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Abstract
The paper describes a new algorithm to generate
minimal, stable, and symbolic corrections to an
input that will cause a neural network with ReLU
neurons to change its output. We argue that such
a correction is a useful way to provide feedback
to a user when the neural network produces an
output that is different from a desired output. Our
algorithm generates such a correction by solving
a series of linear constraint satisfaction problems.
The technique is evaluated on a neural network
that has been trained to predict whether an appli-
cant will pay a mortgage.

1. Introduction
When machine learning is used to make decisions about peo-
ple in the real world, it is extremely important to be able to
explain the rationale behind those decisions. Unfortunately,
for systems based on deep learning, it is often not even clear
what an explanation means; showing someone the sequence
of operations that computed a decision provides little ac-
tionable insight. There have been some recent advances
towards making deep neural networks more interpretable
(e.g. (Montavon et al., 2017)) using two main approaches:
i) generating input prototypes that are representative of ab-
stract concepts corresponding to different classes (Nguyen
et al., 2016) and ii) explaining network decisions by comput-
ing relevance scores to different input features (Bach et al.,
2015). However, these explanations do not provide direct
actionable insights regarding how to cause the prediction to
move from an undesirable class to a desirable class.

In this paper, we argue that for the specific class of judgment
problems, minimal, stable, and symbolic corrections are an
ideal way of explaining a neural network decision. We use
the term judgment in this paper to refer to a particular kind
of binary decision problem where a user presents some infor-
mation to an algorithm that is supposed to pass judgment on
its input. The distinguishing feature of judgments relative to
other kinds of decision problems is that they are asymmetric;
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if I apply for a loan and I get the loan, I am satisfied, and
do not particularly care for an explanation; even the bank
may not care as long as on aggregate the algorithm makes
the bank money. On the other hand, I very much care if
the algorithm denies my mortgage application. The same is
true for a variety of problems, from college admissions, to
parole, to hiring decisions. In each of these cases, the user
expects a positive judgment, and would like an actionable
explanation to accompany a negative judgment.

We argue that a correction is a useful form of feedback;
what could I have done differently to elicit a positive judg-
ment? For example, if I applied for a mortgage, knowing
that I would have gotten a positive judgment if my debt to
income ratio (DTI) was 10% lower is extremely useful; it is
actionable information that I can use to adjust my finances.
We argue, however, that the most useful corrections are
those that are minimal, stable and symbolic.

First, in order for a correction to be actionable, the corrected
input should be as similar as possible from the original
offending input. For example, knowing that a lower DTI
would have given me the loan is useful, but knowing that a
65 year old billionaire from Nebraska would have gotten the
loan is not useful. Minimality must be defined in terms of
an error model which specifies which inputs are subject to
change and how. For a bank loan, for example, debt, income
and loan amount are subject to change within certain bounds,
but I will not move to another state just to satisfy the bank.

Second, the suggested correction should be stable, meaning
that there should be a neighborhood of points surrounding
the suggested correction for which the outcome is also pos-
itive. For example, if the algorithm tells me that a 10%
lower DTI would have gotten me the mortgage, and then
six months later I come back with a DTI that is 11% lower,
I expect to get the mortgage, and will be extremely disap-
pointed if the bank says, “oh, sorry, we said 10% lower,
not 11% lower”. So even though for the neural network
it may be perfectly reasonable to give positive judgments
to isolated points surrounded by points that get negative
judgments, corrections that lead to such isolated points will
not be useful.

Finally, even if the correction is minimal and robust, it is
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even better if rather than a single point, the algorithm can
produce a symbolic correction that provides some insight
about the relationship between different variables. For ex-
ample, knowing that for someone like me the bank expects
a DTI of between 20% and 30% is more useful than just
knowing a single value. And knowing something about how
that range would change as a function of my credit score
would be even more useful still.

In this paper, we present the first algorithm capable of com-
puting minimal stable symbolic corrections. Given a neural
network with ReLU activations, our algorithm produces a
symbolic description of a space of corrections such that
any correction in that space will change the judgment. In
the limit, the algorithm will find the closest region with a
volume above a given threshold. Internally, our algorithm
reduces the problem into a series of linear constraint satis-
faction problems, which are solved using the Gurobi linear
programming solver (Gurobi Optimization, Inc., 2018). We
show that in practice, the algorithm is able to find good
symbolic corrections in 20 minutes on average for small but
realistic networks. We evaluate our approach on a neural
network trained on mortgage data that predicts whether a
given applicant will default on a mortgage.

2. Background and Problem Definition
We first introduce some notations we will use in explaining
our algorithm for computing minimal, robust, symbolic cor-
rections given an input to a neural network F with ReLU
activation. In the model we consider, the input to the net-
work is a vector v0 of size s0. The network computes the
output of each layer as

vi+1 = fi(vi) = ReLU(W i ∗ vi + bi)

Where W i is an si × si+1 matrix, and ReLU applies the
rectifier function elementwise to the output of the linear
operations.

We focus on classification problems, where the classification
of input v is obtained by

lF (v) ∈ argmaxiF (v)[i].

We are specifically focused on binary classification prob-
lems (that is, lF (v) ∈ {0, 1}). The judgement problem
is a special binary classification problem where one label
is preferable than the other. We assume 1 is preferable
throughout the paper.

The judgement interpretation problem concerns providing
feedback in the form of corrections when lF (v) = 0. A
correction δ is a real vector of input vector length such that
lF (v + δ) = 1. As mentioned previously, a desirable feed-
back should be a minimal, stable, and symbolic correction.
We first introduce what it means for a concrete correction
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Figure 1. An example judgement interpretation.

δ to be minimal and stable. Minimality is defined in terms
of a norm ‖δ‖ on δ that measures the distance between the
corrected input and the original input. For simplicity, we
use L1 norm to measure the sizes of all vectors throughout
Section 2 and Section 3. We say δ is e-stable if for any δ′

such that ‖δ − δ′‖ ≤ e, we have lF (δ′) = 1.

A symbolic correction ∆ is a connected set of concrete
corrections. More concretely, we will use a set of linear
constraints to represent a symbolic correction. We say a
symbolic correction is e-stable if there exists a correction
δ ∈ ∆ such that for any δ′ where ‖δ′ − δ‖ ≤ e, we have
δ′ ∈ ∆. We call such a correction a stable region center
inside ∆. To define minimality, we define the distance of ∆
from the original input using the distance of a stable region
center that has the smallest distance among all stable region
centers. More formally:

dise(∆) := minδ∈S‖δ‖,

where S := {δ ∈ ∆ | ∀δ′.‖δ′ − δ‖ ≤ e =⇒ δ′ ∈ ∆}.
When ∆ is not e-stable, S will be empty, so we define
dise(∆) :=∞.

We can now define the judgement interpretation problem.

Definition 1. (Judgement Interpretation) Given a neural
network F , an input vector v such that lF (v) = 0, and a real
value e, a judgment interpretation is an e-stable symbolic
correction ∆ with a minimum distance among all e-stable
symbolic corrections.

Figure 1 shows an example of a judgement interpretation.
The red cross represents the original input while the blue tri-
angle represent the corrected inputs according to the judge-
ment interpretation. The algorithm discovered that the per-
son could have gotten the loan by slightly adjusting the DTI
and the interest rate.

3. Our Approach
Algorithm 1 outlines our approach to find a judgment inter-
pretation for a given neural network F and an input vector
v. Besides these two inputs, it is parameterized by a real e
and an integer n. The former specifies the radius parame-
ter in our stability definition, while the latter specifies how
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Algorithm 1 Finding a judgment interpretation.
INPUT A neural network F and an input vector v such that

lF (v) = 0.
OUTPUT A judgment interpretation ∆ for F and δ.

1: PARAM A real value e and an integer number n.
2: Sn := {s | s is a subarray of [1, ..., |v|] with length n}
3: ∆ := None, d := +∞
4: for s ∈ Sn do
5: ∆s := findProjectedInterpretation(F,v, s, e)
6: if dise(∆s) < d then
7: ∆ := ∆s, d := dise(∆s)
8: end if
9: end for

10: return ∆

many features are allowed to vary to produce the judgment
interpretation. We parameterize the number of features to
change as high-dimension interpretations are hard for end
users to understand. For instance, it is much easier for a
user to understand to say that, their mortgage would be ap-
proved as long as they change the DTI and the credit score
while keeping the other features as they were, than to give
a complex interpretation that involves all features (in our
experiment, there are 21 features). The output is a judg-
ment interpretation that is expressed in a system of linear
constraints, which are in the form of

A ∗ x+ b ≥ 0,

where x is a vector of variables, A is a matrix, and b is a
vector.

Algorithm 1 finds such an interpretation by iteratively in-
voking the procedure findProjectedInterpretation to find an
interpretation that varies a list of n features s. It returns the
one with the least distance. Recall that the distance is de-
fined as dise(∆) = minδ∈S‖δ‖, which can be evaluated by
solving a sequence of linear programming problems when
L1 norm is used.

We next discuss findProjectedInterpretation which is the
heart of our approach.

3.1. Finding A Judgment Interpretation along Given
Features

In order to find a judgment interpretation, we need to find
a set of linear constraints that are minimal, stable, and
verified (that is, all inputs satisfying it will be classified as
1). None of these properties are trivial to satisfy given the
complexity of any real-world neural network.

We first discuss how we address these challenges at a high
level, then dive into the details of the algorithm. To ad-
dress minimality, we find a single concrete correction that
is minimum by leveraging an existing adversarial example

Algorithm 2 findProjectedInterpretation
INPUT A neural network F , an input vector v, an integer

vector s, and a real number e.
OUTPUT A symbolic correction ∆s that only changes

features indexed by s.
1: PARAM An integer m, the maximum number of veri-

fied linear regions to consider.
2: regions := ∅,workList := []
3: δ0 := findMinimumConcreteCorrection(F,v, s)
4: a0 := getActivations(F, δ0 + v)
5: L0 := getRegionFromActivations(F,a0,v, s)
6: regions := regions ∪ {L0}
7: workList := append(workList,a0)
8: while len(workList)! = 0 do
9: a := popHead(workList)

10: for p ∈ [1, len(a)] do
11: if checkRegionBoundary(F,a, p,v, s) then
12: a′ := copy(a)
13: a′[p] := ¬a′[p]
14: L′ := getRegionFromActivations(F,a′,v, s)
15: if L′ /∈ regions then
16: regions := regions ∪ {L′}
17: if len(regions) = m then
18: workList := []
19: break
20: end if
21: workList := append(workList,a′)
22: end if
23: end if
24: end for
25: end while
26: ret := inferSimplexCorrection(regions)
27: return ret

generation technique (Goodfellow et al., 2014). To generate
a set of linear constraints that is stable and verifiable, we
exploit the fact that ReLU-based neural networks are piece-
wise linear functions. Briefly, all the inputs that activate
the same set of neurons can be characterized by a set of
linear constraints. We can further characterize the subset of
inputs that are classified as 1 by adding an additional linear
constraint. Similarly, we can use a set of linear constraints
to represent a set of verified corrections under certain activa-
tions. We call this set of corrections a verified linear region
(or region for short). We first identify the region that the
initial concrete correction belongs to, then grow the set of
regions by identifying regions that are connected to existing
regions. Finally, we infer a set of linear constraints whose
concrete corrections are a subset of ones enclosed by the set
of discovered regions.

Algorithm 2 details our approach. It starts by finding an ini-
tial region (line 3-5). We first find a minimum concrete cor-
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rection δ0 by leveraging a modified version of the fast signed
gradient method (Goodfellow et al., 2014) that minimizes
the L1 distance (on line 3). More concretely, starting with a
vector of 0s, we calculate δ0 by iteratively adding a modified
gradient that takes the sign of the most significant dimen-
sion among the selected features until lF (v + δ0) = 1. For
example, if the original gradient is [0.5, 1.0, 6.0,−6.0], the
modified gradient would be [0, 0, 1.0, 0] or [0, 0, 0,−1.0].
Then we obtain the ReLU activations a0 for v + δ0 (by
invoking getActivations on line 4), which is a boolean vec-
tor where each boolean represents whether a given neuron
is activated. Finally, we obtain the initial region that δ0
falls into by invoking getRegionFromActivations (on line 5),
which is defined below:
getRegionFromActivations(F,a,v, s) :=

activationConstraints(F,a,v)
∧ classConstraints(F,a,v)
∧ featureConstraints(s),

where
activationConstraints(F,a,v) :=∧

j∈[1,k]
∧

m∈[1,|fj |]{G
a
r (x+ v) ≥ 0 if a[r] = True}

∧∧
j∈[1,k]

∧
m∈[1,|fj |]{G

a
r (x+ v) < 0 if a[r] = False},

where Gar (x+ v) := wr ∗ fa0 (fa1 (...fam−1(x+ v))) + br,
r :=

∑
i∈[1,j−1] |fi|+m

classConstraints(F,a,v) := Fa(x+ v)[1] > Fa(x+ v)[0],

featureConstraints(s) :=
∧

j /∈s x[j] = 0.

In the definition above, we use the notation fai to refer to
layer i with its activations “fixed” to a. More formally,
fai (vi) =W

a
i ∗ vi + b

a
i whereW a

i and bai have zeros in
all the rows where the activation indicated that rectifier in
the original layer had produced a zero. We use k to repre-
sent the number of ReLU layers and |fj | to represent the
number of neurons in the jth layer. Integer r indexes the
mth neuron in jth layer. Vector wr and real number br
are the weights and the bias of neuron r respectively. Intu-
itively, activationConstraints uses a set of linear constraints
to encode the activation of each neuron.

After generating the initial region, Algorithm 1 tries to grow
the set of concrete corrections by identifying regions that
are connected to existing regions. How do we know whether
a region is connected to another efficiently? There are 2n

regions for a network with n neurons and checking whether
two sets of linear constraints intersect can be expensive
on high dimensions. Intuitively, two regions are likely con-
nected if their activations only differ by one ReLU. However,
this is not entirely correct given a region is not only con-
strained by the activations by also the desired classification.

Our key insight is that, since a ReLU-based neural network
is a continuous function, two regions are connected if their
activations differ by one neuron, and there are concrete

corrections on the face of one of the corresponding convex
hulls, and this face corresponds to the differing neuron. In-
tuitively, on the piece-wise function represented by a neural
network, the sets of concrete corrections in two adjacent
linear pieces are connected if there are concrete corrections
on the boundary between them. Following the intuition, we
define checkRegionBoundary:

checkRegionBoundary(F,a, p,v, s) :=
isFeasible(boundaryConstraints(F,a,v, p)

∧ classConstraints(F,a,v)
∧ featureConstraints(s))

where
boundaryConstraints(F,a, p,v) :=∧

j∈[1,k]
∧

m∈[1,|fj |]{G
a
r (x+ v) = 0 if r = p}

∧∧
j∈[1,k]

∧
m∈[1,|fj |]{G

a
r (x+ v) ≥ 0 if a[r] = True and

r! = p}
∧∧

j∈[1,k]
∧

m∈[1,|fj |]{G
a
r (x+ v) < 0 if a[r] = False and

r! = p}

where Gar (x+ v) := wr ∗ fa0 (fa1 (...fam−1(x+ v))) + br,
r :=

∑
i∈[1,j−1] |fi|+m

By leveraging checkRegionBoundary, Algorithm 2 uses a
worklist algorithm to identify regions that are connected or
transitively connected to the initial region until no more such
regions can be found or the number of discovered regions
reaches a predefined upper bound m (line 8-25).

Then Algorithm 2 tries to infer a set of linear constraints
whose corresponding concrete corrections are contained
in the discovered regions. Moreover, to satisfy the stabil-
ity constraint, we want this set to be as large as possible.
Intuitively, we want to find a convex hull (represented by
the returning constraints) that is contained in a polytope
(represented by the regions), such that the volume of the
convex hull is maximized. Further, we infer constraints that
represent a simplex rather than any convex hull, for two
reasons. First, the simplicity of a simplex makes it easy for
the end user to interpret; secondly, it is relatively efficient to
calculate the volume of a simplex.

The procedure inferSimplexCorrection implements the
above process using a greedy algorithm. Briefly, we first
randomly choose a discovered region and randomly sample
a simplex inside it. Then for each vertex, we move it by a
very small distance in a random direction such that (1) the
simplex is still contained in the set of discovered regions,
and (2) the volume increases. The process stops until the
volume cannot be increased further.

Note that our approach is sound but not optimal or complete.
In other words, whenever Algorithm 1 finds a symbolic
correction, the correction is verified and stable, but it is not
guaranteed to be minimal. Also, when our approach fails to
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find a stable symbolic correction, it does not mean that such
corrections do not exist. However, in practice, we find that
our approach is able to find stable corrections for most of
the time and the distances of the discovered corrections are
small enough to be useful (as we shall see in Section 5.2).

3.2. Discussion

We finish this section by discussing extensions and limita-
tions of our approach.

Handling categorical features. So far we have assumed
all features are reals. Categorical features are typically
represented using one-hot encoding and directly applying
Algorithm 2 on the embedding can result in a symbolic cor-
rection most of whose concrete corrections are invalid. To
address this issue, we enumerate the embedding of differ-
ent values of categorical features and apply Algorithm 2 to
search symbolic corrections under different embedding. For
example, suppose we only have two features where the first
feature is a boolean value and the second the feature is a
real number, we will get two interval symbolic corrections
on the second feature. While one is obtained assuming the
first feature is set to True, the other is obtained assuming
the first feature is set to False.

Extending to non-ReLU-based neural networks. Our
approach remains unchanged as long as the activation func-
tions are continuous and can be approximated using a con-
tinuous piece-wise linear function. If any activation function
is not continuous, the assumption that we can test whether
two verified regions that differ by one activation are con-
nected by testing the constraint corresponding to the activa-
tion breaks. If the activation functions are continuous and
cannot be approximated using a piece-wise linear function,
the aforementioned assumption will hold, but we will need
more expressive constraints other than linear constraints to
represent verified regions.

Extending to other norms. So far we have assumed that
the sizes of all vectors are measured using L1 norms. If we
use other norms, our algorithm largely remains the same,
except for dise, which measures the stability and size of
a inferred symbolic correction. When norms other than
L1 or L∞ are applied, evaluating dise requires solving one
or more non-linear optimization problems, which can be
expensive when the number of varied features (indicated by
parameter n of Algorithm 1) is large.

Avoiding adversarial corrections. Adversarial inputs are
inputs generated from an existing input via small perturba-
tions such that they are indistinguishable to end users from
the original input but lead to different classifications. Adver-
sarial inputs are undesirable and often considered as “bugs”

of a neural network. For simplicity, we did not consider
them in previous discussions. To avoid corrections that
would result in adversarial inputs, we rely on the end user
to define a threshold σ such that any concrete correction δ
where ‖δ‖ > σ is considered not adversarial. Then we add
‖x‖ > σ as an additional constraint to each region.

4. Implementation
We implemented our approach in a tool called POLARIS.
POLARIS is written in three thousand lines of Python code.
To implement findMinimumConcreteCorrection, we used a
customized version of the CleverHans library (Nicolas Pa-
pernot, 2017). To implement isFeasible which checks feasi-
bility of generated linear constraints, we applied the com-
mercial linear programming solver Gurobi 7.5.2 (Gurobi
Optimization, Inc., 2018).

5. Empirical Evaluation
We evaluated POLARIS on a neural network that makes
mortgage underwriting decisions.

5.1. Experiment Setup

Since there are no publicly available neural networks for
mortgage underwriting, we ended up building our own net-
work. Moreover, most of the datasets we found only provide
application information and performance information of ap-
proved loans. Very few datasets provide information about
rejected applications and such information is often demo-
graphic, which is not the key factor of decision making. As a
result, we built a network that predicts whether an applicant
will default on the mortgage based on the application infor-
mation instead. We consider an application being rejected
if our network predicts that the applicant will default.

Dataset. We used the Single-Family Historical Loan Per-
formance Dataset published by Fannie Mae (2017). It is
the largest publicly available single-family loan dataset. It
consists of the application information and the performance
information of 34 million loans issued from 2000 to 2016.
The application of each loan consists of 24 features such as
credit score, debt-to-income ratio, and others. We removed
3 features whose values are missing for over 20% of the
dataset, which results in 21 features. To train the neural
network, we split the dataset into training set, validation set,
and test set at a ratio of 50%, 25%, and 25%. To evaluate
our approach, we randomly selected 100 loan applications
that are rejected by the network from the test set.

Neural network. We built a feedforward ReLU-based
network with five hidden layers each of which has 200
hidden units using TensorFlow 1.4. It achieves an accuracy
of 79% on the test set.
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Table 1. Mutable features in corrections to mortgage underwriting.
Name Type Range Radius

1 Interest Rate Real [0, 0.1] 0.005
2 Credit Score Integer [300, 850] 25
3 Debt-to-Income Real [0.01, 0.64] 0.025
4 Loan-to-Value Real [0, 2] 0.025

5 Property Type Category

[Cooperative Share,
Manufactured Home,
Planned Urban
Development,
Single-Family Home,
Condominium]

N.A.

Algorithm configuration. Our approach has three param-
eters: the stability threshold e, the number of features al-
lowed to change simultaneously n, and the maximum num-
ber of regions to consider m. We set m = 100. To produce
symbolic corrections that are easy to understand, we set
n = 2. Moreover, we limit the mutable features to five
features that we consider useful in providing users feedback
for loan applications, which are described in Table 1.

As for e, it is slightly more involved as we customized the
operator diste for the mortgage application. Briefly, we
used a weighted L1 norm to evaluate the distance of the
correction and a weighted L∞ norm to evaluate the stability.
For distance, we use 1 / (max - min) as the weight for each
numeric feature. As for the categorical feature “property
type”, we charge 1 on the distance if the minimum stable
concrete correction in the symbolic correction (the minimum
stable region center) would change it, or 0 otherwise. This
is a relatively large penalty as changing the property type
requires the applicant to switch to a different property. For
stability, we define a stability radius array r and use 1/r[i]
as the weight for feature i. If the category feature is involved,
we require the symbolic corrections to at least contain two
categories of the feature. Table 1 defines the range and
radius of each feature. We define diste as follow:

dise(∆) := min
δ∈S

(
|δ[1]|
0.1− 0

+
|δ[2]|

850− 300
+

|δ[3]|
0.64− 0.01

+
|δ[4]|
2− 0

+ (0 if δ[5] leads to no change else 1)),

where

S := {δ ∈∆ |∃1 ≤ i < j ≤ 4.∀δ′.|δ′[i]− δ[i]| ≤ e ∗ r[i]
∧ |δ′[j]− δ[j]| ≤ e ∗ r[j]
∧ |δ′[k] = δ[k]| for k /∈ {i, j}

=⇒ δ′ ∈∆}.
∪ {δ ∈∆ |∃i ∈ [1, 4] and a category c of Feature 5

that differs from the category δ[5] leads to so that

∀δ′.|δ′[i]− δ[i]| ≤ e ∗ r[i]
∧ δ′[5] = δ[5] or δ′[5] leads to c

∧ |δ′[k] = δ[k]| for k /∈ {i, 5}
=⇒ δ′ ∈∆}.

Note when the categorical feature property type is involved,
we evaluate dise(∆) by solving a sequence of integer linear
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Figure 2. Distances of judgment interpretations generated for each
loan application.

programming problems, which is also implemented using
Gurobi. We set e = 1 for all runs in the experiment.

Experiment environment. All the experiments were run
on a Dell XPS 8900 Desktop with 16GB RAM and an Intel
I7 4GHZ quad-core processor. The operating system is
Ubuntu 16.04 and the Python runtime is 3.6.

5.2. Experiment Results

We first discuss quantitatively how often POLARIS gener-
ates stable corrections and how far away these corrections
are from the original input. Then we inspect some of the
generated corrections in detail and discuss whether they are
indeed useful for end users. Finally, we talk about how long
it takes for POLARIS to generate a correction.

Stability and minimality. POLARIS successfully gener-
ated symbolic corrections for 85 applications out of 100
selected loan applications that are rejected by the neural
network. For the rest 15 applications, it is either the case
that the corrections found by POLARIS were discarded for
being unstable, or the case that POLARIS failed to find an
initial concrete correction due to the incompleteness of the
applied adversarial example generation algorithm. These
results show that POLARIS is effective in finding symbolic
corrections that are stable and verified.

We next discuss how similar these corrections are to the
original input. Figure 2 lists the sorted distances of the
aforementioned 85 symbolic corrections. Recall the distance
is defined using a weighted L1 norm where the weight for
each numeric feature is 1/(max - min) and we charge 1 when
the categorical feature property type needs to be changed.
As we can see, the average distance is only 0.31. While the
largest distance is 1.36, the smallest distance is as small as
0.016. Moreover, 64% (54 out of 85) of the corrections have
distances under 0.2. While the average distance is already
small, the distances of the most symbolic corrections are in
fact even much smaller. In conclusion, although POLARIS
has no guarantee in minimality, the corrections found by it
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Figure 3. Different corrections generated for the application with
the minimum judgment interpretation among all applications.

are often small enough to be actionable for end users.

Qualitative study. While the previous discussion gives a
high-level idea of the effectiveness of our approach, we now
look at individual generated symbolic corrections closely.
We are interested in answering two questions:

1. Are these corrections small and stable enough such
that they are actionable to the applicant?

2. Do they make sense?

Figure 3 shows the symbolic corrections generated for
the application with the minimum judgment interpretation
among all applications. The application corresponds to the
leftmost bar in Figure 2. Since POLARIS is configured to
generate corrections involving two features out of five fea-

tures, there are ten possible corrections that vary different
features. For space reason, we study three of them.

Figure 3(a) shows the symbolic correction generated along
loan-to-value ratio and property type, which is the minimum
correction for this application. The red cross shows the pro-
jection of the original application on these two features,
while the blue lines represent the set of corrected applica-
tions that the symbolic correction would lead to. First, we
observe that the correction is very small. The applicant will
get their loan approved if they reduce the loan-to-value ratio
only by 0.0076. Such a correction is also stable. If the appli-
cant decides to stick to single-family home properties, they
will get the loan approved as long as the reduction on the
loan-to-value ration is greater than 0.0076. Moreover, they
will get similar results if they switch to cooperative share
properties or condominiums. This correction also makes
much sense, since reducing loan-to-value ratio often means
to reduce the loan value. In practice, smaller loans are easier
to approve. Also, from the perspective of the training data,
smaller loans are less likely to default.

Figure 3(b) shows the symbolic correction generated along
debt-to-income ratio and interest rate, which are two nu-
meric features. Similar to Figure 3(a), the red cross repre-
sents the projection of the original application, while the
blue triangle represents the symbolic correction. In addition,
we use a polytope enclosed in dotted yellow lines to rep-
resent the verified linear regions collected by Algorithm 2.
We have two observations about the regions. First, the poly-
tope is highly irregular, which reflects the highly nonlinear
nature of the neural network. However, POLARIS is still
able to generate symbolic corrections efficiently. Secondly,
the final correction inferred by our approach covers most
area of the regions, which shows the effectiveness of our
greedy algorithm applied in inferSimplexCorrection. While
this correction is also small and stable, its distance is larger
than the previous correction along loan-to-value ratio and
property type. Such a correction also makes sense from the
training data perspective. It is obvious that applicants with
smaller debt-to-income ratios will less likely default. As
for interest rate, the correction leans towards increasing it.
It might be due to the fact that during subprime mortgage
crisis (2007-2009), loans were approved with irrationally
low interest rate, many of which went into default later.

Figure 3(c) shows the correction generated along debt-to-
income ratio and loan-to-value ratio. Compared to the previ-
ous corrections, its distance is small but it is highly unstable
(the triangle is very narrow). In fact, it is discarded by
POLARIS due to this.

As a comparison to corrections generated on the previous
application, Figure 4 shows the final correction generated
on the application that corresponds to the rightmost bar
on Figure 2. In other words, its final correction has the
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Figure 4. The final correction generated for the application with
the maximum judgment interpretation among all loan applications.
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Figure 5. Running time of POLARIS on each loan application.

largest distance among final corrections generated for all
applications. As the figure shows, such a large distance
makes it hard for the applicant to adopt. For most categories
of property type, the applicant needs to raise their credit
score by 100, and even to over 800 under some cases, which
is not very easy in practice. As a result, POLARIS assigns a
high distance for such a correction.

Efficiency. Figure 5 shows the sorted running time of PO-
LARIS on all loan application. It ranges from 18 seconds
to 2,844 seconds with a balanced distribution. On average,
POLARIS takes around 20 minutes to generate the final cor-
rection for a loan application. Given in reality mortgage
underwriting usually takes days, such a running time is mod-
erate. After manual inspection, we found the majority of the
time is spent in the invocations to the linear programming
solver by checkRegionBoundary. Although each invocation
only takes a fraction of a second, there can be invocations as
many as the number of neurons when a new region is being
added. In the future, we plan to cut down the number of
invocation by investigating sampling-based approaches.

6. Related Work
Our work is related to previous works on interpreting neural
networks in terms of the problem (Montavon et al., 2017),

and works on generating adversarial examples (Goodfellow
et al., 2014) in terms of the underlying techniques.

Much work on interpretability has gone into analyzing the
results produced by a convolutional network that does image
classification. The Activation Maximization approach and
its follow-ups visualize learnt high-level features by finding
inputs that maximize activations of given neurons (Erhan
et al., 2009; Hinton, 2012; Lee et al., 2009; van den Oord
et al., 2016; Nguyen et al., 2016). Zeiler and Fergus (2014)
uses deconvolution to visualize what a network has learnt.
Not just limited to image domains, more recent works try to
build interpretability as part of the network itself (Pinheiro
& Collobert, 2015; Lei et al., 2016; Tan et al., 2015; Wu
et al., 2016; Li et al., 2017). There are also works that try to
explain a neural network by learning a more interpretable
model (Ribeiro et al., 2016; Krakovna & Doshi-Velez, 2016;
Bastani et al., 2017). As far as we know, the problem defi-
nition of judgement interpretation is new, and none of the
existing approaches can directly solve it. Moreover, these
approaches typically generate a single input prototype or
relevant features, but do not result in corrections or a space
of inputs that would lead the prediction to move from an
undesirable class to a desirable class.

Adversarial examples were first introduced by Szegedy and
et al. (2013), where box-constrained L-BFGS is applied
to generate them. Various approaches have been proposed
later. The fast gradient sign method (Goodfellow et al.,
2014) calculate an adversarial perturbation by taking the
sign of the gradient. The Jacobian-based Saliency Map
Attack (JSMA) (He et al., 2016) applies a greedy algo-
rithm based a saliency map which models the impact each
pixel has on the resulting classification. Deepfool (Moosavi-
Dezfooli et al., 2016) is an untargeted attack optimized for
the L2 norm. Bastani (Bastani et al., 2016) applies linear
programming to find an adversarial example under the same
activations. While these techniques are similar to ours in
the sense that they also try to find minimum corrections, the
produced corrections are concrete while ours are symbolic.

7. Conclusion
We proposed a new approach to interpret a neural network
by generating minimal, stable, and symbolic corrections
that would change its output. Such an interpretation is a
useful way to provide feedback to a user when the neural
network fails to produce a desirable output. We designed
and implemented the first algorithm for generating such
corrections, and demonstrated its effectiveness on a neural
network that does mortgage underwriting.
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