arXiv:1802.07344v1 [cs.CR] 20 Feb 2018

Coconut: Threshold Issuance Selective Disclosure Credentials
with Applications to Distributed Ledgers

Alberto Sonnino
University College London

Mustafa Al-Bassam
University College London

Shehar Bano
University College London

George Danezis
University College London
The Alan Turing Institute

Abstract

We present Coconut, a novel selective disclosure cre-
dential scheme supporting distributed threshold issuance,
public and private attributes, re-randomization, and mul-
tiple unlinkable selective attribute revelations. Coconut
can be used by modern blockchains to ensure confiden-
tiality, authenticity and availability even when a subset of
credential issuing authorities are malicious or offline. We
implement and evaluate a generic Coconut smart contract
library for Chainspace and Ethereum; and present three
applications related to anonymous payments, electronic
petitions, and distribution of proxies for censorship resis-
tance. Coconut uses short and computationally efficient
credentials, and our evaluation shows that most Coconut
cryptographic primitives take just a few milliseconds on
average, with verification taking the longest time (10 mil-
liseconds).

1 Introduction

Selective disclosure credentials [15, [17] allow the is-
suance of a credential to a user, and the subsequent
unlinkable revelation (or ‘showing’) of some of the at-
tributes it encodes to a verifier for the purposes of au-
thentication, authorization or to implement electronic
cash. However, established schemes have shortcomings.
Some entrust a single issuer with the credential signa-
ture key, allowing a malicious issuer to forge any cre-
dential or electronic coin. Other schemes do not provide
the necessary re-randomization or blind issuing proper-
ties necessary to implement modern selective disclosure
credentials. No existing scheme provides all of threshold
distributed issuance, private attributes, re-randomization,
and unlinkable multi-show selective disclosure.

The lack of full-featured selective disclosure cre-
dentials impacts platforms that support ‘smart con-
tracts’, such as Ethereum [40], Hyperledger [14] and
Chainspace [3]. They all share the limitation that ver-

ifiable smart contracts may only perform operations
recorded on a public blockchain. Moreover, the secu-
rity models of these systems generally assume that in-
tegrity should hold in the presence of a threshold number
of dishonest or faulty nodes (Byzantine fault tolerance);
it is desirable for similar assumptions to hold for multiple
credential issuers (threshold aggregability).

Issuing credentials through smart contracts would be
very desirable: a smart contract could conditionally issue
user credentials depending on the state of the blockchain,
or attest some claim about a user operating through the
contract—such as their identity, attributes, or even the
balance of their wallet. This is not possible, with cur-
rent selective credential schemes that would either en-
trust a single party as an issuer, or would not provide
appropriate re-randomization, blind issuance and selec-
tive disclosure capabilities (as in the case of threshold
signatures [5]]). For example, the Hyperledger system
supports CL credentials [[15]] through a trusted third party
issuer, illustrating their usefulness, but also their fragility
against the issuer becoming malicious.

Coconut addresses this challenge, and allows a subset
of decentralized mutually distrustful authorities to jointly
issue credentials, on public or private attributes. Those
credentials cannot be forged by users, or any small subset
of potentially corrupt authorities. Credentials can be re-
randomized before selected attributes being shown to a
verifier, protecting privacy even in the case all authorities
and verifiers collude. The Coconut scheme is based on a
threshold issuance signature scheme, that allows partial
claims to be aggregated into a single credential. Mapped
to the context of permissioned and semi-permissioned
blockchains, Coconut allows collections of authorities in
charge of maintaining a blockchain, or a side chain [3]
based on a federated peg, to jointly issue selective dis-
closure credentials.

Coconut uses short and computationally efficient cre-
dentials, and efficient revelation of selected attributes and
verification protocols. Each partial credentials and the

@ request

R _ @issue
© aggregate &
randomize
16 show

Figure 1: Overview of the Coconut general architecture.

000

authorities

consolidated credential is composed of exactly two group
elements. The size of the credential remains constant,
and the attribute showing and verification are O(1) in
terms of both cryptographic computations and commu-
nication of cryptographic material—irrespective of the
number of attributes or authorities/issuers. Our evalua-
tion of the Coconut primitives shows very promising re-
sults. Verification takes about 10ms, while signing an
attribute is 15 times faster. The latency is about 600 ms
when the client aggregates partial credentials from 10 au-
thorities distributed across the world.
This paper makes three key contributions:

e We describe the signature schemes underlying Co-
conut, including how key generation, distributed
issuance, aggregation and verification of signa-
tures operate (Sections 2] and [3). The scheme is
an extension and hybrid of the Waters signature
scheme [39]], the BGLS signature [8], and the sig-
nature scheme of Pointcheval et al. [31]]. This
is the first fully distributed threshold issuance, re-
randomizable, multi-show credential scheme we are
aware of.

e We use Coconut to implement a generic smart
contract library for Chainspace [3] and one for
Ethereum [40], performing public and private at-
tribute issuing, aggregation, randomization and se-
lective disclosure (Section). We evaluate their
performance, and cost within those platforms (Sec-
tion[0)).

e We design three applications using the Coconut
contract library: a coin tumbler providing payment
anonymity; a privacy preserving electronic peti-
tions; and a proxy distribution system for a censor-
ship resistance system (Section [5). We implement
and evaluate the two former ones on the Chainspace
platform, and provide a security and performance
evaluation (Section [6)).

2 Overview of Coconut

Coconut is a fully featured selective disclosure credential
system, supporting threshold credential issuance of pub-

lic and private attributes, re-randomization of credentials
to support multiple unlikable revelations, and the ability
to selectively disclose a subset of attributes. It is embed-
ded into a smart contract library, that can be called from
other contracts to issue credentials.

The Coconut architecture is illustrated in Figure [1}
Any Coconut user may send a Coconut request command
to a set of Coconut signing authorities; this command
specifies a set of public or encrypted private attributes to
be certified into the credential (@). Then, each authority
answers with an issue command delivering a partial cre-
dentials (). Any user can collect a threshold number of
shares, aggregate them to form a consolidated credential,
and re-randomize it (®). The use of the credential for au-
thentication is however restricted to a user who knows
the private attributes embedded in the credential—such
as a private key. The user who owns the credentials
can then execute the show protocol to selectively dis-
close attributes or statements about them (®). The show-
ing protocol is publicly verifiable, and may be publicly
recorded. Coconut has the following design goals:

e Threshold authorities: Only a subset of the au-
thorities is required to issue partial credentials in
order to allow the users to generate a consolidated
credential [7]. The communication complexity of
the request and issue protocol is thus O(t), where ¢
is the size of the subset of authorities.

e Non-interactivity: The authorities may operate in-
dependently of each other, following a simple key
distribution and setup phase to agree on public se-
curity and cryptographic parameters—they do not
need to synchronize or further coordinate their ac-
tivities.

e Blindness: The authorities issue the credential
without learning any additional information about
the private attributes included in the credential [17].

e Unlinkability: It is impossible to link multiple
showing of the credentials with each other, or the
issuing transcript, even if all the authorities col-
lude [30].

o Efficiency: The credentials and all zero-knowledge
proofs involved in the protocols are short and com-
putationally efficient. After aggregation and re-
randomization, the attribute showing and verifica-
tion only involve a single consolidated credential,
and are therefore O(1) in terms of both crypto-
graphic computations and communication of cryp-
tographic material—no matter the number of au-
thorities or the number of attributes embedded in
the credentials.

As aresult, a large number of authorities may be used to

issue credentials, without significantly affecting the effi-
cient operation of other operations.

3 Cryptographic Constructions

We introduce the cryptograhic primitives supporting
the Coconut architecture, step by step from a simple
construction to the full scheme. The exact definitions of
these primitives can be found in Appendix

Step 1: We first present (Section a toy signature
scheme on a single public attribute m, called the Co-
conut signature scheme; i.e., users can request a partial
signature o; from each authority on a public (clear
text) attribute m, and then aggregate them all into a
single consolidated credential . This scheme sets the
foundations for the subsequent steps.

Step 2: We extend the signature scheme (Section[3.3) in
order to support private attributes; the resulting scheme
is called the Coconut anonymous credentials scheme. In
a nutshell, it allows a user to request a partial credential
from each authority on a private (encrypted) attribute;
each authority can issue a partial credential without
seeing the actual content of m (such schemes are also
called blind signatures).

Step 3: We introduce (Section [3.4) the Coconut thresh-
old credentials scheme, which has all the properties of
the schemes above, but allows the user to collect partial
credentials from only a subset of the authorities to form
a credential. If we have a set of n authorities, the user
only needs to collect # < n partial credentials in order to
aggregate them into a consolidated credential.

Step 4: Finally, we extend (Section [3.5)) our schemes to
support public or private issuance on ¢ distinct attributes
(mo,...,mqy_1) at the same time.

Design Goals. In addition to the design goals in Sec-
tion 2] the Coconut threshold credentials scheme has the
following properties:

o Short signatures: Each partial credential—as well
as the consolidated credential—is composed of ex-
actly two group elements.

o Constant signature size: The size of the credential
is constant in the number of attributes or with the
number of authorities.

o Unforgeability: An adversary who is given creden-
tials for a few attributes of their choice is not able
to produce a credential for a new attribute (more
formally unforgeability under chosen-message at-
tack) [LLO].

o Robustness: It is impossible to generate a consol-
idated credential from fewer than ¢ partial creden-
tials [[7]].

3.1 Notations and Assumptions

We present the notation used in the rest of the paper, as
well as the security assumptions on which our primitives
rely.

Zero-knowledge proofs. Coconut uses non-interactive
zero-knowledge proofs to assert knowledge and relations
over discrete logarithm values. We represent these zero-
knowledge proofs with the notation introduced by Ca-
menisch et al. [16]:

NIZK{(x,y,...) : statements about x, y, ... },

which denotes proving in zero-knowledge that the secret
values (x,y,...) (all other values are public) satisfy the
statements after the colon.

Security assumptions. Our credential scheme requires
groups (G1,Gy,Gr) of prime order p with a bilinear
map e : G; x G, — Gr and satisfying the following
properties: (i) Bilinearity means that for all g; € Gy,
2 € Gy and (x,y) € Fy, e(gf,83) = e(g1,82)" (i)
Non-degeneracy means that for all g € Gy, g € Gy,
e(g1,82) # 1; (iii) Efficiency implies the map e is ef-
ficiently computable; (iv) furthermore, G; # G, and
there is no efficient homomorphism between G| and G».
Those type 3 parings are efficient [20]. They support
the XDH assumption which implies the difficulty of the
Computational co-Diffie-Hellman (co-CDH) problem in
G and G, and the difficulty of the Decisional Diffie-
Hellman (DDH) problem in G [9].

Coconut also relies on a cryptographically secure hash
function H, hashing an element of group G into another
element of G, namely H : G; — G;. Boneh ef al. [9]
provide a detailed description of such functions.

3.2 The Coconut Signature Scheme

We introduce the Coconut signature scheme allowing
users to obtain a partial credential o; on a single pub-
lic attribute m from each of the n authorities; and then
aggregate them all into a consolidated credential .

Scheme definition. The Coconut signature scheme
works in a bilinear map group (Gy,G;,Gr) of type 3,
with a bilinear map e : G| x G, — Gr as described in
Section The secret key is a pair (x,y) € F?, and the

verification key is the triplet (g2,83.85) € G%.

% Setup(1*): Choose a bilinear group (Gy,G,,Gr)
with order p, where p is an A-bit prime num-
ber. Let g; be a generator of G|, and g, genera-
tor of G,. The system parameters are params =
(G1,G2,Gr,p,81,82)

 KeyGen(params): Choose a random se-
cret key sk = (x,y) € IFIZ, Parse params =
(G1,G,,Gr,p,g1,82), and publish the verification

key vk = (g2,@,B) = (g2,85,&,) along with the
proof m; showing knowledge of the secret key:

m =NIZK{(x,y): 00 =g5 A B=g5}

% Sign(params,sk,m): Parse sk =
params = (GhGZ?GTapagth)‘
h=H(g!") and 6 = (h,h/*"™7). Output ©.

< AggregateSign(oy,...,0,_1): Parse each o;
(h,g) for i € [0,...,n — 1]; compute ©
(h,TT=, &) Output ©.

< AggregateKey(vko,...,vk,—_1): Parse each vk;
(g2,04,B;) for i € [0,...,n—1]; compute vk =
(8211 0, T}). Output vi.

% Verify(vk,m,c): Parse vk = (g2,a,f) and o =
(h,€). Acceptif h # 1 and e(h, o ™) = e(€,82).

(x,y) and
Compute

Correctness and explanation. The Setup algorithm
generates the public parameters. Credentials are ele-
ments of G, while public keys are elements of G,. On
key generation, the proof m; asserts knowledge of the
secret key and prevents attacks from corrupted authori-
ties [9]. In order to obtain a credential on a public at-
tribute m € IF),, the user submits the same attribute m
to all the n signing authorities. Each signer i generates
a partial signature o; = h%t™i where h = H (g’l”), and
(xi,y:) is its private key. Then, the user aggregates the n
signatures to compute ¢ as shown below:

n—1 n—1 n—1 n
o= Tlo= 1w (TTw) =
i=0 i=0 i=0

where
n—1

n—1
x= Z xi and y= Z yi
i=0 i=0

Note that every authority must operate on the same el-
ement . Intuitively, generating i from h = H(gl") is
equivalent to computing i = g} where r € IF, is unknown
by both users and authorities. However, since # is deter-
ministic, every authority can uniquely derive it in isola-
tion and forgeries are prevented since different mp and
mj cannot lead to the same value of h

If an adversary 2/ can obtain two credentials 6y and 6] on re-
spectively mp = 0 and m; = 1 with the same value % as follows:
oy =h" and o) = h*"; then & could forge a new credential o,
onmy =2: 0y = (6p) Lo10 = K,

To verify the credentials, a verifier collects and aggre-
gates the verification keys of every authority to obtain an
aggregated verification key vk:

n—1 n—1
vk= (g2, []& [1&) = (¢2.83.4)
i=0 i=0

Upon reception of the tuple (m, o), the verifier checks
the pairing of the signature using the aggregated key.
Since 4 is an element of G, we can express it as h =
g | re F,. The left-hand side of the pairing verifica-
tion can be expanded as:

e(h,af") = e(h &™) = e(g1,g2)"* "™
and the right-hand side:

e(e,82) = ("™, g2) = e(g1,82)" ™)
Therefore, e(h, x3") = e(€, g2), from where the correct-
ness of the Verify algorithm follows.

Theorem 1. If the co-CDH assumption holds in
(G1,Gy,Gr), then the Coconut signature scheme is
existentially unforgeable under chosen-message attack
(EUF-CMA) [22]].

A sketch of the proof of Theorem [I] can be found in

Appendix

3.3 The Coconut Anonymous Credentials
Scheme

The Coconut anonymous credentials scheme extends
the previous scheme to support issuance on private at-
tributes.

Scheme definition. This scheme is defined by the same
set of algorithms presented in Section [3.2] but by replac-
ing the Sign and Verify algorithms by two protocols,
PrepareBlindSign(m) < BlindSign(sk, ¢, ¢, m;) and
ShowBlindSign(vk,m,¢’) «++ BlindVerify(x,v,o’, x,).
The BlindSetup algorithm slightly modifies the Setup
algorithm to provide an additional generator /; € G, and
the scheme is extended with two additional algorithms:
Unblind and Randomize.

% BlindSetup(1*): Call Setup(1*), let h; be an
other generator of Gy; the system parameters are
params = (GlaGZ;GTvpvglvhlag2)~

+ PrepareBlindSign(m): Pick a random o € F).
Build the commitment ¢, and hash value & as fol-
lows:

cm=g'h] and h=H(cy)

Generate an El-Gamal key-pair (d, 7= g‘f) and pick
a random k € F); then compute an El-Gamal en-
cryption of m as below:

c=Enc(h") = (glf, j/khm)
Output (¢, ¢,), Where 7 is defined by:

NIZK{(m,k,0) : Y= g% A e = g'hS

Ne= (g1, Y'H")}

Ty, =

% BlindSign(sk,c,,,c, m): Parse sk = (x,y) and ¢ =
(a,b). Recompute h = H (c,,). Verify the proof 7.
If the proof is valid, build & = (¢”,#*b”) and output
6 = (h,¢); otherwise output L.

< Unblind(6,d): Parse 6 = (h,¢) and ¢ = (,b); com-
pute ¢ = (h,b(a)~¢). Output G.

+ Randomize(c): Parse ¢ = (h,€). Pick a random
teF,, set o’ = (i',€"). Output o’

% ShowBlindSign(vk,m,c’): Parse vk = (g»,a,p)
and ¢’ = (i',€’). Pick a random r € F,, build
kK =oaf"gs and v = (/')". Output (k,v,0’,m,),
where 7, is:

7, = NIZK{(m,r) : x = aB"gy A v=(K)"}

< BlindVerify(x, v, ¢/, m,): Parse ¢’ = (K',€'). Ac-
cept if the proof m, verifies, &’ # 1 and e(h', k) =
e(Elv,gz)

Correctness and explanation. Figure 2|illustrates the
Coconut anonymous credentials protocol. To keep an at-
tribute m € I, hidden from the authorities, the user and
the authorities first execute the PrepareBlindSign(m)
+ BlindSign(sk, ¢y, c, m) protocol. The user generates
a Pedersen commitment c¢,, = g}'h{ on the attribute m
with randomness o € F,, (g1,h1) € G?, and h = H(cp,).
Then, the user creates an El-Gamal keypair (d,y = g¢)
and computes the encryption of 4" as:

¢ = Enc(h™) = (a,b) = (5, 1™,

where k € IF,. Finally, the user sends ¢ and ¢, to the
signer, as well as a zero-knowledge proof 7, ensuring
knowledge of m, and correctness of the encryption ¢ and
of the commitment ¢, (®).

To blindly sign the attribute, each authority i verifies
7, and uses the homomorphic properties of El-Gamal to
generate an encryption ¢ of /% (™) as:

kyi o kyi pcitmy;
= (g Yo

Upon reception of ¢, the users decrypt it using their pri-
vate El-Gamal key d to recover the partial credentials

&= (a,1ib")

user authority; verifier

0 ("m,(-',n':)

repeat |
n times

A (6))

© (x,v,o,m,)

Figure 2: Coconut anonymous credential protocol.

o; = (h,hit™i) (@). Then, the users can call the Ag-
gregateSign algorithm described in Section to ag-
gregate all the partial credentials.

Verification is implemented by the Randomize algo-
rithm and the ShowBlindSign(vk,m, ¢’) ++ BlindVer-
ify(k,v,0’, m,) protocol. First, the user randomizes the
signature through Randomize; then, the user computes
kK = a3 g5, from the aggregated verification key, v = h",
and sends (k, Vv, 0,m,) to the verifier where 7, is a zero-
knowledge proof asserting the correctness of x and v
(®). The proof m, ensures that the user actually knows
m and that k has been built using the correct verification
keys and blinding factors. The pairing verification is sim-
ilar to the previous section; express h = g{l | €F), the
left-hand side of the pairing verification can be expanded
as:

e(h, k) = e(h,gs™™") = e(g1,g2) ™)
and the right-hand side:
e(ev,g2) = e(h™)" g3) = e(gy, g2) ™)™
From where the correctness of BlindVerify follows.

Theorem 2. If the co-CDH assumption holds in
(G1,G,,Gr), then the Coconut anonymous creden-
tial scheme is existentially unforgeable under chosen-
message attack; and if the DDH problem holds in G,
the scheme ensures the properties of unlinkability [30]
and blindness [17].

A sketch of the proof of Theorem [2| can be found in
Appendix [B.2]

3.4 The Coconut Threshold Credentials
Scheme

In the previous constructions, the users collect exactly n
partial credentials—one from each authority to obtain a
consolidated credential. A ¢-out-of-n threshold creden-
tials scheme offers more flexibility as the users needs to
collect only ¢ < n of these partial credentials in order to
recompute the consolidated credential (both ¢ and n are

scheme parameters). This section presents the the Co-
conut Threshold Credentials Scheme—an extension of
our previous schemes applying the techniques developed
by Boldyreva [7].

Scheme definition. The Coconut threshold credentials
scheme is similar to the previous ones except for the key
generation and the aggregation algorithms. For the sake
of simplicity, we describe below a key generation algo-
rithm TTPKeyGen as executed by a trusted third party;
this protocol can however be execute in a distributed way
as illustrated by Gennaro et al. [21]. Adding and re-
moving authorities implies to re-run the key generation
algorithm—this limitation is inherited from the underly-
ing Shamir’s secret sharing protocol [35].

< TTPKeyGen(params,t,n): Choose two polynomi-
als v,w of degree r — 1 and set (x,y) = (v(0),w(0)).
Issue to each signer i a secret key sk; = (x;,y;) =
(v(i),w(i)) (foreach i € [1,...,n]), and publish their
public key vk; = (g2, 04, ;) = (82,83 ,85)-

< AggregateThSign(oy,...,0;): Parse each o; as
(h,&) fori € [l,...,1]. Output (h,[T._, &), where:

t t -1
zi—[IT (0—j>1 IT (i—j)] mod p
i=1,j#i i=1,j#i

Correctness and explanation. In this scheme, the
AggregateSign algorithm is replaced by Aggre-
gateThSign algorithm using the Lagrange basis polyno-
mial / which allows to reconstruct the original v(0) and
w(0) through polynomial interpolation;

1 t

v(0) =Y v(i)li and w(0) =) w(i)l;

i=1 i=1

One can easily verify the correctness of AggregateTh-
Sign as below.

hx +my

B (0)+mw(0) _ ﬁh(xili) ﬁhm(.\’ili)
1

hx,-ery,- li
[10e)

i=1 i

~

t 1
— (hx,-)li (hmy,-)l,- _
=1 =1

Theorem 3. If the co-CDH assumption holds in
(G1,Gy,Gr) and the signers produced less than t sig-
natures, then the Coconut threshold credentials scheme
is robust and existentially unforgeable under chosen-
message attack.

Robustness ensures the scheme maintains all the prop-
erties described in Section [2| as long as at least ¢ out of
n authorities are honest. Intuitively, this can be observed

from the fact that ¢ partial credentials are required to re-
cover a signature 6. The formal security definition and
security proof is analog to the threshold extension of the
BGLS Signature [8] presented by Boldyreva [7]].

3.5 Multi-Attributes Signatures

We expand the previous scheme to sign multiple at-
tributes; this generalization follows directly from the Wa-
ters signature scheme [39]. The authorities key pair be-
comes:

Sk:(xvy()w"ayQ*l) and Vk:(gzag)é?gzov"'ag;qil)
where ¢ is the number of attributes. The multi-attribute
credential is then generalized to

o = (b, K Eomvi)

It is noticeable that the credentials size does not increase
with the number of attributes, and is two group elements.
The security proof of the multi-attribute scheme relies
on a reduction against the single-attribute scheme and
is analog to [31]. Moreover, it is also possible to com-
bine public and private attributes to keep only a subset of
the attributes hidden from the authorities, while reveal-
ing some others; the BlindSign algorithm only verifies
the proof 7, on the private attributes.

4 Implementation

We implement a Python library containing the crypto-
graphic primitives described in Section [3|and publish the
code on GitHub as an open-source projectﬂ We also im-
plement a smart contract library on Chainspace to enable
other application-specific smart contracts (see Section [5)
to conveniently use our cryptographic primitives. We
present the design and implementation of the Coconut
smart contract library in Section @ In addition, we im-
plement and evaluate some of the functionality of the Co-
conut smart contract library in Ethereum (Section [4.2)).
Finally, we show how to integrate Coconut into existing
semi-permissioned blockchains.

4.1 The Coconut Smart Contract Library

We implement the Coconut smart contract in
ChainspaceE] (which can be used by other application-
specific smart contracts) as a library to issue and verify
randomizable threshold credentials through cross-
contract calls. The contract has four functions, (Create,

Zhttps://github.com/asonnino/coconut
3https://github.com/asonnino/coconut/tree/
master/coconut-chainspace

https://github.com/asonnino/coconut
https://github.com/asonnino/coconut/tree/master/coconut-chainspace
https://github.com/asonnino/coconut/tree/master/coconut-chainspace

@ contract info : @ contract info

create [«
@ attributes | @ attributes
J +—>| request T > D’
A | [
<—l . | @ credentials :
b @ credentials fssue J:l
@ credentials) authorities
»| verify
Ledger

Figure 3: The Coconut smart contract library.

Request, Issue, Verify), and is illustrated in Figure
First, a set of authorities call the Create function to
initialize a Coconut instance defining the contract info;
i.e., their verification key, the number of authorities and
the threshold parameter (@). The initiator smart contract
can specify a callback contract that needs to be executed
by the user in order to request credentials; e.g., this
callback can be used for authentication. The instance
is public and can be read by the user (®); any user can
request a credential through the Request function by
executing the specified callback contract, and providing
the public and private attributes to include in the creden-
tials (). The public attributes are simply a list of clear
text strings, while the private attributes are encrypted as
described in Section [3.3] Each signing authority mon-
itors the blockchain at all times, looking for credential
requests. If the request appears on the blockchain (i.e.,
a transaction is executed), it means that the callback
has been correctly executed (@); each authority issues
a partial credential on the specified attributes by calling
the Issue procedure (®). In our implementation, all
partial credentials are in the blockchain; however, these
can also be provided to the user off-chain. Users collect
a threshold number of partial credentials, and aggregate
them to form a full credential (®). Then, the users
locally randomize the credential. The last function of
the Coconut library contract is Verify that allows the
blockchain—and anyone else—to check the validity of a
given credential (@).

A limitation of this architecture is that it is not ef-
ficient for the authorities to continuously monitor the
blockchain. Section explains how to overcome this
limitation by embedding the authorities into the nodes
running the blockchain.

4.2 Ethereum Smart Contract Library

To make Coconut more widely available, we also
implement it in Ethereum—a popular permissionless

smart contract blockchain [40]. The Coconut Ethereum
smart contract library is written in Solidity, a high-
level JavaScript-like language that compiles down to
Ethereum Virtual Machine (EVM) assembly code, and
we released it as open source 1ibraryﬂ Ethereum recently
hardcoded a pre-compiled smart contract in the EVM for
performing pairing checks and elliptic curve operations
on the alt_bn128 curve [[13, 33], for efficient verification
of zkSNARKS. The execution of an Ethereum smart con-
tract has an associated ‘gas cost’, a fee that is paid to
miners for executing a transaction. Gas cost is calculated
based on the operations executed by the contract; i.e.,
the more operations, the higher the gas cost. The pre-
compiled contracts have lower gas costs than equivalent
native Ethereum smart contracts.

We use the pre-compiled contract for performing a
pairing check, in order to implement Coconut verifica-
tion within a smart contract. The Ethereum code only
implements elliptic curve addition and scalar multipli-
cation on G, whereas Coconut requires operations on
G;, to verify credentials. Therefore, we implement an el-
liptic curve addition and scalar multiplication on G, as
an Ethereum smart contract libraryE] written in Solidity.
This is a practical solution for many Coconut applica-
tions, as verifying credentials with one revealed attribute
only requires one addition and one scalar multiplication.
It would not be practical however to verify credentials
with attributes that will not be revealed, as this requires
three G, multiplications using our elliptic curve imple-
mentation, which would exceed the current Ethereum
block gas limit (8M as of February 2018).

We can however use the Ethereum contract to design
a federated peg for side chains, or a coin tumbler as an
Ethereum smart contract, based on credentials that reveal
one attribute. We go on to describe and implement this
tumbler using the Coconut Chainspace library in Sec-
tion [5.1] however the design for the Ethereum version
differs slightly to avoid the use of attributes that will not
be revealed, which we describe in Appendix

The library shares the same functions as the
Chainspace library described in Section except for
Request and Issue, as these simply act as a com-
munication channel between users and authorities, so
users can directly communicate with authorities off the
blockchain to request tokens, thus saving significant gas
costs that would be incurred by storing Request and
Issue events on the blockchain. The Verify function
simply verifies tokens against Coconut instances created
by the Create function.

4https://github.com/asonnino/coconut/tree/
master/coconut-ethereum

>https://github.com/musalbas/solidity-
BN256G2

https://github.com/asonnino/coconut/tree/master/coconut-ethereum
https://github.com/asonnino/coconut/tree/master/coconut-ethereum
https://github.com/musalbas/solidity-BN256G2
https://github.com/musalbas/solidity-BN256G2

4.3 Deeper Blockchain Integration

The designs of Section 4.1 and Section [4.2] rely on au-
thorities on-the-side for issuing credentials. We present
designs that incorporate Coconut authorities within
the infrastructure of a number of semi-permissioned
blockchains. This enables the issuance of credentials as
a side effect of the normal system operations, taking no
additional dependency on extra authorities. It remains
an open problem how to embed Coconut into unpermis-
sioned systems, based on proof of work or stake. Those
systems have a highly dynamic set of nodes maintaining
the state of their blockchains, which cannot readily be
mapped into stable authorities.

Hyperledger Fabric [14], a permissioned blockchain
platform, can incorporate Coconut straightforwardly.
Fabric contracts run on private sets of compute nodes—
and use the Fabric protocols for cross contract calls.
In this setting, Coconut issuing authorities can coincide
with the fabric smart contract authorities. Upon a con-
tract setup they perform the setup and key distribution,
and then issue partial credentials when authorized by the
contract. For issuing Coconut credentials, the only se-
cret maintained are the private issuing keys; all other op-
erations of the contract can be logged and publicly ver-
ified. Coconut has obvious advantages over using tra-
ditional CL credentials relying on a single authority—as
present in the Hyperledger roadma;ﬂ The threshold trust
assumption—namely that integrity is guaranteed under
the corruption of a subset of authorities is preserved, and
prevents forgeries by a single corrupted node.

We can also naturally embed Coconut into sharded
scalable blockchains, as exemplified by Chainspace [3]],
which supports general smart contracts, and Om-
niledger [25], that supports digital tokens. In those
transactions are distributed and executed on ‘shards’
of authorities, whose membership and public keys are
known. Coconut authorities can naturally coincide with
the nodes within a shard, and a special transaction type,
in Omniledger, or a special object, in Chainspace can sig-
nal to them that issuing a credential is authorized. Then
the authorities, would issue the partial signature neces-
sary to reconstruct the Coconut credential, and attach it
to the transaction they are processing anyway. Users, can
aggregate, re-randomize and show the credential.

5 Applications

In this section, we present three applications—a coin
tumbler (Section [5.1)), a privacy-preserving petition sys-
tem (Section [5.2)), and a system for censorship-resistant

Shttp://nick-fabric.readthedocs.io/en/
latest/idemix.html

A\ 4

issue

@| deposit

@ submit token

v

@ | withdraw

~

@ submit token |

merchant | " | withdraw

@ receive money !

Ledger

Figure 4: The coin tumbler application.

distribution of proxies (Section [5.3)—that leverage Co-
conut to offer improved security and privacy properties.
For generality, the applications assume authorities exter-
nal to the blockchain, but these can also be embedded
into the blockchain as described in Sectiond.3]

5.1 Coin Tumbler

We implement a coin tumbler (or mixer) on Chainspace
as depicted in Figure 4] Coin tumbling is a method
to mix cryptocurrency associated with an address visi-
ble in a public ledger with other addresses, to “clean”
the coins and obscure the trail back to the coins’ orig-
inal source address. In relation to previous similar
schemes [6, (11} 23, 28 129, |34, |38]] that are either cen-
tralized (i.e. there is a central authority that operates
the tumbler, which may go offline) or decentralized (i.e.
there is no central authority, but users must coordinate
with each other), the Coconut tumbler is distributed, in
that its security relies on a set of multiple authorities that
are collectively trusted to contain at least # honest ones.

The tumbler uses Coconut to instantiate a pegged side-
chain [5], providing stronger value transfer anonymity
than the original cryptocurrency platform, through un-
linkability between issuing a credential representing an
e-coin [18]], and spending it. The tumbler application is
based on the Coconut contract library and an application
specific smart contract called ‘tumbler’.

A set of authorities jointly create an instance of the
Coconut smart contract as described in Section [.1] and
specify the smart contract handling the coins of the un-
derlying blockchain as callback. Specifically, the call-
back requires a coin transfer to a buffer account. Then,
users execute the callback and pay v coins to the buffer to

http://nick-fabric.readthedocs.io/en/latest/idemix.html
http://nick-fabric.readthedocs.io/en/latest/idemix.html

ask a signature on the public attribute v, and on two pri-
vate attributes: the user’s private key £ and a randomly
generated sequence number s (@). Note that to prevent
tracing traffic analysis, v should be limited to a specific
set of possible values (similar to cash denominations).
The request is accepted by the blockchain only if the user
deposited v coins to the buffer account ().

Each authority monitors the blockchain and detects the
request (®); and issues a partial credential to the user
(either on chain or off-chain) (@). The user aggregates
all partial credentials into a consolidated credential, re-
randomizes it, and submits it as money token to a mer-
chant. First, the user produces a zk-proof of knowledge
of its private key by binding the proof to the merchant’s
address addr; then, the user provides the merchant with
the proof along with the sequence number s and the con-
solidated credential (®). The coins can only be spent
with knowledge of the associated sequence number and
by the owner of addr. To accept the above as payment,
the merchant submits the token by showing the signature
and the sequence number to the tumbler contract (®).
To prevent double spending, the tumbler contract keeps
a record of all the sequence numbers that have already
been shown. Upon showing a fresh (unspent) sequence
number s, the contract verifies that the signature checks
and that s doesn’t already appear in the spent list. Then, it
withdraws v coins from the buffer (@), sends them to be
received by the merchant account determined by addr,
and adds s to the spent list (@). For the sake of simplic-
ity, we keep the transfer value v in clear-text (treated as a
public attribute), but this could be easily hidden by inte-
grating a range proof; this can be efficiently implemented
using the technique developed by Biinz ef al. [12].

Security considerations. Coconut provides blind is-
suance which allows the user to obtain a signature on
the sequence number s without the authorities learning
its value. Without blindness, any authority seeing the
user key k could potentially out-speed the user and the
merchant, and spend it—blindness prevents authorities
from stealing the token. Furthermore, Coconut provides
unlinkability between the pay phase (@) and the sub-
mit phase (@) (see Figured), and prevents any authority
or third parties from keeping track of the user’s trans-
actions. As a result, a merchant can receive payments
for good/services offered, yet not identify the purchasers.
Finally, this application prevents a single authority from
creating coins to steal all the money in the buffer. The
threshold property of Coconut implies that the adversary
needs to corrupt at least ¢ authorities for this attack to be
possible. This property also prevents a single authority
blocking the issuance of a token—the service is guaran-
teed to be available as long as at least ¢ authorities are
running.

@ proof of identity R
citizen @ credentials authorities happens
only once
—
/

@ sign petition

happens every
campaign

petition @ create petition

creator

Figure 5: The petition application.

5.2 Privacy-preserving petition

This application extends the work of Diaz et al. [[19]. We
consider the scenario where a city C wishes to issue some
long term credentials to its citizens to enable any third
party to organize a privacy-preserving petition. All cit-
izens of C are allowed to participate, but should remain
anonymous and unlinkable across petitions. This appli-
cation is based on the Coconut library contract and a sim-
ple smart contract called “petition”. There are three types
of parties: a set of signing authorities representing C, a
peition initiator, and the citizens of C. The signing au-
thorities create an instance of the Coconut smart contract
as described in Section f.I] As shown in Figure [5] the
citizen provides a proof of identity to the authorities (@).
The authorities check the citizen’s identity, and issue a
blind and long-term signature on her private key k. This
signature, which the citizen needs to obtain only once,
acts as her long term credential to sign any petition peti-
tion (@).

Any third party can create a petition by creating a new
instance of the petition contract and become the “owner”
of the petition. The petition instance specifies an iden-
tifier s unique to the petition, and the verification key of
the authorities issuing the credentials, as well as any ap-
plication specific parameters (e.g., the options and cur-
rent votes) (). In order to sign a petition, the citizens
compute a value { as follows:

¢ = (H(s))"

Then they adapt the zero-knowledge proof of the Show-
BlindSign algorithm of Section [3.3| to show that { is
built from the same attribute k in the credential; the peti-
tion contract checks the proof 7 and the credentials, and
checks that the signature is fresh by verifying that { is
not part of a spent list. If all the checks pass, it adds the
citizens’ signatures to a list of records and adds { to the
spent list to prevents a citizen from signing the same peti-
tion multiple times (prevent double spending) (®). Also,

proxy
authentication

@ proof of identity
volunteer | @ credentials
y,

authorities

(1124

@ proxy info

@ proxy info

proxy
operation

register

@ connection

@ request info
request

Ledger

Figure 6: The censorship-resistant proxy distribution system.

the proof 7 ensures that { has been built from a signed
private key k; this means that the users correctly executed
the callback to prove that they are citizens of C.

Security consideration. Coconut’s blindness property
prevents the authorities from learning the citizen’s secret
key, and misusing it to sign petitions on behalf of the
citizen. Another benefit is that it lets citizens sign pe-
titions anonymously; citizens only have to go through
the issuance phase once, and can then re-use credentials
multiple times while staying anonymous and unlinkable
across petitions. Coconut allows for distributed creden-
tials issuance, removing a central authority and prevent-
ing a single entity from creating arbitrary credentials to
sign petitions multiple times.

5.3 Censorship-resistant distribution of
proxies

Proxies can be used to bypass censorship, but often be-
come the target of censorship themselves. We present a
system based on Coconut for censorship-resistant distri-
bution of proxies (CRS). In our CRS, the volunteer V
runs proxies, and is known to the Coconut authorities
through its long-term public key. The authorities estab-
lish reputability of volunteers (identified by their public
keys) through an out of band mechanism. The user U
wants to find proxy IP addresses belonging to reputable
volunteers, but volunteers want to hide their identity. As
shown in Figure @ V gets an ephemeral public key pk’
from the proxy (@), provides proof of identity to the au-
thorities (@), and gets a credential on three private at-
tributes: the proxy IP address, pk’, and the time period &
for which it is valid (®). V shares the credential with the
concerned proxy (@), which creates the proxy info in-
cluding pk’, 8, and the credential; the proxy ‘registers’

10

itself by appending this information to the blockchain
along with a zero-knowledge proof and the material nec-
essary to verify the validity of the credential (@).

The users U monitor the blockchain for proxy registra-
tions. When a registration is found, U indicates the intent
to use a proxy by publishing to the blockchain a request
info which looks as follows: User IP address encrypted
under pk’ inside the registration blockchain entry (@).
The proxy continuously monitors the blockchain, and
upon finding a user request addressed to itself, connects
to U and presents proof of knowledge of the private key
associated with pk’ (@). U verifies the proof, the proxy
IP address and its validity period, and then starts relaying
its traffic through the proxy.

Security consideration. A common limitation of cen-
sorship resistance schemes is assuming volunteers that
are inherently resistant to coercion: either (i) the volun-
teer is a large, commercial organisation (e.g., Amazon or
Google) over which the censor cannot exert its influence;
and/or (ii) the volunteer is located outside the country
of censorship. However, both these assumptions were
proven wrong [36, 137]]. The proposed CRS overcomes
this limitation by offering coercion-resistance to volun-
teers from censor-controlled users and authorities. Due
to Coconut’s blindness property, the volunteer can get a
credential on their IP address and ephemeral public key
without revealing those to the authorities. The users get a
proxy IP address run by the volunteer, while being unable
to link it to the volunteer’s long-term public key. More-
over, the authorities operate independently and can be
controlled by different entities, and are resilient against a
threshold number of authorities being dishonest or taken
down.

6 Evaluation

We present the evaluation of the Coconut threshold cre-
dentials scheme; first we present a benchmark of the
cryptographic primitives described in Section [3]and then
we evaluate the smart contracts described in Section

6.1 Cryptographic Primitives

We implement the primitives described in Section (3| in
Python using petlib [[1] and bplib [2]. The bilinear pair-
ing is defined over the Barreto-Naehrig [24] curve, using
OpenSSL as the arithmetic backend.

Timing benchmark. Table|l|shows the mean (u) and
standard deviation (\/?) of the execution of each pro-
cedure described in section Section Each entry is
the result of 10,000 runs measured on an Octa-core Dell

Operation u [ms] Vo2 [ms]
Keygen 2.392 =+ 0.006
Sign 0.445 + 0.001
AggregateSign 0.004 =+ 0.000
AggregateKeys 0.017 + 0.000
Randomize 0.545 +0.002
Verify 6.714 =+ 0.005
PrepareBlindSign 2.633 =+ 0.003
BlindSign 3.356 + 0.002
ShowBlindSign 1.388 + 0.001
BlindVerify 10.497 +0.002
AggregateThSign 0.454 =+ 0.000

Table 1: Execution times for the cryptographic primitives described

in Section Measured over 10,000 runs.

Number of authorities: n, Signature size: 132 bytes

Transaction complexity size [B]
Signature on public attribute:

O request credential O(n) 32

@ issue credential O(n) 132
@ verify credential o(1) 162
Signature on private attribute:

O request credential O(n) 516
@ issue credential O(n) 132
@ verify credential o(1) 355

Table 2: Communication complexity and transaction size for the Co-
conut credentials scheme when signing one public and one private at-
tribute (see Figure 2] of Section 3).

desktop computer, 3.6GHz Intel Xeon. Signing is much
faster than verifying signatures—due to the pairing oper-
ation in the latter; verification takes about 10ms; signing
a public attribute is 15 times faster; and signing a private
attribute is about 3 times faster.

Communication complexity and packets size. Ta-
ble 2] shows the communication complexity and the size
of each exchange involved in the Coconut credentials
scheme, as presented in Figure 2] The communication
complexity is expressed as a function of the number of
signing authorities (n), and the size of each attribute is
limited to 32 bytes as the output of the SHA-2 hash func-
tion. The size of a signature is 132 bytes. The highest
transaction type is a requests for a signature on a private
attribute; this is due to the proofs 7, and 7, (see Sec-
tion [3). The proof 7, is approximately 318 bytes and 7,
is 157 bytes.

Client-perceived latency. We evaluate the client-
perceived latency for Coconut threshold credentials
scheme for authorities deployed on Amazon AWS [4]
when issuing partial credentials on one public and one

11

600 -
—F— Public attribute ,
— I~ - Private attribute 7
*
500 - 4
‘/
4/
/
E
400 - 7
£ x
> 7
g 5
L300 A
ks -
ot rJ
5] i
O 200 |- -~
./'
'/
/
100 - /
>~
.)
1 2 3 4 5 6 7 8 9 10

Threshold parameter

Figure 77: Client-perceived latency for Coconut threshold credentials
scheme with geographically distributed authorities.

private attribute. The client requests a partial credential
from 10 authorities, and latency is defined as the time
it waits to receive f-out-of-10 partial signatures. Fig-
ure [/| presents measured latency for a threshold param-
eter t ranging from 1-10. The dots correspond to the av-
erage latency and the error-bars represent the normalized
standard deviation, computed over 100 runs. The client
is located in London while the 10 authorities are geo-
graphically distributed across the world; US East (Ohio),
US West (N. California), Asia Pacific (Mumbai), Asia
Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific
(Tokyo), Canada (Central), EU (Frankfiirt), EU (Lon-
don), and South America (Sao Paulo). All machines are
running a fresh 64-bit Ubuntu distribution, the client runs
on a large AWS instance and the authorities run on nano
instances.

As expected, we observe that the further the author-
ities are from the client, the higher the latency due to
higher response times; the first authorities to respond are
always those situated in Europe, while Sidney and Tokyo
are the latest. Latency grows linearly, with the excep-
tion of a large jump (of about 150 ms) when ¢ increases
from 2 to 3—this is due to the 7 remaining authorities
being located outside Europe. The latency overhead be-
tween credential requests on public and private attributes
remains constant.

6.2 Chainspace Implementation

We evaluate the Coconut smart contract library imple-
mented in Chainspace, as well as the the coin tumbler
(Section[5.T) and the privacy-preserving e-petition (Sec-
tion [5.2)) applications that use this library. As expected,
Table [3| shows that the most time consuming procedures
are the checker of Create and the checker of Verify; i.e.,
they call the BlindVerify primitives which takes about 10

Coconut smart contract library

Privacy-preserving e-petition

Operation u [ms] Vo2 [ms] size [kB] Operation u [ms] Vo2 [ms] size [kB]
Create [g] 0.195 + 0.065 ~1.38 InitPetition [g] 3.260 + 0.209 ~ 1.50
Create [c] 12.099 + 0471 - InitPetition [c] 3.677 +0.126 -
Request [g] 7.094 + 0.641 ~3.77 SignPetition [g] 7.999 + 0.467 ~3.16
Request [c] 6.605 4+ 0.559 - SignPetition [c] 15.801 4 0.537 -
Issue [g] 4.382 + 0.654 ~3.08

Issue [c] 0.024 4 0.001 -

xz:::g %]] 156.5;154 i (1)?23 ~ 1_'76 Table 5: Timing and transaction size of the Chainspace implemen-

Table 3: Timing and transaction size of the Chainspace implemen-
tation of the Coconut smart contract library described in Section 1]
measured over 10,000 runs. The notation [g] denotes the execution the
procedure and [c] denotes the execution of the checker.

Coin tumbler

Operation U [ms] Vo2 [ms] size [kB]
InitTumbler [g] 0.235 + 0.065 ~1.38
InitTumbler [c] 19.359 +0.773 -
Pay [g] 11.939 +0.792 ~4.28
Pay [c] 6.625 + 0.559 -
Redeem [g] 0.132 +0.012 ~3.08
Redeem [c] 11.742 4 0.757 -

Table 4: Timing and transaction size of the Chainspace implemen-
tation of the coin tumbler smart contract (described in Section [5.1),
measured over 10,000 runs; the contract has been tested with two au-
thorities, and one public and one hidden attribute. The notation [g]
denotes the execution the procedure and [c] denotes the execution of
the checker.

ms (see Table [I).

Similarly, the most time consuming procedure of the
coin tumbler (Table @) application and of the privacy-
preserving e-petition (Table [5)) are the checker of Init-
Tumbler and the checker of SignPetition, respectively;
these two checkers call the BlindVerify primitive involv-
ing pairing checks. The Pay procedure of the coin tum-
bler presents the highest transaction size as it is com-
posed of two distinct transactions: a coin transfer trans-
action and a Request transaction from the Coconut con-
tract library. However, they are all practical, i.e., they all
run in a few milliseconds.

6.3 Ethereum Implementation

We evaluate the Coconut Ethereum smart contract library
described in Section [4.2]using the Go implementation of
Ethereum on an Intel Core i5 laptop with 12GB of RAM
running Ubuntu 17.10. Table [6] shows the execution
times and gas costs for different procedures in the smart
contract. The execution times for Create and Verify
are higher than the execution times for the Chainspace
version (Table [3) of the library, due to the different im-

12

tation of the privacy-preserving e-petition smart contract (described in
Section , measured over 10,000 runs. The notation [g] denotes the
execution the procedure and [c] denotes the execution of the checker.

Coconut Ethereum smart contract library

Operation u [ms] V62 [ms] gas
Create 27.45 + 3.054 ~ 23,000
Verify 120.17 +25.133 ~ 2,150,000

Table 6: Timing and gas cost of the Ethereum implementation of the
Coconut smart contract library (described in Section [.2). Measured
over 100 runs, for one public attribute.

plementations. The arithmetic underlying Coconut in
Chainspace is performed through Python naively binding
to C libraries, while in Ethereum arithmetic is defined in
solidity and executed by the EVM.

We also observe that the Verify function has a signif-
icantly higher gas cost than Create. This is mostly due
the implementation of elliptic curve multiplication as a
native Ethereum smart contract—the elliptic curve mul-
tiplication alone costs around ~ 1,700,000 gas, account-
ing for the vast majority of the gas cost, whereas the pair-
ing operation using the pre-compiled contract costs only
260,000 gas. The actual fiat USD costs corresponding to
those gas costs, fluctuate wildly depending on the price
of Ether—Ethereum’s internal value token—the load on
the network, and how long the user wants to wait for the
transaction to be mined into a block. As of February 7th
2018, for a transaction to be confirmed within 6 minutes,
the transaction fee for Verify is $1.74, whereas within
45 seconds, the transaction fee is $43.5E]

The bottleneck of our Ethereum implementation is the
high-level arithmetic in G,. However, Ethereum pro-
vides a pre-compiled contract for arithmetic operations
in G|. We could re-write our cryptographic primitives by
swapping all the operations in G| and G, at the cost of
relying on the SXDH assumption [32]] (which is stronger
than the XDH assumption that we are currently using).

Thttps://ethgasstation.info/

https://ethgasstation.info/

Scheme Blindness Unlinkable Aggregable Threshold Signature Size
[39] Waters Signature X X O X 2 Elements
[26] LOSSW Signature X X e X 2 Elements
[8] BGLS Signature b X ® v 1 Element
[15] CL Signature v v O X O(q) Elements
[31]] Pointcheval et al. v v L X 2 Elements
[Section [3] Coconut v v o v 2 Elements

Table 7: Comparison of Coconut with other relevant cryptographic constructions. The aggregability of the signature scheme reads as follows; O:

not aggregable, ®@: sequentially aggregable, ®: aggregable. The signature size is measured in terms of the number of group elements it is made of,

and ¢ indicates the number of signed messages.

7 Comparison with Related Works

We compare the Coconut cryptographic constructions
and system with related work in Table along the
dimensions of key properties offered by Coconut—
blindness, unlinkability, aggregability (i.e., whether mul-
tiple authorities are involved in issuing the credential),
threshold aggregation (i.e., whether a credential can be
aggregated using signatures issued by a subset of author-
ities), and signature size (see Sections[2]and [3).

The Waters signature scheme [39] provides the bone
structure of our primitive, and introduces a clever solu-
tion to aggregate multiple attributes into short signatures.
However, the original Water’s signature does not allow
blind issuance or unlinkability, and is not aggregable
since it has not been built for use in a multi-authority
setting. Lu ef al. scheme, commonly known as LOSSW
signature scheme [26], is also based on Water’s scheme
and comes with the improvement of being sequentially
aggregable. In a sequential aggregate signature scheme,
the aggregate signature is built in turns by each signing
authority; this requires the authorities to communicate
with each other resulting in increased latency and cost.

The BGLS signature [8]] scheme is built upon the BLS
signature and is remarkable because of its short signa-
ture size—signatures are composed of only one group
element. The BGLS scheme has a number of desir-
able properties as it is aggregable without needing co-
ordination between the signing authorities, and can be
extended to work in a threshold setting [7]. Moreover,
Boneh et al. show how to build verifiably encrypted
signatures [8]] which is close to our requirements, but
not suitable for anonymous credentials. The CL Signa-
ture scheme [15] provides the most well-known build-
ing blocks for anonymous credentials protocols. It pro-
vides blind issuance and unlikability through randomiza-
tion; but signatures are not short since their size grows
linearly with the number of signed attributes, and are
not aggregable. Pointcheval et al. [31] present a con-
struction which is the missing piece of the BGLS signa-
ture scheme; it achieves blindness by allowing signatures

13

on committed values and unlinkability through signature
randomization. However, it only supports sequential ag-
gregation and does not provide threshold aggregation.

We extend these previous works by presenting a short,
aggregable, and randomizable signature scheme; allow-
ing threshold and blind issuance, and a multi-authority
anonymous credentials scheme. Our primitive does not
require sequential aggregation, that is the aggregate op-
eration does not have to be performed by each signer in
turn. Any independent party can aggregate any thresh-
old number of partial signatures into a single aggregate
credential, and verify its validity.

As a final remark, for anonymous credentials in a set-
ting where the signing authorities are also verifiers (i.e.,
without public verifiability), Chasse et al. [17] develop
an efficient protocol. Its ‘GGM’ varient has a similar
structure to Coconut, but forgoes the pairing operation
by using a message authentication code (MACs).

8 Conclusion

Existing selective credential disclosure schemes may be
useful, but do not provide the full set of desired prop-
erties, particularly when it comes to issuing fully func-
tional selective disclosure credentials without sacrific-
ing desirable distributed trust assumptions. In this pa-
per, we presented Coconut—a novel scheme that sup-
ports distributed threshold issuance, public and private
attributes, re-randomization, and multiple unlinkable se-
lective attribute revelations. We provided an overview
of the Coconut system, and the cryptographic primitives
underlying Coconut; an implementation and evaluation
of Coconut as a smart contract library in Chainspace and
Ethereum, a sharded and a permissionless blockchain re-
spectively; and three diverse and important application
to anonymous payments, petitions and censorship resis-
tance. The Coconut fills an important gap in the litera-
ture and enables selective disclosure credentials—an im-
portant privacy enhancing technology—to be embedded
into modern transparent computation platforms.

Acknowledgements.

George Danezis, Shehar Bano

and Alberto Sonnino are supported in part by EP-
SRC Grant EP/N028104/1 and the EU H2020 DECODE
project under grant agreement number 732546. Mustafa
Al-Bassam is supported by a scholarship from The Alan
Turing Institute. We extend our thanks to Jonathan Boo-
tle, Andrea Cerulli, and Natalie Eskinazi for helpful sug-
gestions on early manuscripts.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(10]

(11]

[12]

[13]

petlib. “https://github.com/gdanezis/petlib’’,
2017 (version July 20, 2017).

bplib. "https://github.com/gdanezis/bplib[’, 2017
(version October 12, 2017).

AL-BASSAM, M., SONNINO, A., BANO, S., HRYCYSZYN, D.,
AND DANEZIS, G. Chainspace: A sharded smart contracts plat-
form. arXiv preprint arXiv:1708.03778 (2017).

AMAZON WEB SERVICES, I. Aws whitepapers. “https://
aws.amazon.com/whitepapers/’, 2017 (version April,
2017).

BACK, A., CORALLO, M., DASHIR, L., FRIEDENBACH, M.,
MAXWELL, G., MILLER, A., POELSTRA, A., TIMON, J.,
AND WUILLE, P. Enabling blockchain innovations with pegged
sidechains. http://www.opensciencereview.com/
papers/123/enablingblockchain—-innovations—
with-pegged-sidechains (2014).

BIssIAS, G., OziSIK, A. P, LEVINE, B. N., AND LIBERA-
TORE, M. Sybil-resistant mixing for bitcoin. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society (New
York, NY, USA, 2014), WPES ’14, ACM, pp. 149-158.

BOLDYREVA, A. Efficient threshold signature, multisignature
and blind signature schemes based on the gap-diffie-hellman-
group signature scheme. IACR Cryptology ePrint Archive 2002
(2002), 118.

BONEH, D., GENTRY, C., LYNN, B., AND SHACHAM, H. Ag-
gregate and verifiably encrypted signatures from bilinear maps.
In Eurocrypt (2003), vol. 2656, Springer, pp. 416-432.

BONEH, D., LYNN, B., AND SHACHAM, H. Short signatures
from the weil pairing. Advances in CryptologyASIACRYPT 2001
(2001), 514-532.

BONEH, D., SHEN, E., AND WATERS, B. Strongly unforgeable
signatures based on computational diffie-hellman. In Public Key
Cryptography (2006), vol. 3958, Springer, pp. 229-240.

BONNEAU, J., NARAYANAN, A., MILLER, A., CLARK, T.,
KROLL, J. A., AND FELTEN, E. W. Mixcoin: Anonymity for
bitcoin with accountable mixes. In Financial Cryptography 2014
(2014).

BUNz, B., BOOTLE, J., BONEH, D., POELSTRA, A., WUILLE,
P., AND MAXWELL, G. Bulletproofs: Short proofs for confiden-
tial transactions and more.

BUTERIN, V., AND REITWIESSNER, C. Ethereum im-
provement proposal 197 - precompiled contracts for op-
timal ate pairing check on the elliptic curve alt_bnl28.
https://github.com/ethereum/EIPs/blob/
master/EIPS/eip—-197.md, 2017.

14

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

CACHIN, C. Architecture of the hyperledger blockchain fab-
ric. In Workshop on Distributed Cryptocurrencies and Consensus
Ledgers (2016).

CAMENISCH, J., AND LYSYANSKAYA, A. Signature schemes
and anonymous credentials from bilinear maps. In Annual Inter-
national Cryptology Conference (2004), Springer, pp. 56-72.

CAMENISCH, J., AND STADLER, M. Proof systems for general
statements about discrete logarithms.

CHASE, M., MEIKLEJOHN, S., AND ZAVERUCHA, G. Alge-
braic macs and keyed-verification anonymous credentials. In Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (2014), ACM, pp. 1205-1216.

CHAUM, D., FIAT, A., AND NAOR, M. Untraceable electronic
cash. In Conference on the Theory and Application of Cryptog-
raphy (1988), Springer, pp. 319-327.

Diaz, C., KOSTA, E., DEKEYSER, H., KOHLWEISS, M., AND
NIGUSSE, G. Privacy preserving electronic petitions. Identity in
the Information Society 1, 1 (2008), 203-219.

GALBRAITH, S. D., PATERSON, K. G., AND SMART, N. P.
Pairings for cryptographers. Discrete Applied Mathematics 156,
16 (2008), 3113-3121.

GENNARO, R., JARECKI, S., KRAWCZYK, H., AND RABIN,
T. Secure distributed key generation for discrete-log based cryp-
tosystems. In Eurocrypt (1999), vol. 99, Springer, pp. 295-310.

GOLDWASSER, S., MICALI, S., AND RIVEST, R. L. A digi-
tal signature scheme secure against adaptive chosen-message at-
tacks. SIAM Journal on Computing 17,2 (1988), 281-308.

HEILMAN, E., ALSHENIBR, L., BALDIMTSI, F., SCAFURO,
A., AND GOLDBERG, S. Tumblebit: An untrusted bitcoin-
compatible anonymous payment hub. In NDSS 2017 (2016).

KASAMATSU, K. Barreto-naehrig curves.
//tools.ietf.org/id/draft-kasamatsu—
bncurves-01.html"”, 2014 (version August 14, 2014).

“https:

KOKORIS-KOGIAS, E., JOVANOVIC, P., GASSER, L., GAILLY,
N., AND FORD, B. Omniledger: A secure, scale-out, decentral-
ized ledger. IACR Cryptology ePrint Archive 2017 (2017), 406.

Lu, S., OSTROVSKY, R., SAHAI, A., SHACHAM, H., AND WA-
TERS, B. Sequential aggregate signatures, multisignatures, and
verifiably encrypted signatures without random oracles. Journal
of cryptology 26, 2 (2013), 340-373.

LYSYANSKAYA, A., MICALI, S., REYZIN, L., AND SHACHAM,
H. Sequential aggregate signatures from trapdoor permutations.
In International Conference on the Theory and Applications of
Cryptographic Techniques (2004), Springer, pp. 74-90.

MAXWELL, G. Coinjoin: Bitcoin privacy for the real world.
https://bitcointalk.org/index.php?topic=
279249, 2013.

MEIKLEJOHN, S., AND MERCER, R. Mobius: Trustless tum-
bling for transaction privacy. In Proceedings of Privacy Enhanc-
ing Technologies (2018).

PFITZMANN, A., AND KOHNTOPP, M. Anonymity, unobserv-
ability, and pseudonymitya proposal for terminology. In Design-
ing privacy enhancing technologies (2001), Springer, pp. 1-9.

https://github.com/gdanezis/petlib
https://github.com/gdanezis/bplib
https://aws.amazon.com/whitepapers/
https://aws.amazon.com/whitepapers/
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md
https://tools.ietf.org/id/draft-kasamatsu-bncurves-01.html
https://tools.ietf.org/id/draft-kasamatsu-bncurves-01.html
https://tools.ietf.org/id/draft-kasamatsu-bncurves-01.html
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249

[31] POINTCHEVAL, D., AND SANDERS, O. Short randomizable sig-
natures. In Cryptographers Track at the RSA Conference (2016),
Springer, pp. 111-126.

[32] RAMANNA, S. C., AND SARKAR, P. Efficient adaptively secure
ibbe from the sxdh assumption. IEEE Transactions on Informa-
tion Theory 62, 10 (2016), 5709-5726.

[33] REITWIESSNER, C. Ethereum improvement proposal 196 -
precompiled contracts for addition and scalar multiplication
on the elliptic curve alt.-bnl28. https://github.com/
ethereum/EIPs/blob/master/EIPS/eip-196.md,
2017.

[34] RUFFING, T., MORENO-SANCHEZ, P., AND KATE, A. Coin-
shuffle: Practical decentralized coin mixing for bitcoin. In ES-
ORICS (2) (2014), vol. 8713 of Lecture Notes in Computer Sci-
ence, Springer, pp. 345-364.

[35] SHAMIR, A. How to share a secret. Communications of the ACM
22,11 (1979), 612-613.

[36] THE GUARDIAN. History of 5-Eyes Explainer.
http://www.thequardian.com/world/2013/dec/
02/history-of-5-eyes—explainer, 2013.

[37] THE TOR PROJECT. meek-google suspended for terms
of service violations (how to set up your own), 2016.
https://lists.torproject.org/pipermail/tor—
talk/2016-June/041699.html,

[38] VALENTA, L., AND ROWAN, B. Blindcoin: Blinded, account-
able mixes for bitcoin. In Financial Cryptography and Data
Security (Berlin, Heidelberg, 2015), M. Brenner, N. Christin,
B. Johnson, and K. Rohloff, Eds., Springer Berlin Heidelberg,
pp. 112-126.

[39] WATERS, B. Efficient identity-based encryption without random
oracles. In Eurocrypt (2005), vol. 3494, Springer, pp. 114-127.

[40] WooD, G. Ethereum: A secure decentralised generalised trans-
action ledger eip-150 revision. “http://gavwood.com/
paper.pdf’, 2016 (visited August 9, 2017).

A Primitives Definitions

We present an overview of the cryptographic primitives
described in Section 3

% Setup(1%): defines the system parameters params
with respect to the security parameter A. These
params are publicly available.

% KeyGen(params): from the public params, each
signer generates its own secret key sk and verifica-
tion key vk.

% Sign(sk,m): generates a signature on a public att-
tribute m using the secret key sk.

< AggregateSign(oy,...,0,-1): aggregates n partial
credentials into one consolidated credential.

% AggregateKey(vko,...,vk,—1): aggregates the ver-
ification keys of n authorities into a single key.

< Randomize(c): randomizes the credential G.

< Verify(vk,m,c): verifies the validity of credential ¢
on the attribute m using the verification key vk.

When handling private attributes (Section [3.3), we re-
place the algorithms Sign and Verify by the following
protocols:

< PrepareBlindSign(m) + BlindSign(sk, ¢, ¢, 7,):
the user requests a blind signature on a private
attribute m to an authority by proving in zero-
knowledge (7,) the correctness of the commitment
cm and El-Gamal encryption ¢ of m.

< ShowBIlindSign(vk,m) <> BlindVerify(x,v,o,x,):
to show possession of a signed attribute ¢ without
revealing it, we follow the standard approach
where the algorithm ShowBIindSign is a proof of
knowledge of the credential; i.e., using the proof 7,
and the group element k instead of the plain-text
values to verify the credentials.

The Coconut threshold credentials scheme replace the
algorithm AggregateSign by AggregateThSign rely-
ing on a threshold of authorities, rather than all of them:

< AggregateThSign(oy,...,0;): aggregates any
subset of ¢ partial credentials into one consolidated
credential.

B Sketch of Security Proofs

This appendix sketches the security proofs of the crypto-
graphic construction described in Section 3]

B.1 Security of the Coconut Signature
Scheme

First, the co-CDH problem can be rephrased in this con-
text as follows: it is computationally unfeasible for an
algorithm ¢ knowing only (g2,g8%) € G3 and h € G,
(where a € IF)) to output 1 € G.

Then, Pointcheval et al. [31] proposed an assumption
based on the LRSW Assumption [27] and on the co-CDH
problem that can be rephrased in our context as follows.
Considering vk = (g2,85.85) € G% where x,y € IFIZJ, an
oracle &(m) oninput m € IF,, chooses arandom i € G\ 1
and outputs the pair 6 = (h,€) = (h, I*™™); given vk and
unlimited access to &, it is computationally unfeasible to
output ¢ for a new m’ € F, that has not been queried to
0.

Finally, we create a modified oracle & that acts ex-
actly as & but doesn’t generate & at random; it computes
h = H(g}") instead. Under the Random Oracle Assump-
tion, the EUF-CMA security of our scheme follows from
the above since the modified oracle &” is perfectly equiv-
alent to a signing oracle.

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-196.md
http://www.theguardian.com/world/2013/dec/02/history-of-5-eyes-explainer
http://www.theguardian.com/world/2013/dec/02/history-of-5-eyes-explainer
https://lists.torproject.org/pipermail/tor-talk/2016-June/041699.html
https://lists.torproject.org/pipermail/tor-talk/2016-June/041699.html
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

B.2 Security of the Coconut Anonymous
Credentials Scheme

The following paragraphs argue about the unforgeability,
unlinkability and blindness of the Coconut anonymous
credentials scheme.

Unforgeability. The unforgeability of the Coconut
anonymous credentials scheme relies on the unforgeabil-
ity of the underlying signature scheme (see Theorem [I)).
It can be shown that if there is a forger </ capable of
forging a credential, then an algorithm % can query .o/
to break the underlying signature scheme. Intuitively,
% would execute PrepareBlindSign and get a forgery
from .7 on a hidden attribute m; then uses her private El-
Gamal key to call Unblind on the credential and output
a valid forgery on the signature scheme.

Unlinkability. The unlinkability property means that
the verifier cannot link multiple executions of the
ShowSign «» BlindVerify protocol between each other
or with the execution of PrepareBlindSign <> Blind-
Sign (for a given attribute m). This property is enabled
by the possibility to re-randomize the signature. Intu-
itively, given two randomized signatures, oy and o7 on
the attributes mq and m, respectively; there is no adver-
sary capable to distinguish which one is a signature on
mo and which one is a signature on m, since both signa-
ture are randomly distributed over G%. More specifically,
considering signature ¢ on the attribute m, one can pick a
random ¢ € F, and randomized this signature as follows:

o' = Randomize(c) = (K',€")

Therefore, we can argue that since ¢ is randomly dis-
tributed in I, o’ is randomly distributed in G%.

Blindness. Blindness ensures that the signer will not
learn any additional information about the messages m
during the execution of BlindSign. This property is
guaranteed by the security properties of the El-Gamal
encryption system since the input of BlindSign is an
El-Gamal encryption of m. Also, the ShowBlindSign
algorithm does not reveal any information about m nei-
ther by the zero-knowledge property of the proof 7,.

C Ethereum tumbler

We extend the example of the tumbler application de-
scribed in Section[3.1]to the Ethereum version of the Co-
conut library, with a few modifications to reduce the gas
costs incurred and to adapt the system for Ethereum. In-
stead of having v (the number of coins) as an attribute,

16

which would increase the number of elliptic curve mul-
tipications required to verify the credentials, we allow
for a fixed number of instances of Coconut to be setup
for different denominations for v. The Tumbler has a
Deposit method, where users can deposit Ether into the
contract, and then send an issuance request to authori-
ties on one private attribute: addr||s, where addr is the
destination address of the merchant, and s is a randomly
generated sequence number (1). It is necessary for addr
to be a part of the attribute because once the attribute
is revealed, the credential can be spent by anyone with
knowledge of the attribute (including any peers monitor-
ing the blockchain for transactions), therefore the cre-
dential must be bounded to a specific recipient address
before it is revealed. This issuance request is signed by
the Ethereum address that deposited the Ether into the
smart contract, as proof that the request is associated with
a valid deposit, and sent to the authorities (2). As addr
and s will be both revealed at the same time when with-
drawing the token, we concatenate these in one attribute
to save elliptic curve operations.

After the authorities issued the credentials to the
users (3), they aggregate them and re-randomize them
as usual. The resulting token can then be passed to the
Withdraw function, where the withdrawer reveals addr
and s (4). As usual, the contract maintains a map of s val-
ues associated with tokens that have already been with-
drawn to prevent double-spending. After checking that
the token’s credentials verifies and the it has not already
been spent, the contract sends v to the Ethereum destina-
tion address addr (5).

	1 Introduction
	2 Overview of Coconut
	3 Cryptographic Constructions
	3.1 Notations and Assumptions
	3.2 The Coconut Signature Scheme
	3.3 The Coconut Anonymous Credentials Scheme
	3.4 The Coconut Threshold Credentials Scheme
	3.5 Multi-Attributes Signatures

	4 Implementation
	4.1 The Coconut Smart Contract Library
	4.2 Ethereum Smart Contract Library
	4.3 Deeper Blockchain Integration

	5 Applications
	5.1 Coin Tumbler
	5.2 Privacy-preserving petition
	5.3 Censorship-resistant distribution of proxies

	6 Evaluation
	6.1 Cryptographic Primitives
	6.2 Chainspace Implementation
	6.3 Ethereum Implementation

	7 Comparison with Related Works
	8 Conclusion
	A Primitives Definitions
	B Sketch of Security Proofs
	B.1 Security of the Coconut Signature Scheme
	B.2 Security of the Coconut Anonymous Credentials Scheme

	C Ethereum tumbler

