eq the bases and periods of F .

We will use the helpful proposition as below.

Proposition 2 [5, Theorem 6.2] If X and Y are semi-linear subsets of NP , then

X \ Y is also a semi-linear subset of NP and is effectively calculable from X and Y .

By this proposition, given semi-linear subsets X and Y of NP , one can use the

constructive proof (which is an algorithm) to compute the base and periods of X \ Y
as a semi-linear subset of NP from the bases and periods of X and Y . The concept

of semi-linear subsets is closely related to Petri nets [16,2,6].

The decidable result on the home space problem with respect to a semi-linear

subset E is as shown in Proposition 3. Note that when E reduces to a singleton (e.g.,

when all periods of E are the zero vector and all bases of the finitely many linear

subsets whose union equals E are the same), the home space problem becomes the

well known reachability problem. The reachability problem is decidable [13,9,10],

and EXPSPACE-hard [11]. The home space problem with respect to a linear subset

can be reduced to the reachability problem with respect to the base of the linear

subset [2]. Furthermore in [2], an algorithm for solving the home space problem with

respect to a semi-linear subset is constructed by using the algorithm for solving the

home space problem with respect to a linear subset.

Proposition 3 [2, Corollary 1] It is decidable to verify for a Petri net (N, M0) and

a semi-linear subset E of NP whether R(N, M0) ∩ E = ∅.

We also need the following Proposition 4 on the coverability problem as below to

obtain another main result.

Proposition 4 [15,11] It is EXPSPACE-complete to decide for a Petri net G =
(N, M0) and a destination marking M ∈ N

P if G covers M , i.e., if there exists a

marking M ′ ∈ R(N, M0) such that M ≤ M ′, i.e., M(p) ≤ M ′(p) for each place p
of N .

In [11], it is proved that deciding the coverability for Petri nets requires at least

2cn space infinitely often for some constant c > 0, where n is the number of tran-

sitions. While in [15], it is shown that deciding the same property for a Petri net

requires at most space 2cm log m for some constant c, where m is the size of the set
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of all transitions of the Petri net. For a Petri net ((P, T, P re, P ost), M0), each tran-

sition t ∈ T corresponds to a |P |-length vector P ost(·, t) − P re(·, t) =: c(t) whose

components are integers. The size of t is the sum of the lengths of the binary repre-

sentations of the components of c(t) (where the length of 0 is 1). The size of T is the

sum of the sizes of all transitions of T , and is set to be the above m.

The coverability problem belongs to EXPSPACE [15]. However, it is not known

whether the reachability problem belongs to EXPSPACE [3]. Using a similar reduc-

tion as the one in [2] used to reduce the home space problem with respect to a linear

subset to the reachability problem with respect to the base of the linear subset, one can

reduce the coverability problem to the reachability problem with respect to the same

marking. Proposition 4 has been used to prove the EXPSPACE-hardness of checking

non-diagnosability [29] and non-prognosability [28] of labeled Petri nets.

3 Main results

3.1 Weak detectability and weak approximate detectability

The concept of weak detectability is formulated as follows.

Definition 1 Consider a labeled P/T net G (with or without inhibitor arcs). The net

G is called weakly detectable if there exists a label sequence σ ∈ Σω such that for

some positive integer k, |M(G, σ′)| = 1 for any prefix σ′ of σ satisfying |σ′| ≥ k.

Sometimes, we do not need to determine the current marking of a labeled net,

but only need to know whether the current marking belongs to some prescribed sub-

set of reachable markings. Then the concept of weak approximate detectability is

formulated as below.

Definition 2 Consider a labeled P/T net G (with or without inhibitor arcs). Given

a positive integer n > 1 and a partition {R1, . . . , Rn} of the set of its reachable

markings, G is called weakly approximately detectable with respect to n and partition

{R1, . . . , Rn} if there exists a label sequence σ ∈ Σω such that for some positive

integer k, for any prefix σ′ of σ satisfying |σ′| ≥ k, ∅ 6= M(G′, σ′) ⊆ Ri for some

i ∈ [1, n] depending on σ′.

For weak detectability of labeled P/T nets with inhibitor arcs, we have the follow-

ing results.

Theorem 1 The weak detectability of ǫ-free labeled P/T nets with inhibitor arcs is

undecidable.

Proof We prove this result by reducing the language equivalence problem of ǫ-free

labeled P/T nets (Proposition 1) to the weak detectability problem of ǫ-free labeled

P/T nets with inhibitor arcs.

Arbitrarily given two ǫ-free labeled P/T nets Gi = (Ni, M i
0, Σ, ℓi), where Ni =

(Pi, Ti, P rei, P osti), i = 1, 2, P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, we next construct a
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new ǫ-free labeled P/T net G with inhibitor arcs from G1 and G2, and prove that

L(G1) = L(G2) if and only if G is not weakly detectable.

In G, we add five more places and several new transitions to G1 and G2, where

p0 contains a unique token and (together with related transitions) starts G; p1
1 (p2

1)

starts G1 (G2); after G1 (G2) stops, p1
2 (p2

2) is used to clear all places of G1 (G2). G
is specified as (NG, MG

0 , Σ ∪ {σG}, ℓG) (see Fig. 1 as a sketch), where

1. NG = (PG, TG, P reG, P re′
G, P ostG);

2. PG = P1 ∪ P2 ∪ {p0, p1
1, p2

1, p1
2, p2

2}, (P1 ∪ P2) ∩ {p0, p1
1, p2

1, p1
2, p2

2} = ∅,

|{p0, p1
1, p2

1, p1
2, p2

2}| = 5;

3. TG = T1 ∪ T2 ∪ {t1
0, t2

0, t1
1, t2

1, t1, t2} ∪ {tp|p ∈ P1} ∪ {tp|p ∈ P2}, (T1 ∪ T2) ∩
({t1

0, t2
0, t1

1, t2
1, t1, t2} ∪ {tp|p ∈ P1} ∪ {tp|p ∈ P2}) = ∅, |{t1

0, t2
0, t1

1, t2
1, t1, t2} ∪

{tp|p ∈ P1} ∪ {tp|p ∈ P2}| = 6 + |P1| + |P2|;
4. P reG|P1×T1

(the restriction of P reG to P1 ×T1) = P re1, P reG|P2×T2
= P re2,

P reG(p0, t1
0) = P reG(p0, t2

0) = P reG(p1
1, t1

1) = P reG(p2
1, t2

1) = 1, P reG(p1
1, t)

= 1 for any t ∈ T1, P reG(p2
1, t) = 1 for any t ∈ T2, P reG(p1

2, tp) = 1 for any

p ∈ P1, P reG(p2
2, tp) = 1 for any p ∈ P2, P reG(p1

2, t1) = P reG(p2
2, t2) = 1,

P reG(p, tp) = 1 for any p ∈ P1 ∪ P2, P reG(p, t) = 0 for any other (p, t) ∈
PG × TG;

5. P re′
G(p, t1) = 1 for any p ∈ P1, P re′

G(p, t2) = 1 for any p ∈ P2, P re′
G(p, t) =

0 for any other (p, t) ∈ PG × TG;

6. P ostG|P1×T1
= P ost1, P ostG|P2×T2

= P ost2, P ostG(p1
1, t1

0) = P ostG(p2
1, t2

0)
= P ostG(p1

2, t1
1) = P ostG(p2

2, t2
1) = 1, P ostG(p1

1, t) = 1 for any t ∈ T1,

P ostG(p2
1, t) = 1 for any t ∈ T2, P ostG(p1

2, tp) = 1 for any p ∈ P1, P ostG(p2
2, tp)

= 1 for any p ∈ P2, P ostG(p1
2, t1) = P ostG(p2

2, t2) = 1, P ostG(p, t) = 0 for

any other (p, t) ∈ PG × TG;

7. MG
0 ∈ N

PG is specified as MG
0 |Pi

= M i
0, i = 1, 2, MG

0 (p0) = 1, MG
0 (p1

1) =
MG

0 (p2
1) = MG

0 (p1
2) = MG

0 (p2
2) = 0;

8. σG is a new symbol, i.e., σG /∈ Σ;

9. ℓG|T1
= ℓ1, ℓG|T2

= ℓ2, ℓG(t1
0) = ℓG(t2

0) = ℓG(t1
1) = ℓG(t2

1) = ℓG(t1) =
ℓG(t2) = σG, ℓG(tp) = σG for any p ∈ P1 ∪ P2.

For net G, initially only transition t1
0 or t2

0 can fire. After t1
0 (t2

0) fires, the unique

token in place p0 moves to place p1
1 (p2

1), initializing net G1 (G2). While G1 (G2) is

running, only transition t1
1 (t2

1) outside T1 ∪ T2 can fire. The firing of t1
1 (t2

1) moves

the token in place p1
1 (p2

1) to place p1
2 (p2

2), and stops G1 (G2) from running, yielding

that G1 (G2) will never run again, and for each p ∈ P1 (p ∈ P2), transition tp fires

repetitively until there exists no token in place p. After all places in P1 (P2) become

empty, only transition t1 (t2) can fire, and can fire repetitively forever. All in all,

all possible infinite transition sequences fired by G are of the form t1
0st1

1s′tω
1 , t1

0s′′,

t2
0rt2

1r′tω
2 , or t2

0r′′, where s ∈ (T1)∗, s′ ∈ {tp|p ∈ P1}∗, s′′ ∈ (T1)ω , r ∈ (T2)∗,

r′ ∈ {tp|p ∈ P2}∗, r′′ ∈ (T2)ω. Note that for some G1 and G2, the corresponding G
never fires t1

0s′′ or t2
0r′′ as above, e.g., when L(G1) ∪ L(G2) is finite; but for all G1

and G2, the corresponding G fires t1
0st1

1s′tω
1 and t2

0rt2
1r′tω

2 as above.

If L(G1) 6= L(G2), without loss of generality, we assume that there exists σ ∈
L(G1)\L(G2). Then when G generates σGσ(σG)ω , it only fires t1

0st1
1s′(t1)ω, where

s ∈ (T1)∗, ℓG(s) = σ, s′ ∈ {tp|p ∈ P1}∗, |s′| =
∑

p∈P1
M(p), M ∈ N

P1 is
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0
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0
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2

p1

1 t1

1

t2

p̂

t̂

tp̂
p2

2

p2

1

t2

1

G1

G2

Fig. 1 Sketch for the reduction in the proof of Theorem 1, where all transitions outside G1 ∪ G2 are with

the same label.

the marking satisfying M1
0 [s〉M uniquely determined by s. When we observe pre-

fix σGσ(σG)k of σGσ(σG)ω for any integer k > K := max{
∑

p∈P1
M ′(p)|∃s̃ ∈

(T1)∗, ℓG(s̃) = σ, M1
0 [s̃〉M ′} (note that {s̃ ∈ (T1)∗|ℓG(s̃) = σ, M1

0 [s̃〉} is a finite

set, hence K is a natural number), the set M(G, σGσ(σG)k) of reachable markings

of G after observing σGσ(σG)k is a singleton, and its unique element MG ∈ N
PG

satisfies that MG(p0) = MG(p1
1) = MG(p2

1) = MG(p2
2) = MG(p) = 0 for any

p ∈ P1, MG(p1
2) = 1, MG|P2

= M2
0 . Hence G is weakly detectable.

If L(G1) = L(G2), then G may generate only configurations σGσ′ or σGσ(σG)ω ,

where σ′ ∈ Σω, σ ∈ L(G1). For the former case, for any positive integer k and any k
length prefix σ′′ of σ′, there exist firing sequences s ∈ (T1)∗ of G1 and r ∈ (T2)∗ of

G2 such that ℓG(s) = ℓG(r) = σ′′. Then M(G, σ′′) includes a marking MG ∈ N
PG

satisfying MG(p1
1) = 1 and MG(p2

1) = 0 and also a marking M ′
G ∈ N

PG satis-

fying M ′
G(p1

1) = 0 and M ′
G(p2

1) = 1. That is, M(G, σ′′) is not a singleton. For

the latter case, when we observe σGσ(σG)k , where k is a sufficiently large natural

number, we have G may fire both t1
0st1

1s′(t1)k−1−|s′| and t2
0rt2

1r′(t2)k−1−|r′|, where

s ∈ (T1)∗, r ∈ (T2)∗, ℓG(s) = ℓG(r) = σ, s′ ∈ {tp|p ∈ P1}∗, r′ ∈ {tp|p ∈ P2}∗,

|s′| ≤ k − 1, |r′| ≤ k − 1. Then we obtain two markings MG, M ′
G ∈ N

PG satisfying

that MG
0 [t1

0st1
1s′(t1)k−1−|s′|〉MG and MG

0 [t2
0rt2

1r′(t2)k−1−|r′|〉M ′
G, MG(p1

2) = 1,

MG(p2
2) = 0, M ′

G(p1
2) = 0, M ′

G(p2
2) = 1. That is, M(G, σGσ(σG)k) is not a sin-

gleton for any sufficiently large k. We have checked all label sequences generated by

G, hence G is not weakly detectable, which completes the proof.

For the weakly approximate detectability of labeled P/T nets, the following result

holds.



10 Kuize Zhang, Alessandro Giua

Theorem 2 Let n > 1 be a positive integer. It is undecidable to verify for an ǫ-free

labeled P/T net and a partition {R1, . . . , Rn} of the set of its reachable markings,

whether the labeled P/T net is weakly approximately detectable with respect to n and

{R1, . . . , Rn}.

Proof We prove this result also by reducing the language equivalence problem of

labeled Petri nets (Proposition 1) to the problem under consideration. The proof is

divided into three cases: n = 2, n = 3, and n > 3. The first two cases are based on

the same reduction, the third part is based on a more complex reduction.

n = 2:

Arbitrarily given two ǫ-free labeled P/T nets Gi = (Ni, M i
0, Σ, ℓi), where Ni =

(Pi, Ti, P rei, P osti), i = 1, 2, P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, we next construct an

ǫ-free labeled P/T net G from G1 and G2 and a partition {R1, R2} of the set of its

reachable markings, and prove that L(G1) = L(G2) if and only if G is not weakly

approximately detectable with respect to 2 and partition {R1, R2}.

G is specified as (NG, MG
0 , Σ ∪ {σG}, ℓG) (see Fig. 2 as a sketch), where

1. NG = (PG, TG, P reG, P ostG);

2. PG = P1 ∪ P2 ∪ {p0, p1
1, p2

1}, (P1 ∪ P2) ∩ {p0, p1
1, p2

1} = ∅, |{p0, p1
1, p2

1}| = 3;

3. TG = T1∪T2∪{t1
0, t2

0, t1
1, t2

1}, (T1∪T2)∩{t1
0, t2

0, t1
1, t2

1} = ∅, |{t1
0, t2

0, t1
1, t2

1}| = 4;

4. P reG|P1×T1
= P re1, P reG|P2×T2

= P re2, P reG(p0, t1
0) = P reG(p0, t2

0) =
P reG(p1

1, t1
1) = P reG(p2

1, t2
1) = 1, P reG(p1

1, t) = 1 for any t ∈ T1, P reG(p2
1, t)

= 1 for any t ∈ T2, P reG(p, t) = 0 for any other (p, t) ∈ PG × TG;

5. P ostG|P1×T1
= P ost1, P ostG|P2×T2

= P ost2, P ostG(p1
1, t1

0) = P ostG(p1
1, t1

1)
= 1, P ostG(p2

1, t2
0) = P ostG(p2

1, t2
1) = 1, P ostG(p1

1, t) = 1 for any t ∈ T1,

P ostG(p2
1, t) = 1 for any t ∈ T2, P ostG(p, t) = 0 for any other (p, t) ∈

PG × TG;

6. MG
0 ∈ N

PG is specified as MG
0 |Pi

= M i
0, i = 1, 2, MG

0 (p0) = 1, MG
0 (p1

1) =
MG

0 (p2
1) = 0;

7. σG is a new symbol, i.e., σG /∈ Σ;

8. ℓG|T1
= ℓ1, ℓG|T2

= ℓ2, ℓG(t1
0) = ℓG(t2

0) = ℓG(t1
1) = ℓG(t2

1) = σG.

For net G, initially only transition t1
0 or t2

0 can fire. After t1
0 (t2

0) fires, the unique

token in place p0 moves to place p1
1 (p2

1), initializing G1 (G2). While G1 (G2) is run-

ning, only transition t1
1 (t2

1) outside T1∪T2 can fire, and can fire infinitely many times.

Transition t1
1(t2

1) and transitions in T1(T2) can fire alternatively. It can be seen that

G can fire only infinite transition sequences t1
0s1s′

1 . . . sks′
ks′′ or t2

0r1r′
1 . . . rkr′

kr′′,

where k ∈ N; si ∈ (T1)∗, s′
i ∈ {t1

1}∗, ri ∈ (T2)∗, r′
i ∈ {t2

1}∗, i ∈ [1, k];
s′′ ∈ (T1)ω ∪ {t1

1}ω; r′′ ∈ (T2)ω ∪ {t2
1}ω. Hence the only possible configurations

generated by G are of the form

σGσ1σ′
1 . . . σkσ′

kσ, (1)

where k ∈ N; σi ∈ Σ∗, σ′
i ∈ {σG}∗, i ∈ [1, k]; σ ∈ Σω ∪ {σG}ω; σ1 . . . σk ∈

L(G1) ∪ L(G2); and σ1 . . . σkσ is generated by G1 or G2 if σ ∈ Σω. Note also that

for some G1 and G2 and the corresponding G, the above σ cannot belong to Σω, e.g.,

when L(G1) ∪ L(G2) is finite; but for all G1, G2, and the corresponding G, σ can

belong to {σG}ω.
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p0

t1

0

t2

0

p̄
t̄

p1

1 t1

1

p̂ t̂

p2

1

t2

1

G1

G2

Fig. 2 Sketch for the reduction in the proof of Theorem 2 when n = 2, 3, where all transitions outside

G1 ∪ G2 are with the same label.

Next we partition the set R(NG, MG
0 ) of reachable markings of G as follows:

R1 =({M ∈ N
PG |M(p0) = 1, M(p1

1) = M(p2
1) = 0}∪

{M ∈ N
PG |M(p0) = M(p2

1) = 0, M(p1
1) = 1})

∩ R(NG, MG
0 ),

R2 ={M ∈ N
PG |M(p0) = M(p1

1) = 0, M(p2
1) = 1}

∩ R(NG, MG
0 ).

(2)

That is, R1 ∪ R2 = R(NG, MG
0 ) and R1 ∩ R2 = ∅.

If L(G1) 6= L(G2), without loss of generality, we assume that there exists σ ∈
L(G1) \ L(G2). Then when G generates configuration σGσ(σG)ω , it can fire only

infinite transition sequences t1
0s(t1

1)ω , where s ∈ (T1)∗, ℓG(s) = σ. Hence ∅ 6=
M(G, σGσ(σG)k) ⊆ R1 for any k ∈ N, i.e., G is weakly approximately detectable

with respect to 2 and partition (2).

Next we assume that L(G1) = L(G2). After G started to run, we observed

σGσ1σ′
1 . . . σkσ′

kσ, where k ∈ N, σi ∈ Σ∗, σ′
i ∈ {σG}∗, σ ∈ Σ∗ ∪ {σG}∗,

σ1 . . . σk ∈ L(G1) = L(G2). If σ ∈ Σ∗, there exist firing sequences s1 . . . sks ∈
(T1)∗ of G1 and r1 . . . rkr ∈ (T2)∗ of G2 such that ℓG(s) = ℓG(r) = σ, ℓG(si) =
ℓG(ri) = σi, i ∈ [1, k]. In this case, G fires t1

0s1(t1
1)|σ′

1
| . . . sk(t1

1)|σ′

k
|s and t2

0r1(t2
1)|σ′

1
|

. . . rk(t2
1)|σ′

k
|r, hence M(G, σGσ1σ′

1 . . . σkσ′
kσ) intersects both R1 and R2. If σ ∈

{σG}∗, then there exist firing sequences s1 . . . sk ∈ (T1)∗ of G1 and r1 . . . rk ∈
(T2)∗ of G2 such that ℓG(si) = ℓG(ri) = σi, i ∈ [1, k]. In this case, G fires

t1
0s1(t1

1)|σ′

1
| . . . sk(t1

1)|σ′

k
σ| and t2

0r1(t2
1)|σ′

1
| . . . rk(t2

1)|σ′

k
σ|, hence M(G, σGσ1σ′

1 . . .
σkσ′

kσ) also intersects both R1 and R2. We have checked all possible finite label

sequences generated by G, hence G is not weakly approximately detectable with

respect to 2 and partition (2).

n = 3:
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Using the same reduction as the one in the case n = 2 and choosing partition

R1 ={M ∈ N
PG |M(p0) = 1, M(p1

1) = M(p2
1) = 0} ∩ R(NG, MG

0 ),

R2 ={M ∈ N
PG |M(p0) = M(p2

1) = 0, M(p1
1) = 1} ∩ R(NG, MG

0 ),

R3 ={M ∈ N
PG |M(p0) = M(p1

1) = 0, M(p2
1) = 1} ∩ R(NG, MG

0 ),

(3)

similarly we can prove that L(G1) = L(G2) if and only if G is not weakly approxi-

mately detectable with respect to 3 and partition (3).

n > 3:

For this case, we construct a more complex reduction. Set l := n − 1. Arbitrarily

given two ǫ-free labeled P/T nets Gi = (Ni, M i
0, Σ, ℓi), where Ni = (Pi, Ti, P rei,

P osti), i = 1, 2, P1 ∩ P2 = ∅, T1 ∩ T2 = ∅, we next construct a new ǫ-free labeled

P/T net G from G1 and G2 and a new partition {R1, . . . , Rl+1} of the set of its

reachable markings, and prove that L(G1) = L(G2) if and only if G is not weakly

approximately detectable with respect to n and the new partition.

G is specified as (NG, MG
0 , Σ ∪ {σG}, ℓG) (see Fig. 3 as a sketch), where

1. NG = (PG, TG, P reG, P ostG);

2. PG = P1 ∪P2 ∪{p0, p1
1, p2

1, p2, . . . , pl}, (P1 ∪P2)∩{p0, p1
1, p2

1, p2, . . . , pl} = ∅,

|{p0, p1
1, p2

1, p2, . . . , pl}| = l + 2;

3. TG = T1∪T2∪{t1
0, t2

0, t1
1, t2

1, t2, . . . , tl}, (T1∪T2)∩{t1
0, t2

0, t1
1, t2

1, t2, . . . , tl} = ∅,

|{t1
0, t2

0, t1
1, t2

1, t2, . . . , tl}| = l + 3;

4. P reG|P1×T1
= P re1, P reG|P2×T2

= P re2, P reG(p0, t1
0) = P reG(p0, t2

0) =
P reG(p1

1, t1
1) = P reG(p2

1, t2
1) = 1, P reG(p1

1, t) = 1 for any t ∈ T1, P reG(p2
1, t)

= 1 for any t ∈ T2, P reG(pi, ti) = 1 for any i ∈ [2, l], P reG(p, t) = 0 for any

other (p, t) ∈ PG × TG;

5. P ostG|P1×T1
= P ost1, P ostG|P2×T2

= P ost2, P ostG(p1
1, t1

0) = P ostG(p2
1, t2

0)
= P ostG(p2, t1

1) = P ostG(pl, t2
1) = 1, P ostG(p1

1, t) = 1 for any t ∈ T1,

P ostG(p2
1, t) = 1 for any t ∈ T2, P ostG(pi+1, ti) = 1 for any i ∈ [2, l − 1],

P ostG(p2, tl) = 1, P ostG(p, t) = 0 for any other (p, t) ∈ PG × TG;

6. MG
0 ∈ N

PG is specified as MG
0 |Pi

= M i
0, i = 1, 2, MG

0 (p0) = 1, MG
0 (p1

1) =
MG

0 (p2
1) = MG

0 (pi) = 0, i ∈ [2, l];
7. σG is a new symbol, i.e., σG /∈ Σ;

8. ℓG|T1
= ℓ1, ℓG|T2

= ℓ2, ℓG(t1
0) = ℓG(t2

0) = ℓG(t1
1) = ℓG(t2

1) = ℓG(ti) = σG,

i ∈ [2, l].

For net G, initially only transition t1
0 or t2

0 can fire. After t1
0 (t2

0) fires, the unique

token in place p0 moves to place p1
1 (p2

1), initializing G1 (G2). While G1 (G2) is

running, only transition t1
1 (t2

1) outside T1 ∪ T2 can fire. The firing of t1
1 (t2

1) moves

the token in place p1
1 (p2

1) to place p2 (pl), and terminates the running of G1 (G2),

yielding that the token in p2 (pl) can move along the direction p2 → · · · → pl →
p2 periodically forever, but G1 (G2) will never run again. Hence G may fire only

infinite transition sequences t1
0st1

1t2 . . . tlt2 . . . tl . . . , t1
0s′, t2

0rt2
1tlt2 . . . tlt2 . . . , or

t2
0r′, where s ∈ (T1)∗, s′ ∈ (T1)ω, r ∈ (T2)∗, r′ ∈ (T2)ω. So G can generate only

configurations σGσ(σG)ω or σGσ′, where σ ∈ Σ∗, σ′ ∈ Σω.
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Fig. 3 Sketch for the reduction in the proof of Theorem 2 when n > 3, where all transitions outside

G1 ∪ G2 are with the same label.

We next partition the set R(NG, MG
0 ) of reachable markings of G as follows:

R1 ={M ∈ N
PG |M(p0) or M(p1

1) = 1,

M(p2
1) = M(pj) = 0, j ∈ [2, l]}

∩ R(NG, MG
0 ),

Ri ={M ∈ N
PG |M(p0) = M(p1

1) = M(p2
1) = 0,

M(pi) = 1, M(pj) = 0, j ∈ [2, l] \ {i}}

∩ R(NG, MG
0 ), i ∈ [2, l],

Rl+1 ={M ∈ N
PG |M(p2

1) = 1,

M(p0) = M(p1
1) = M(pj) = 0, j ∈ [2, l]}

∩ R(NG, MG
0 ).

(4)

That is, ∪l+1
i=1Ri = R(NG, MG

0 ), and Ri ∩ Rj = ∅ for all different i, j ∈ [1, l + 1].
If L(G1) 6= L(G2), without loss of generality, we assume that there exists σ ∈

L(G1) \ L(G2). Then when G generates configuration σGσ(σG)ω , it can fire only

transition sequences t1
0st1

1t2 . . . tlt2 . . . tl . . . , where s ∈ (T1)∗, ℓG(s) = σ. It can be

directly seen for each positive integer k,

∅ 6= M(G, σGσ(σG)k) ⊆ R(k−1) mod (l−1)+2,

where (k − 1) mod (l − 1) means the remainder of k − 1 divided by l − 1. That is,

G is weakly approximately detectable with respect to n and partition (4).

Next we assume that L(G1) = L(G2). Note that G generates only configurations

σGσ′ or σGσ(σG)ω, where σ′ ∈ Σω, σ ∈ Σ∗. For the former case, for each prefix

σ′′ of σ′, there exist firing sequences s ∈ (T1)∗ of G1 and r ∈ (T2)∗ of G2 such

that ℓG(s) = ℓG(r) = σ′′, and markings MG, M ′
G ∈ N

PG such that MG
0 [t1

0s〉MG,

MG
0 [t2

0r〉M ′
G, MG(p1

1) = 1, MG(p2
1) = 0, M ′

G(p1
1) = 0, and M ′

G(p2
1) = 1, then we
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have M(G, σ′′) ∩ R1 6= ∅ and M(G, σ′′) ∩ Rl+1 6= ∅. For the latter case, arbitrarily

chosen a prefix σGσ(σG)k of σGσ(σG)ω, where k is an arbitrary positive integer,

we have there exist firing sequences s ∈ (T1)∗ of G1 and r ∈ (T2)∗ of G2 such

that ℓG(s) = ℓG(r) = σ and G can fire both t1
0ss′ and t2

0rr′, where s′ and r′ are k
length prefixes of t2 . . . tlt2 . . . tl . . . and tlt2 . . . tlt2 . . . , respectively. Since G will

fire both t1
0ss′ and t2

0rr′, we have M(G, σGσ(σG)k) ∩ R(k−1) mod (l−1)+2 6= ∅

and M(G, σGσ(σG)k) ∩ R(k−2) mod (l−1)+2 6= ∅. Hence for each positive integer

k, M(G, σGσ(σG)k) intersects both R(k−1) mod (l−1)+2 and R(k−2) mod (l−1)+2,

where (k − 1) mod (l − 1) 6= (k − 2) mod (l − 1). We have checked all label

sequences generated by G, hence G is not weakly approximately detectable with

respect to n and partition (4), which completes the proof.

3.2 Instant strong detectability

In this subsection, we study the instant strong detectability of labeled Petri nets.

Definition 3 Consider a labeled P/T net G = (N = (P, T, P re, P ost), M0, Σ, ℓ).

G is called instantly strongly detectable if for each label sequence σ in L(G),

|M(G, σ)| = 1.

Theorem 3 1. It is decidable to verify whether a labeled P/T net is instantly strongly

detectable.

2. It is EXPSPACE-hard to check if a labeled P/T net is not instantly strongly de-

tectable in the numbers of places and transitions of the labeled P/T net and the

number of tokens of the destination marking in the coverability problem.

Proof To prove decidable result, we reduce the instant strong detectability problem

to the home space problem with respect to a computable semi-linear subset.

Given a labeled P/T net G = (N = (P, T, P re, P ost), M0, Σ, ℓ), we construct a

Petri net G′ = (N ′ = (P ′, T ′, P re′, P ost′), M ′
0) which aggregates every two firing

sequences of G producing the same label sequence. Denote P = {p1, . . . , p|P |} and

T = {t1, . . . , t|T |}, duplicate them to Pi = {pi
1, . . . , pi

|P |} and Ti = {ti
1, . . . , ti

|T |},

i = 1, 2, where we let ℓ(t1
i ) = ℓ(t2

i ) = ℓ(ti) for all i in [1, |T |]. Then we specify G′

as follows2:

1. P ′ = P1 ∪ P2;

2. T ′ = {(t1
i , t2

j) ∈ T1 × T2|i, j ∈ [1, |T |], ℓ(t1
i ) = ℓ(t2

j) ∈ Σ} ∪ {(t1, ǫ)|t1 ∈
T1, ℓ(t1) = ǫ} ∪ {(ǫ, t2)|t2 ∈ T2, ℓ(t2) = ǫ};

3. for all k ∈ [1, 2], all l ∈ [1, |P |], and all i, j ∈ [1, |T |] such that ℓ(t1
i ) = ℓ(t2

j) ∈
Σ,

P re′(pk
l , (t1

i , t2
j)) =

{

P re(pk
l , t1

i ) if k = 1,
P re(pk

l , t2
j) if k = 2,

P ost′(pk
l , (t1

i , t2
j)) =

{

P ost(pk
l , t1

i ) if k = 1,
P ost(pk

l , t2
j) if k = 2;

2 Similar constructions have been used in [28,29,33,32], the differences are that in [33,32], state pairs

producing the same outputs are connected by common inputs, while in [28,29], transition pairs with the

same labels are connected by places.
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4. for all l ∈ [1, |P |], all i ∈ [1, |T |] such that ℓ(t1
i ) = ℓ(t2

i ) = ǫ,

P re′(p1
l , (t1

i , ǫ)) = P re(p1
l , t1

i ),

P re′(p2
l , (ǫ, t2

i )) = P re(p2
l , t2

i ),

P ost′(p1
l , (t1

i , ǫ)) = P ost(p1
l , t1

i ),

P ost′(p2
l , (ǫ, t2

i )) = P ost(p2
l , t2

i );

5. M ′
0(pk

l ) = M0(pl) for any k in [1, 2] and any l in [1, |P |].

Assume that there exists a label sequence σ ∈ L(G) such that |M(G, σ)| > 1,

then there exist transitions tµ1
, . . . , tµn

, tω1
, . . . , tωn

∈ T ∪ {ǫ}, where n ≥ 1, such

that ℓ(tµ1
. . . tµn

) = ℓ(tω1
. . . tωn

) = σ, M0[tµ1
. . . tµn

〉M1 and M0[tω1
. . . tωn

〉M2

for different M1 and M2 both in N
P . Then for G′, we have M ′

0[(t1
µ1

, t2
ω1

) . . . (t1
µn

, t2
ωn

)

〉M ′, where M ′(pk
l ) = Mk(pl), k ∈ [1, 2], l ∈ [1, |P |], and M ′(p1

l′) 6= M ′(p2
l′) for

some l′ ∈ [1, |P |].
On the contrary assume that for each label sequence σ ∈ L(G), we have

|M(G, σ)| = 1, then for all M ′ ∈ R(N ′, M ′
0), we have M ′(p1

l ) = M ′(p2
l ) for each

l in [1, |P |].
Define

M= = {M ∈ N
P ′

|(∀l ∈ [1, |P |])[M(p1
l ) = M(p2

l )]},

M 6= = {M ∈ N
P ′

|(∃l ∈ [1, |P |])[M(p1
l ) 6= M(p2

l )]}.
(5)

Apparently M= and M 6= partition N
P ′

. By the above discussion, G is instantly

strongly detectable if and only if R(G′, M ′
0) ∩ M 6= = ∅. Then by Proposition 3, we

will finish the proof of the decidable result if M 6= is a computable semi-linear subset

of NP ′

. For each P̄ ⊆ P ′ we define eP̄ ∈ N
P ′

as

eP̄ (p) =

{

1 if p ∈ P̄ ,
0 otherwise.

Note that M= is a linear subset of N
P ′

with base 0 ∈ N
P ′

which maps each p
in P ′ to 0 and periods e{p1

l
,p2

l
} for all l ∈ [1, |P |]. It is clear that NP ′

is a linear

subset of itself with based 0 and periods e{p}, where p ∈ P ′. Hence by Proposition

2, M 6= = N
P ′

\ M= is a semi-linear subset of NP ′

and one can compute its bases

and periods from the bases and periods of NP ′

and M= by using the proof of the

proposition, which completes the proof of this part.

Next we prove the hardness result by reducing the coverability problem to the

non-instant strong detectability problem in polynomial time.

We are given a Petri net G = (N = (P, T, P re, P ost), M0) and a destination

marking M ∈ N
P , and construct a labeled P/T net G′ = (N ′ = (P ′, T ′, P re′, P ost′),

M ′
0, T ∪ {σG}, ℓ) as follows (see Fig. 4 as a sketch):

1. P ′ = P ∪ {p1, p2}, p1 and p2 are different and not in P ;

2. T ′ = T ∪ {t1, t2}, t1 and t2 are different and not in T ;
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3. P re′|P ×T = P re, P ost′|P ×T = P ost, P re′(p, ti) = M(p) for each p ∈ P ,

P ost′(pi, ti) = 1, i ∈ [1, 2], P re′(p, t) = P ost′(p, t) = 0 for any other (p, t) ∈
P ′ × T ′;

4. σG /∈ T , ℓ(t) = t for each t ∈ T , ℓ(t) = σG for each t ∈ {t1, t2};

5. M ′
0|P = M0, M ′

0(p1) = M ′
0(p2) = 0.

It is clear that M is not covered by G if and only if neither t1 nor t2 fires if

and only if G′ is instantly strongly detectable. This reduction runs in time linear of

the number of places of G and the number of tokens of the destination marking M .

Since the coverability problem is EXPSPACE-hard in the number of transitions of G,

deciding the instant strong detectability is EXPSPACE-hard in the numbers of places

and transitions of G′ and the number of tokens of M , which completes the proof.

p̃1

t1

M(p̃
1)

t2
M(p̃1

)

p̃2M(p̃
2) M(p̃2

)

p1p2

G

Fig. 4 Sketch for the reduction in the hardness proof of Theorem 3.

Remark 1 The decision algorithm ([2, Corollary 1]) for the home space problem of

Petri nets with respect to a semi-linear subset is based on the verification algorithm

for the reachability problem of Petri nets [13,9,10]. It was pointed out [3] that the

algorithms in [13,9] are non-primitive recursive. And furthermore, the verification

algorithm for the home space problem of Petri nets with respect to a semi-linear

subset may not be primitive recursive either. It was also pointed out [3] that “Closing

the gap between the exponential space lower bound and the non-primitive recursive

upper bound is one of the most relevant open problems of net theory.”, which actually

shows that it is not known whether the instant strong detectability problem of labeled

Petri nets belongs to EXPSPACE.

Remark 2 The concept of instant strong detectability of labeled Petri nets is a uni-

form concept. That is, a labeled Petri net is instantly strongly detectable if and only

if it is instantly strongly detectable when its initial marking is replaced by any of

its reachable markings. Formally, for a labeled Petri net G = (N, M0, Σ, ℓ), G is

instantly strongly detectable if and only if G′ = (N, M, Σ, ℓ) is instantly strongly

detectable for each M ∈ R(N, M0). The sufficiency naturally holds since M0 ∈
R(N, M0). For the necessity, if there exists M1 ∈ R(N, M0) such that labeled

Petri net G1 = (N, M1, Σ, ℓ) is not instantly strongly detectable, then there exists

σ1 ∈ L(G1) satisfying |M(G1, σ1)| > 1. Since there exists σ0 ∈ L(G) satisfying

M1 ∈ M(G, σ0), we have M(G, σ0σ1) ⊃ M(G1, σ1) and |M(G, σ0σ1)| > 1, i.e.,

G is not instantly strongly detectable. Hence if a labeled Petri net is instantly strongly
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detectable, in order to determine the current marking, one does not need to care about

when the net started to run.

4 Conclusion

In this paper, we proved that the problems of verifying weak detectability of la-

beled Petri nets with inhibitor arcs and weak approximate detectability of labeled

Petri nets are both undecidable. We also proved that the problem of verifying in-

stant strong detectability of labeled Petri nets is decidable, and its inverse problem is

EXPSPACE-hard in the number of transitions, where the instant strong detectability

means whether each label sequence generated by the labeled Petri net can be used to

reconstruct the current marking. It is not difficult to obtain that all these problem are

decidable for bounded labeled Petri nets, so it is interesting to design fast verification

algorithms for them.
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