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Abstract

We present a novel model architecture which
leverages deep learning tools to perform exact
Bayesian inference on sets of high dimensional,
complex observations. Our model is provably ex-
changeable, meaning that the joint distribution
over observations is invariant under permutation:
this property lies at the heart of Bayesian infer-
ence. The model does not require variational ap-
proximations to train, and new samples can be
generated conditional on previous samples, with
cost linear in the size of the conditioning set.
The advantages of our architecture are demon-
strated on learning tasks requiring generalisation
from short observed sequences while modelling
sequence variability, such as conditional image
generation, few-shot learning, set completion, and
anomaly detection.

1. Introduction
We address the problem of modelling unordered sets of
objects that have some characteristic in common. Set mod-
elling has been a recent focus in machine learning, both due
to relevant application domains and to efficiency gains when
dealing with groups of objects (Szabo et al., 2016; Zaheer
et al., 2017; Edwards & Storkey, 2017). The relevant con-
cept in statistics is the notion of an exchangeable sequence
of random variables – a sequence where any re-ordering
of the elements is equally likely. To fulfil this definition,
subsequent observations must behave like previous ones,
which implies that we can make predictions about the fu-
ture. This property allows the formulation of some machine
learning problems in terms of modelling exchangeable data.
For instance, one can think of a few-shot concept learning
as learning to complete short exchangeable sequences (Lake
et al., 2015). A related example comes from a generative
image modelling field, where we might want to generate
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images that are in some ways similar to the ones from a
given set. At present, however, there are few flexible and
provably exchangeable deep generative models to solve this
problem.

Formally, a finite or infinite sequence of random variables
x1, x2, x3, . . . is said to be exchangeable if for all n and all
permutations π

p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n)), (1)

i.e. the joint probability remains the same under any permu-
tation of the sequence. If random variables in the sequence
are independent and identically distributed (i.i.d), then it is
easy to see that the sequence is exchangeable. The converse
is false: exchangeable random variables can be correlated.
One example is a sequence of Gaussian random variables
x1, . . . , xn, which jointly have a multivariate normal distri-
bution Nn(0,Σ) with the same variance and covariance for
all the dimensions (Aldous et al., 1985):

Σii = 1 and Σij,i 6=j = ρ, with 0 ≤ ρ < 1 (2)

The concept of exchangeability is intimately related to
Bayesian statistics. De Finetti’s theorem states that every ex-
changeable process (infinite sequence of random variables)
is a mixture of i.i.d. processes,

p(x1, . . . , xn) =

∫
p(θ)

n∏

i=1

p(xi|θ)dθ, (3)

where θ is some parameter vector (finite or infinite di-
mensional) conditioned on which the random variables are
i.i.d (Aldous et al., 1985). In the Gaussian example with co-
variance defined in Eq. 2, one can prove that x1, . . . , xn are
i.i.d. with xi ∼ N (θ, 1− ρ) conditioned on θ ∼ N (0, ρ).

In terms of predictive distributions p(xn|x1:n−1), the
stochastic process in Eq. 3 can be written as

p(xn|x1:n−1) =

∫
p(xn|θ)p(θ|x1:n−1)dθ, (4)

by conditioning both sides on x1:n−1. Eq. 4 is exactly the
posterior predictive distribution, where we marginalise the
likelihood of xn given θ with respect to the posterior distri-
bution of θ. From this follows one possible interpretation
of the de Finetti’s theorem: learning to fit an exchangeable
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model to sequences of data is implicitly the same as learning
to reason about the hidden variables behind the data.

One strategy for defining models of exchangeable sequences
is through explicit Bayesian modelling: one defines a prior
p(θ), a likelihood p(xi|θ) and calculates the posterior in
Eq. 3 directly. Here, the key difficulty is the intractability of
the posterior and the predictive distribution p(xn|x1:n−1).
Both of these expressions require integrating over the pa-
rameter θ, so we might end up having to use approximations.
This could violate the exchangeability property and make
explicit Bayesian modelling difficult.

On the other hand, we do not have to explicitly represent
the posterior to ensure exchangeability. One could define a
predictive distribution p(xn|x1:n−1) directly, and as long as
the process is exchangeable, it is consistent with Bayesian
reasoning. The key difficulty here is defining an easy-to-
calculate p(xn|x1:n−1) which satisfies exchangeability. For
example, it is not clear how to train or modify an ordinary
recurrent neural network (RNN) to model exchangeable
data. In our opinion, the main challenge is to ensure that a
hidden state contains information about all previous inputs
x1:n regardless of sequence length.

In this paper, we propose a novel architecture which com-
bines features of both the above approaches, which we will
refer to as BRUNO: Bayesian RecUrrent Neural mOdel.
Our model is provably exchangeable, and makes use of
deep features learned from observations so as to model com-
plex data types such as images. To achieve this, we construct
a bijective mapping between random variables xi ∈ X in
the observation space and features zi ∈ Z , and explicitly de-
fine an exchangeable model for the sequences z1, z2, z3, . . . ,
where we know an analytic form of p(zn|z1:n−1) without
explicitly computing the integral in Eq. 4.

Using BRUNO, we are able to generate samples condi-
tioned on the input sequence by sampling directly from
p(xn|x1:n−1). The latter is also tractable to evaluate, i.e
has linear complexity in the number of data points. In
respect of model training, evaluating the predictive distribu-
tion requires a single pass through the neural network that
implements X 7→ Z mapping. The model can be learned
straightforwardly, since p(xn|x1:n−1) is differentiable with
respect to the model parameters.

The paper is structured as follows. In Section 2 we will
look at two methods selected to highlight the relation of our
work with previous approaches to modelling exchangeable
data. Section 3 will describe BRUNO, along with necessary
background information. In Section 4, we will use our
model for conditional image generation, few-shot learning,
set expansion and set anomaly detection. Our code will be
made available in a final version of the paper.

2. Related work
Bayesian sets (Ghahramani & Heller, 2006) aim to model
exchangeable sequences of binary random variables by ana-
lytically computing the integrals in Eq. 3, 4. This is made
possible by using a Bernoulli distribution for the likelihood
and a beta distribution for the prior. To apply this method
to other types of data, e.g. images, one needs to engineer a
set of binary features (Heller & Ghahramani, 2006). In that
case, there is usually no one-to-one mapping between the
input space X and the features space Z: in consequence, it
is not possible to draw samples from p(xn|x1:n−1). Unlike
Bayesian sets, our approach does have a bijective transfor-
mation, which makes our model generative, and guarantees
that inference in Z is equivalent to inference in space X .
In Section 4.3 we will see how our model compares to
Bayesian sets for the task of content-based image retrieval.

The Neural Statistician (Edwards & Storkey, 2017) is an
extension of a variational autoencoder model (Kingma &
Welling, 2014; Rezende et al., 2014) applied to datasets.
In addition to learning an approximate inference network
over the latent variable zi for every xi in the set, approxi-
mate inference is also implemented over a latent variable
c – a context that is global to the dataset. The architecture
for the inference network q(c|x1, . . . ,xn) maps every xi
into a feature vector and applies a mean pooling operation
across these representations. The resulting vector is then
used to produce parameters of a Gaussian distribution over
c. Mean pooling makes q(c|x1, . . . ,xn) invariant under
permutations of the inputs. In addition to the inference
networks, the neural statistician also has a generative com-
ponent p(x1, . . . ,xn|c) which assumes that xi’s are inde-
pendent given c. Here, it is easy to see that c plays the role
of θ from Eq. 3. In the neural statistician, it is intractable
to compute p(x1, . . . ,xn), so its variational lower bound is
used instead. In our model, we perform an implicit infer-
ence over θ and can exactly compute predictive distributions
and the marginal likelihood. Despite these differences, both
neural statistician and BRUNO can be applied in similar
settings, namely few-shot learning and conditional image
generation, albeit with some restrictions, as we will see in
Section 4.

3. Method
We begin this section with an overview of the mathematical
tools needed to construct our model: first the Student-t
process (Shah et al., 2014); and then the Real NVP – a deep,
stably invertible and learnable neural network architecture
for density estimation (Dinh et al., 2017). We next propose
BRUNO, wherein we combine an exchangeable Student-t
process with the Real NVP, and derive recurrent equations
for the predictive distribution such that our model can be
trained as an RNN. Our approach is illustrated in Fig. 1.
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Figure 1. A schematic of the BRUNO model. It depicts how Bayesian thinking can lead to an RNN-like computational graph in which
Real NVP is a bijective feature extractor and the recurrence is represented by Bayesian updates of an exchangeable Student-t process.

3.1. Student-t processes

The Student-t process (T P) is the most general elliptically
symmetric process with an analytically representable den-
sity (Shah et al., 2014). Our choice of T Ps in preference
to the more commonly used Gaussian processes (GP s) is
motivated by some non-trivial differences in their behaviour
for the task we set out to solve. In what follows, we provide
the background and definition of T Ps.

Let us assume that z = (z1, . . . zn) ∈ Rn follows a multi-
variate Student-t distribution MV Tn(ν,µ,K) with degrees
of freedom ν ∈ R+ \ [0, 2], mean µ ∈ Rn and a positive
definite n× n covariance matrixK. Its density is given by

p(z) =
Γ(ν+n2 )

((ν − 2)π)n/2Γ(ν/2)
|K|−1/2

×
(

1 +
(z − µ)TK−1(z − µ)

ν − 2

)− ν+n2
.

(5)

For our problem, we are interested in computing a condi-
tional distribution. Suppose we can partition z into two
consecutive parts za ∈ Rna and zb ∈ Rnb , such that

[
za
zb

]
∼MV Tn

(
ν,

[
µa
µb

]
,

[
Kaa Kab

Kba Kbb

])
. (6)

Then conditional distribution p(zb|za) is given by

p(zb|za) = MV Tnb

(
ν + na, µ̃b,

ν + βa − 2

ν + na − 2
K̃bb

)
,

µ̃b = KbaK
−1
aa (za − µa) + µb

βa = (za − µa)TK−1aa (za − µa)

K̃bb = Kbb −KbaK
−1
aaKab.

(7)

In the general case, when one needs to invert the covariance
matrix, the complexity of computing p(zb|za) is O(n3a).
These computations become infeasible for large datasets,
which is a known bottleneck for GP s and T P s (Rasmussen
& Williams, 2005). In Section 3.3, we will show that ex-
changeable processes do not have this issue.

The parameter ν, representing the degrees of freedom, has
a large impact on the behaviour of T P s. It controls how
heavy-tailed the t-distribution is: as ν increases, the tails
get lighter and t-distribution gets closer to the Gaussian.
From Eq. 7, we can see that as ν or na tends to infinity, the
predictive distribution tends to the one from a GP . Thus, for
small ν and na, a T P would give less certain predictions
than its corresponding GP .

A second feature of the T P is the scaling of the predictive
variance with a β coefficient, which explicitly depends on
the values of the conditioning observations. From Eq. 7,
the value of β is precisely the Hotelling statistic for the
vector za, and has a χ2

na distribution with mean na in the
event that za ∼ Nna(µa,Kaa). Looking at the weight
(ν+βa−2)/(ν+na−2), we see that the variance of p(za|zb) is
increased over the Gaussian default when βa > na, and is
reduced otherwise. In other words, when the samples are
dispersed more than they would be under the Gaussian dis-
tribution, the predictive uncertainty is increased compared
with the Gaussian case. It is helpful in understanding these
two properties to recall that the multivariate Student-t distri-
bution can be thought of as a Gaussian distribution with an
inverse Wishart prior on the covariance (Shah et al., 2014).
We return to this point in our experiments of Section 4.4,
where this prior ensures stability when the covariance pa-
rameters of the T P model are fit from data, as compared
with a GP model.

3.2. Real NVP

Real NVP (Dinh et al., 2017) is a member of the normal-
ising flows family of models, where some density in the
input space X is transformed into a desired probability
distribution in space Z through a sequence of invertible
mappings (Rezende & Mohamed, 2015). Specifically, Real
NVP proposes a design for a bijective function f : X 7→ Z
with X = RD and Z = RD such that 1) the inverse is
easy to evaluate, i.e. the cost of computing x = f−1(z)
is the same as for the forward mapping and 2) computing
the Jacobian determinant takes linear time in the number of

3
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dimensions D. Additionally, Real NVP assumes a simple
distribution for z, e.g. an isotropic Gaussian, so one can use
a change of variables formula to evaluate p(x):

p(x) = p(z)

∣∣∣∣∣det

(
∂f(x)

∂x

)∣∣∣∣∣ . (8)

The main building block of Real NVP is a coupling layer. It
implements a mapping X 7→ Y that transforms half of its
inputs while copying the other half directly to the output:

{
y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d),
(9)

where � is an elementwise product, s (scale) and t (transla-
tion) are arbitrarily complex functions.

One can show that the coupling layer is a bijective, easily
invertible mapping with a triangular Jacobian and compo-
sition of such layers preserves these properties. To obtain
a highly nonlinear mapping f(x), one needs to stack cou-
pling layers X 7→ Y1 7→ Y2 . . . 7→ Z while alternating the
dimensions that are being copied to the output.

To make good use of modelling densities, the Real NVP
has to treat its inputs as instances of a continuous random
variable (Theis et al., 2016). To do so, integer pixel values
in x are dequantised by adding uniform noise u ∈ [0, 1)D.
The values x+ u ∈ [0, 256)D are then rescaled to a [0, 1)
interval and transformed with an elementwise function:
f(x) = logit(α+ (1− 2α)x) with some small α. The lat-
ter ensures that when we take the inverse mapping, which
is what we do when generating samples, the outputs always
lie within ( −α1−2α ,

1−α
1−2α ).

3.3. BRUNO: the exchangeable sequence model

We now combine the Bayesian and deep learning tools from
the previous sections and present our model for exchange-
able sequences.

Assume we are given an exchangeable sequence
x1, . . . ,xn, where every element is a D-dimensional vector:
xi = (x1i , . . . x

D
i ). We apply a Real NVP transformation to

every xi, which results in an exchangeable sequence in the
latent space: z1, . . . ,zn, where zi ∈ RD. The proof that
the latter sequence is exchangeable is given in Section A of
the appendix.

We make the following assumptions about the latents:

A1: dimensions {zd}d=1,...,D are independent, so
p(z) =

∏D
d=1 p(z

d)

A2: for every dimension d, we have the following assump-
tion:

(zd1 , . . . z
d
n) ∼MV Tn(νd, µd1,Kd) (10)

with parameters:

• degrees of freedom νd ∈ R+ \ [0, 2]
• mean µd1 is a 1× n dimensional vector of ones multi-

plied by the scalar µd ∈ R
• n× n covariance matrixKd:

Kd
ij =

{
vd i = j

ρd i 6= j
(11)

with 0 ≤ ρd < vd to make sure that Kd is a positive-
definite matrix that complies with covariance proper-
ties of exchangeable sequences (Aldous et al., 1985).

The structure of the covariance matrix in Eq. 11 and having
the same mean for every n, guarantees that the sequence
zd1 , z

d
2 . . . z

d
n is exchangeable.

Because the covariance matrix is simple, we can derive
recurrent updates for parameters of p(zdn+1|zd1:n). Using the
recurrence is a lot more efficient compared to the closed-
form expressions in Eq. 7 since we want to compute the
predictive distribution for every step n.

We start from a prior Student-t distribution for p(z1) with
parameters µ1 = µ , v1 = v, ν1 = ν, β1 = 0. Here, we
will drop the dimension index d to simplify the notation.
A detailed derivation of the following results is given in
Section B of the appendix.

To compute the degrees of freedom, mean and variance
of p(zn+1|z1:n) for every n, we begin with the recurrent
relations

νn+1 = νn + 1

µn+1 = (1− dn)µn + dnzn

vn+1 = (1− dn)vn + dn(v − ρ),

(12)

where dn = ρ
v+ρ(n−1) . Note that the GP recursions simply

use the latter two equations, i.e. if we were to assume that
(zd1 , . . . z

d
n) ∼ Nn(µd1,Kd).

For T P s, however, we also need to compute β – a data-
dependent term that scales the covariance matrix as in Eq. 7.
To update β, we introduce recurrent expressions for the
auxiliary variables,

z̃i = zi − µ

an =
v + ρ(n− 2)

(v − ρ)(v + ρ(n− 1))

bn =
−ρ

(v − ρ)(v + ρ(n− 1))

βn+1 = βn + (an − bn)z̃2n + bn(

n∑

i=1

z̃i)
2 − bn−1(

n−1∑

i=1

z̃i)
2

Such recurrent updates are not the only advantage of an ex-
changeable covariance structure. Another valuable property
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is that the computational complexity of making predictions
in exchangeable GP s or T P s scales linearly with the num-
ber of observations, i.e. O(n) instead of a general O(n3)
case where one needs to compute an inverse covariance
matrix.

So far, we have constructed an exchangeable Student-t pro-
cess in the latent space Z . By coupling it with a bijective
Real NVP mapping, we get an exchangeable process in
space X . Although we do not have an explicit analytic form
of the transitions in X , we still can sample from this process
and evaluate the predictive distribution via the change of
variables formula in Eq. 8.

3.4. Training

Having an easy-to-evaluate autoregressive distribution
p(xn+1|x1:n) allows us to use a training scheme that is
common for RNNs, i.e. maximise the likelihood of the
next element in the sequence at every step. Thus, our ob-
jective function for sequences of a fixed length N can be
written as

∑N−1
n=0 log p(xn+1|x1:n), which is equivalent to

maximising log p(x1, . . . ,xN ). By using backpropagation
through time, we update the parameters of the Real NVP
model and also learn the parameters of the prior Student-t
distribution. For the latter, we have 4 trainable parameters
per dimension: degrees of freedom νd, mean µd, variance
vd and covariance ρd, which must satisfy the constraints
from Eq. 10.

4. Experiments
In this section, we will consider a few problems that fit
naturally into the framework of modelling exchangeable
data. We chose to work with sequences of images, so the
results are easy to analyse; yet our model does not make any
image-specific assumptions, and our conclusions generalise
to other types of data. Specifically, we used a general-
purpose Real NVP coupling layer as proposed by Papa-
makarios et al. (2017). In contrast to the original Real NVP
model, which uses convolutional architecture for scaling
and translation functions in Eq. 9, a general implementation
has s and t composed from fully connected layers. More de-
tails on the architecture and its training are given in Section
C of the appendix.

In all our experiments, the models are trained on about 13M
MNIST (LeCun et al., 1998) image sequences of length 32.
We form each sequence by uniformly sampling a digit and
then selecting 32 random images of that digit. This scheme
implies that a model is trained to implicitly infer a class
label that is global to a sequence. In what follows, we will
see how this property can be used in many tasks.

4.1. Conditional image generation

We first consider a problem of generating samples condi-
tionally on a set of images, which reduces to sampling from
a predictive distribution p(xn+1|x1:n). This is different
from a general Bayesian approach, where one needs to infer
the posterior over some meaningful latent variable and then
‘decode’ it.

To draw samples from p(xn+1|x1:n), we first need to sam-
ple z ∼ p(zn+1|z1:n) and then compute the inverse Real
NVP mapping: x = f−1(z). Since we assumed that dimen-
sions of z are independent, we can sample each zd from
a univariate Student-t distribution with parameters νd, µd

and vd. To do so, we modified Bailey’s polar t-distribution
generation method (Bailey, 1994) to be computationally
efficient for GPU. Its algorithm is given in the appendix.

In Figure 2A, we show samples from the prior distribution
p(x1) and conditional samples from a predictive distribution
p(xn+1|x1:n) at steps n = 1, . . . , 15. The input sequence
is constructed from MNIST test images that were not used
during training. More examples with longer sequences are
shown in the appendix.

To better understand how BRUNO behaves, we test it on
special types of input sequences that were not seen during
training. For example, Figure 2B illustrates the case when
the same image is used throughout the sequence (correla-
tions between digits stronger than expected from training).
Here, the recursive T P updates cause the variability of the
samples to reduce as the models gets more inputs. This prop-
erty does not hold for the neural statistician model (Edwards
& Storkey, 2017), discussed in Section 2. As mentioned
earlier, the neural statistician computes the approximate pos-
terior q(c|x1, . . . ,xn) and then uses its mean to sample x
from a conditional model p(x|cmean). This scheme does
not account for the variability in the inputs as a consequence
of applying mean pooling over the features of x1, . . . ,xn
when computing q(c|x1, . . . ,xn). Thus, when all xi’s are
the same, the neural statistician would still sample different
instances from the class specified by xi.

Another example which cannot be handled by models that
enforce exchangeability by using pooling operations is given
in Figure 2C. Here, the input images come from two classes,
and despite the model not being trained to deal with this
case, it generates images of both digits.

To see if the model can generalise to more difficult types of
images, we trained it on Fashion MNIST (Xiao et al., 2017)
– a direct drop-in replacement for MNIST. Samples from
this model are given in Fig. 3.
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A

B

C

Figure 2. Each subplot shows an input sequence in the top row
and samples in the bottom 4 rows. Every column of the subplots
contains 4 samples from the predictive distribution conditioned
on the input images up to and including that column. That is, the
1st column shows samples from the prior when no input image
is given; the 2nd column shows samples conditioned on the 1st
input image; the 3rd column shows samples conditioned on the
first two images, etc. Top (A): input sequence contains test images
of one digit (the same setting as during training). Middle (B): the
same image is used as an input at every step. We see that samples
have low variability in their appearance. Bottom (C): input images
come from two classes. This is reflected in the samples, though
the model was not trained on such sequences. Note that our model
uses fully-connected layers, so the quality of its samples is lower
than for convolutional models.

4.2. Few-shot learning

Once we have conditional probabilities from BRUNO, we
can classify examples based on their similarity to sequences
of images coming from certain classes. This setup is partic-
ularly interesting when the model did not see those classes
during training. When each sequence contains only a few
elements, this is equivalent to a few-shot learning problem.
We will address one-shot and few-shot learning tasks in this
section after we provide some important details on how we
evaluate the predictive probabilities.

When we care exclusively about comparing conditional
densities of xn+1 under different sequences x1:n, we can
compare densities in the latent space Z instead. This is
because the Jacobian from the change of variable formula
in Eq. 8 does not depend on the sequence we condition on.
Also, evaluating predictive densities for all D dimensions
can be redundant because for most of them, the predictive

Figure 3. Similarly to Fig. 2, we show conditional samples and
samples from the prior in the first column. The model was trained
on Fashion MNIST sequences.

distribution is not notably different from the prior. We can
find the irrelevant dimensions by inspecting the correlations
ρd/vd and discarding the dimensions where the correlations
are negligibly small. This both helps to reduce the noise in
the predictions and speed up the computations. Henceforth,
we will assume that

p(z|z1:n) =
D∏

d=1,
ρd/vd>ε

p(zd|zd1:n), (13)

In our experiments, we used ε = 0.01, which leaves us
with 14 instead of MNIST’s 784 dimensions. Section E of
the appendix includes a plot of ε versus the number of the
remaining dimensions from which we can see that any ε
within [0.005, 0.1] interval is a good cut-off point between
retaining all of the dimensions and having around a dozen
of the most correlated ones.

For the following experiment, we trained the model only on
even MNIST digits (30 508 training images).1 We then test
its ability to classify the unseen odd digits. We construct
sequences of n images of odd digits from the train subset of
MNIST and perform a 5-way classification on 5074 images
of odd digits from the test set. In other words, for every
test image x, which represents an odd digit, we compute
p(z|zC=i

1:n ) for each class i = {1, 3, 5, 7, 9}. Taking a maxi-
mum over i will give us a class label of x. We repeat this
process multiple trials, where each time we select differ-
ent conditioning images. In Table 1, we report an average
accuracy over 100 trials for different n (number of shots).

With a non-convolutional Real NVP architecture, we are
not able to directly compare our performance to the state-of-
the-art methods, which is usually done on the OMNIGLOT
dataset (Lake et al., 2015). Instead, we considered a k-
nearest neighbours (k-NN) baseline where matching is done
on the features from a pretrained classifier. This simple
strategy is known to achieve excellent results across many
tasks, and for a few-shot learning problem it can be close
to the state-of-the-art performance especially for a 5-shot

1The original model was overfitting when training on half of
the training data, so we reduced the model size by a half, i.e. 512
units in every dense layer instead on 1024.
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Table 1. Classification accuracy for a few-shot learning task with
models trained on even digits and tested on odd. The k-NN method
uses features from a pretrained classifier.

METHOD 1-SHOT 5-SHOT

K-NN (features) 0.607 0.779
BRUNO 0.606 0.788

case (Vinyals et al., 2016). Our classifier was an MLP with
2 layers of 256 hidden units plus a 5-way softmax for the
last layer. We did not use convolutions in order to make it
comparable to our Real NVP implementation with densely
connected layers. We trained the classifier on even digits
and then used features from its pre-softmax layer for nearest
neighbour matching with k = 1 and Euclidean distance.
This experiment demonstrates that BRUNO performs well
in one- and few-shot learning tasks.

We next address the problem of generation unseen images:
this is much harder, as we can see from Fig. 4. Taking into
account that our model is not convolutional and it lacks
knowledge of image priors, we believe these samples are
reasonable.

Figure 4. As in Fig. 2, we show conditional samples. The model
was trained on even digits, yet it can tolerably generate digit ‘3’.

4.3. Clustering on demand and set anomaly detection

Similar to Bayesian Sets (Ghahramani & Heller, 2006), we
consider a problem of clustering on demand: completing
a cluster conditioning on the query set containing some
elements of that cluster. When dealing with images, this
can be seen as a particular case of the Content-Based Image
Retrieval task (Heller & Ghahramani, 2006).

To rank a data point x on how well it fits the query set x1:n,
Bayesian sets use the probabilistic score:

score(x) =
p(x|x1:n)

p(x)
. (14)

In BRUNO, we can evaluate the above score as a ratio of
the corresponding densities in the latent space, since the
Jacobian cancels out when the change of variables formula
is used in the numerator and the denominator. As previously,
we will use Eq. 13 to compute p(z|z1:n) and similarly p(z).

Bayesian sets are designed to operate on binary feature

Table 2. Label ranking average precision scores for the task of
content-based image retrieval. Models were trained on even
MNIST digits and tested on odd. Both nearest neighbours and
Bayesian sets use features from a pretrained classifier.

METHOD n = 1 n = 5

NEAREST NEIGHBOURS (features) 0.604 0.714
BAYESIAN SETS (binarised features) 0.606 0.819
BRUNO 0.593 0.768

vectors, so Heller and Ghahramani (2006) proposed a way
to binarise handcrafted texture and colour features in an
informative way. In our reimplementation we binarised
features from a pretrained classifier which we used in the
previous section. As before, all the models were trained on
images of even digits. We form queries from images of odd
digits coming from the training subset of MNIST and rank
images of odd digits from the MNIST test set.

We evaluate the performance using a label ranking average
precision (LRAP) score, which is higher when we give better
ranks to the images with the same class label as the ones in
the query set (Pedregosa et al., 2011). In Table 2 we report a
mean LRAP score averaged over 20 trials for each query set
of n images from a certain odd digit. Here, we also make a
comparison with a nearest neighbours analogy, where test
images are ranked according to their Euclidean distance
to the query image in the feature space of the pretrained
classifier. When the query contains multiple images, we will
use a minimum over distances to all of the query images.
Note that the rank equals the inverse of this distance.

We find that our method performs on par with the two other
algorithms. It requires more computation than Bayesian sets,
but less than the distance ranking method. The performance
of these algorithms greatly depends on the number of images
in the query set. In the most common use case of a single
image query, the results closely match those of the two other
algorithms. For n = 5, we outperform nearest neighbours,
but do less well than Bayesian sets.

Online anomaly detection for exchangeable data is another
application where we can use Bayesian scoring. In Fig. 5,
we give a typical example of how the score evolves as the
model gets more data points and how it behaves in the
presence of inputs that do not conform with the majority
of the sequence. We observe that our model can detect
anomalies in a stream of incoming data.

4.4. Failure of GP-based models

To compare the behaviour of T Ps versus GPs, we trained
a model where Student-t predictive probabilities were re-
placed by those from a Gaussian process. The samples from
this model are shown in Fig. 6. Notice that prior samples
are nonsensical. This is explained by the mismatch between
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Figure 5. Evolution of the score as the model sees more images of
digit ‘1’. The obvious outliers at steps marked with vertical lines
are plotted on the right in order from top to bottom. Note that the
model was trained only on images of even digits.

the prior distribution we sample from and the actual dis-
tribution for some of the latent dimensions, as shown in
Fig. 7 (right). In about a third of cases, the learned means
µd are far from the actual feature means of the Real NVP
mapping. We found that for these dimensions, parameter
ρd (the covariance between zdi and zdj for ∀i, j) is close to
the variance vd. Referring back to Eq. 12, the updates at
n = 1 are: µdn+1 ≈ zdn and vdn+1 ≈ 0. In other words, the
predictive variance collapses, and the mean takes the value
of the first observation zd1 . In subsequent iterations, the pre-
dictive mean becomes a running average of the inputs, and
the variance remains negligible. As a result, prior parame-
ters µd and vd are ignored during model training and can be
arbitrarily far from the parameters of the actual distribution.

The better performance of the T P can be understood by
recalling its interpretation as a GP with an inverse Wishart
covariance prior (Shah et al., 2014), which corrects this
pathology of the GP maximum likelihood solution. In prac-
tical terms, and referring back to Eq. 7, the number of de-
grees of freedom of the t-distribution is lower when there
are fewer conditioning samples, and the predictive variance
is greater when the conditioning samples are more broadly
dispersed than expected under the prior Gaussian distribu-
tion. This means that initial inputs in a sequence cannot
dominate the subsequent predictions, which in turn forces
the prior means µd to carry information on the distribution.
Typical behaviour for the T P is shown in Fig. 7 (left): in
particular, we never encounter a severe mismatch between
the assumed and the actual distributions.

5. Discussion and conclusion
In this paper, we have introduced BRUNO, a new tech-
nique combining deep learning and Student-t processes for
modelling exchangeable data. With this architecture, we
may carry out implicit inference, which avoids the need to
compute explicit posteriors and reduces the high compu-
tational cost often associated with explicit Bayesian infer-
ence. Based on our experiments, BRUNO shows promise

Figure 6. As in Fig. 2, we show samples from the prior and con-
ditional distributions. Here, instead of a T P process, we used a
GP . While conditional samples are on par to those from Fig. 2A,
samples from the prior do not resemble MNIST images.

Figure 7. Both plots show the assumed prior density p(zd) and the
histogram of the actual distribution of the d-th latent variable. The
latter was obtained by encoding all training MNIST images with
Real NVP. On the left: typical example of the prior distributions
from a T P -based model. On the right: an example from a GP -
based model, where about a third of the latent dimensions exhibit
similar behaviour. When using T P s, we found no such cases.

for applications such as conditional image generation, few-
shot learning, content-based image retrieval and online set
anomaly detection. This combination of deep learning tools
with practical, exact Bayesian inference will be useful for
future research in this field, leading to scalable and more
data efficient models.

A limiting factor when modelling image data was the use
of densely connected layers inside the Real NVP architec-
ture. Convolutional layers might improve the sample quality
and performance on images. By not using image-specific
assumptions, however, our model can be used with other
data modalities as well.

Our current method requires a supervised training phase
in order to discover how images within the sequences are
correlated. Specifically, we construct the training data such
that parameter θ from Eq. 3 has a certain meaning. In future
work, we propose to extend our method such that we update
the covariance parameters ρ over the course of a sequence.
This way, we are not limited to discovering correlations that
the model has seen during the training phase. We further
propose to define an exchangeable model able to handle
two sequences of inputs where each xi is coupled with yi.
For example, in case of supervised learning, pairs can be
formed by the image and its label. It would be interesting to
construct an exchangeable process where one can efficiently
get predictive probabilities p(yn+1|xn+1, x1:n, y1:n).

8



A Generative Deep Recurrent Model for Exchangeable Data

Acknowledgements
We would like to thank Lucas Theis for suggesting to use
Real NVP and many other things we have learned from him,
Conrado Miranda and Frederic Godin for their comments
on the paper, Wittawat Jitkrittum for useful discussions and
Lionel Pigou for setting up the hardware.

References
Aldous, D.J., Hennequin, P.L., Ibragimov, I.A., and Jacod,

J. Ecole d’Ete de Probabilites de Saint-Flour XIII, 1983.
Lecture Notes in Mathematics. Springer Berlin Heidel-
berg, 1985. ISBN 9783540152033.

Bailey, R. W. Polar generation of random variates with
the t-distribution. Math. Comp., 62(206):779–781, 1994.
ISSN 0025-5718.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density es-
timation using Real NVP. In Proceedings of the 5th
International Conference on Learning Representations,
2017.

Edwards, H. and Storkey, A. Towards a neural statistician.
In Proceedings of the 5th International Conference on
Learning Representations, 2017.

Ghahramani, Z. and Heller, K. A. Bayesian sets. In Weiss,
Y., Schölkopf, B., and Platt, J. C. (eds.), Advances in
Neural Information Processing Systems 18, pp. 435–442.
MIT Press, 2006.

Heller, K. A. and Ghahramani, Z. A simple bayesian frame-
work for content-based image retrieval. In IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition, pp. 2110–2117, 2006.

Kingma, D. P and Welling, M. Auto-encoding variational
bayes. In Proceedings of the 2nd International Confer-
ence on Learning Representations, 2014.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 2015.

LeCun, Y., Cortes, C., and Burges, C. JC. The MNIST
database of handwritten digits, 1998.

Papamakarios, G., Murray, I., and Pavlakou, T. Masked
autoregressive flow for density estimation. In Advances
in Neural Information Processing Systems 30, pp. 2335–
2344. 2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Pro-
cesses for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press, 2005. ISBN
026218253X.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pp. 1530–
1538, 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In Proceedings of the 31st International
Conference on Machine Learning, pp. 1278–1286, 2014.

Shah, A., Wilson, A. G., and Ghahramani, Z. Student-t pro-
cesses as alternatives to gaussian processes. In Proceed-
ings of the 17th International Conference on Artificial
Intelligence and Statistics, pp. 877–885, 2014.

Szabo, Z., Sriperumbudur, B., Poczos, B., and Gretton, A.
Learning theory for distribution regression. Journal of
Machine Learning Research, 17(152), 2016.

Theis, L., van den Oord, A., and Bethge, M. A note on the
evaluation of generative models. In Proceedings of the 4th
International Conference on Learning Representations,
2016.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K.,
and Wierstra, D. Matching networks for one shot learning.
In Advances in Neural Information Processing Systems
29, pp. 3630–3638. 2016.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint, abs/1708.07747, 2017.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in Neural Information Processing Systems 30,
pp. 3394–3404. 2017.

9



Supplementary Material

A. Proofs
Lemma 1

Given two exchangeable sequence x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) of random variables, where xi is
independent from yj for ∀i, j, the concatenated sequence
x_y = ((x1, y1), (x2, y2), . . . , (xn, yn)) is exchangeable
as well.

Proof. For any permutation π, as both sequences x and y
are exchangeable we have:

p(x1, x2, . . . , xn)p(y1, y2, . . . , yn)

= p(xπ(1), xπ(2), . . . , xπ(n))p(yπ(1), yπ(2), . . . , yπ(n)),

Independence between elements in x and y allows to write
it as a joint distribution:

p((x1, y1), (x2, y2) . . . , (xn, yn))

= p((xπ(1), yπ(1)), (xπ(2), yπ(2)), . . . , (xπ(n), yπ(n))),

and thus the sequence x_y is exchangeable.

Lemma 2

Given an exchangeable sequence (x1, x2, . . . , xn) of ran-
dom variables xi ∈ X and a bijective mapping f : X 7→ Z ,
the sequence (f(x1), f(x2), . . . , f(xn)) is exchangeable.

Proof. Consider a vector function g : Rn 7→ Rn such that
(x1, . . . , xn) 7→ (z1 = f(x1), . . . , zn = f(xn)). A change
of variable formula gives:

p(x1, x2, . . . , xn) = p(z1, z2, . . . , zn) |detJ | ,

where detJ =
∏n
i=1

∂f(xi)
∂xi

is the determinant of the
Jacobian of g. Since both the joint probability of
(x1, x2, . . . , xn) and the |detJ | are invariant to the per-
mutation of sequence entries, so must be p(z1, z2, . . . , zn).
This proves that (z1, z2, . . . , zn) is exchangeable.

B. Derivation of recurrent Bayesian updates
for exchangeable Student-t processes

We assume that x = (x1, x2, . . . xn) ∈ Rn follows a multi-
variate Student-t distribution MV Tn(ν,µ,K) with degrees
of freedom ν ∈ R+ \ [0, 2], mean µ ∈ Rn and a positive

definite n× n covariance matrixK. Its density is given by:

p(x) =
Γ(ν+n2 )

((ν − 2)π)n/2Γ(ν/2)
|K|−1/2

× (1 +
(x− µ)TK−1(x− µ)

ν − 2
)−

ν+n
2

(15)

Note that this parameterization of the multivariate Student-t
distribution as defined by Shah et al. (2014) is slightly differ-
ent from the commonly used one. We used this parametriza-
tion as it makes the formulas easier.

If we partition x into two consecutive parts xa ∈ Rna and
xb ∈ Rnb :

[
xa
xb

]
∼MV Tn

(
ν,

[
µa
µb

]
,

[
Kaa Kab

Kba Kbb

])

the conditional distribution p(xb|xa) is given by:

p(xb|xa) = MV Tnb(ν + na, µ̃b,
ν + βa − 2

ν + na − 2
K̃bb),

where

µ̃b = KbaK
−1
aa (xa − µa) + µb

βa = (xa − µa)TK−1aa (xa − µa)

K̃bb = Kbb −KbaK
−1
aaKab

Derivation of this result is given in the appendix of Shah et al.
(2014). Let us now simplify these equations for the case
of exchangeable sequences with the following covariance
structure:

K =




v ρ · · · ρ
ρ v · · · ρ
...

...
. . .

...
ρ ρ · · · v




In our problem, we are interested in doing one-step pre-
dictions, i.e. computing a univariate density p(xn+1|x1:n)
with parameters νn+1, µn+1, vn+1. Therefore, we can
take: x ∈ Rn+1, nb = 1 and na = n. In this case,
Kaa = K1:n,1:n,Kab = K1:n,n+1,Kba = Kn+1,1:n and
Kbb = Kn+1,n+1 = v
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Computing the parameters of the predictive distribution
requires the inverse of Kaa, which we can find using the
Sherman-Morrison formula:

K−1aa = (A+ uvT )−1 = A−1 − A
−1uvTA−1

1 + vTA−1u

with

A =




v − ρ 0 · · · 0
0 v − ρ · · · 0
...

...
. . .

...
0 0 · · · v − ρ


 ,

u =




ρ
ρ
...
ρ


 , v =




1
1
...
1




After a few steps, the inverse ofKaa is:

K−1aa =




an bn · · · bn
bn an · · · bn
...

...
. . .

...
bn bn · · · an




with

an =
v + ρ(n− 2)

(v − ρ)(v + ρ(n− 1))

bn =
−ρ

(v − ρ)(v + ρ(n− 1))

Note that entries ofK−1aa explicitly depend on n.

Equations for the mean and variance of the predictive distri-
bution require the following term:

KbaK
−1
aa =

(
ρ ρ · · · ρ

)
K−1aa =

{ ρ

v + ρ(n− 1)

}
1:n
,

which is a 1× n vector.

With this in mind, it is easy to derive the following recur-
rence:

dn =
ρ

v + ρ(n− 1)

µn+1 = (1− dn)µn + dnxn

vn+1 = (1− dn)vn + dn(ρ− v)

Finally, let us derive recurrent equations for
βn+1 = (xa − µa)TK−1aa (xa − µa)

Let x̃ = xa − µa, then:

βn+1 = x̃TK−1aa x̃

= (anx̃1 + bn

n∑

i 6=1

x̃i, anx̃2

+ bn

n∑

i 6=2

x̃i, . . . , anx̃n + bn
∑

i 6=n
x̃i)

T (x̃1, x̃2, . . . x̃n)

= (an − bn)
n∑

i=1

x̃2i + bn(
n∑

i=1

x̃i)
2

Similarly, βn from p(xn|x1:n−1) is:

βn = (an−1 − bn−1)
n−1∑

i=1

x̃2i + bn−1(
n−1∑

i=1

x̃i)
2

βn+1 = (an − bn)(

n−1∑

i=1

x̃2i + x̃2n) + bn(

n∑

i=1

x̃i)
2

= (an − bn)
βn − bn−1(

∑n−1
i=1 x̃i)

2

an−1 − bn−1

+ (an − bn)x̃2n + bn(
n∑

i=1

x̃i)
2

It is easy to show that an−bn
an−1−bn−1

= 1, so βn+1 can be
written recursively as:

sn+1 = sn + x̃n

βn+1 = βn + (an − bn)x̃2n + bn(s2n+1 − s2n)

with s0 = 0.

C. Implementation details
We used a general implementation of the Real NVP cou-
pling layer similarly to Papamakarios et al. (2017). Namely,
where scaling and translation functions s and t from are
fully-connected neural networks. The networks s and t
share the parameters in the first two dense layers with 1024
hidden units and ELU nonlinearity (Clevert et al., 2016)(we
found however, that models with ReLU are easier to train,
but those perform a bit worse in terms of the likelihood).
Their output layers are different: s ends with a dense layer
with tanh and t ends with a dense layer without a nonlin-
earity. We stacked 6 coupling layers with alternating the
the indices of the transformed dimensions between odd and
even as described by Dinh et al. (2014). For the first layer,
which implements a logit transformation of the inputs, we
used α = 10−6.

The models are trained using Adam (Kingma & Ba, 2015)
with an intial learning rate of 10−3, which we halve every
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25 000 iterations. Initial parameters of the Student-t distri-
bution are updated with a 10 times smaller learning rate. In
total, we trained for 200 000 iterations using a minibatch
size of 64 and a sequence length of 32. We made sure that
models do not overfit by tracking a validation loss on a set
of 10 000 examples when training on MNIST.

We noticed that training models on longer sequences results
in a better test performance. Our default sequence length
was 32. Having the same models trained on sequences
of 8 images, but with batch size increased 4 times, the
results were worse. Namely, the model trained on 32-image
sequences yields an average negative log-likelihood of 862
nats when tested with a sequence length of 8, while the
model trained with sequence length of 8, has only 983 nats.
Both models were evaluated on a set of 10 000 sequences
of MNIST test images. This can be due to intial predictions
being fairly uncertain, so that the learning signal from the
beginning of the sequence is less strong. This also holds for
classical RNNs, where the predictions in the beginning are
less accurate due to the lack of context.

D. Sampling from a Student-t distribution

Algorithm 1 Efficient sampling on GPU from a univariate
Student-t distribution with mean µ, variance v and degrees
of freedom ν

function sample(µ, v, ν)
a, b← U(0, 1)
c← min(a, b)
r ← max(a, b)
α← 2πc

r

t← cos(α)
√

(ν/r2)(r−4/ν − 1)

σ ←
√
v
(
ν−2
ν

)

return µ+ σt
end function

E. Plots

Figure E.1. Number of dimensions where ρd/vd > ε plotted on a
double logarithmic scale. Note that a low number of dimensions
are responsible for most of the correlations, and that ε can be
chosen robustly.

F. Model samples

Figure F.1. Model samples as in Fig. 2A of the main text.

12



A Generative Deep Recurrent Model for Exchangeable Data

Figure F.2. Model samples, when the input image is repeated
across the sequence (additive random noise is different).

Figure F.3. Model samples when the input sequence is composed
from images of two digits.

Figure F.4. Samples from the model trained on Fashion MNIST.

Figure F.5. Samples from the model trained only on even digits.
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Figure F.6. Samples from the model trained on the labelled part
of the TFD (Susskind et al., 2010) except for the images used
here as the inputs. Images have the dimensionality of 48× 48, so
we modified our default model architecture. The training dataset
is small (4066 images over 6 classes) so models are prone to
overfitting. However, our model is still able to infer the emotion
class from the sequence of the unseen images and sample faces
from that class.
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