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Abstract
We consider the setting of prediction with expert advice; a learner makes predictions by aggre-

gating those of a group of experts. Under this setting, and with the right choice of loss function and
“mixing” algorithm, it is possible for the learner to achieve constant regret regardless of the num-
ber of prediction rounds. For example, constant regret can be achieved with mixable losses using
the Aggregating Algorithm (AA). The Generalized Aggregating Algorithm (GAA) is a name for a
family of algorithms parameterized by convex functions on simplices (entropies), which reduce to
the AA when using the Shannon entropy. For a given entropy Φ, losses for which constant regret
is possible using the GAA are called Φ-mixable. Which losses are Φ-mixable was previously left
as an open question. We fully characterize Φ-mixability, and answer other open questions posed
by Reid et al. (2015). We also elaborate on the tight link between the GAA and the mirror descent
algorithm which minimizes the weighted loss of experts.

1. Introduction

Two fundamental problems in learning are how to aggregate information and under what circum-
stances can one learn fast. In this paper, we consider the problems jointly, extending the under-
standing and characterization of exponential mixing due to Vovk (1998), who showed that not only
does the “aggregating algorithm” learn quickly when the loss is suitably chosen, but that it is in
fact a generalization of classical Bayesian updating, to which it reduces when the loss is log-loss.
We consider a general class of aggregating schemes, going beyond Vovk’s exponential mixing, and
provide a complete characterization of the mixing behavior for general losses and general mixing
schemes parameterized by an arbitrary entropy function.

In the game of prediction with expert advice a learner predicts the outcome of a random variable
(outcome of the environment) by aggregating the predictions of a pool of experts. At the end of
each prediction round t, the outcome of the environment is announced and the learner and experts
suffer losses based on their predictions. We are interested in algorithms that the learner can use to
“aggregate” the experts’ predictions and minimize the regret at the end of the game. In this case,
the regret is defined as the difference between the cumulative loss of the learner and that of the best
expert (in hindsight) after T rounds; if `t(atθ) [resp. `t(at∗)] is the loss suffered by expert θ ∈ [k]
[resp. the learner] who makes prediction atθ [resp. at∗] at round t, then after T rounds the regret can
be expressed as

R`(T ) =
∑

1≤t≤T
`t(a

t
∗)− inf

θ∈[k]

∑
1≤t≤T

`t(a
t
θ).
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GENERALIZED MIXABILITY

The Aggregating Algorithm (AA) (Vovk, 1998) achieves constant regret — a precise notion
of “fast learning” — for mixable losses (formally defined later); that is, R`(T ) is bounded from
above by a constant R` independently of the number of rounds T . In this case, it is said that
the algorithm achieves a fast rate for the corresponding loss. Reid et al. (2015) introduced the
Generalized Aggregating Algorithm (GAA), going beyond the AA. The GAA is parameterized by
the choice of a convex function Φ on the simplex (entropy) and reduces to the AA when Φ is the
Shannon entropy. The GAA can achieve fast rates for losses satisfying a certain mixability condition
(Φ-mixability). In particular, when a loss ` is Φ-mixable, the GAA achieves a constant regret RΦ

`

which depends jointly on the generalized mixability constant ηΦ
` — the largest η such that ` is

( 1
ηΦ)-mixable — and the divergence DΦ(eθ, q), where q ∈ ∆k is a prior distribution over experts

(indexed by θ ∈ [k]) and eθ is the θ’th standard basis element (Reid et al., 2015). Characterizing
when losses are Φ-mixable was left as an open problem.

At each prediction round, the GAA can be divided into two steps; a substitution step where the
learner picks a prediction from a set specified by the Φ-mixability condition; and an update step
where a new distribution q over experts is computed depending on their performance on the new
outcome of the environment and the previous distribution. The set of predictions specified by the
Φ-mixability condition is non-empty when the loss is Φ-mixable. Interestingly, the update step of
the GAA is exactly the Mirror Descent Algorithm (MDA) (Steinhardt and Liang, 2014; Orabona
et al., 2015) which minimizes the weighted loss of experts. In fact, both the MDA and the GAA use
a divergence “measure” DΦ, generated by a convex function Φ, as a regularizer when updating the
distribution q.

Contributions. In this paper, we answer the questions presented by Reid et al. (2015) around
the notion of generalized mixability using entropic duality. For an entropy Φ and a loss `, we derive
a necessary and sufficient condition (Theorems 15 and 16) for ` to be Φ-mixable. In particular, if `
and Φ satisfy some regularity conditions, then ` is Φ-mixable if and only if η`Φ−S is convex on the
simplex, where S is the Shannon entropy and η` the largest η such that ` is η-mixable (Vovk, 1998;
van Erven et al., 2012).

We derive an explicit expression for ηΦ
` (Corollary 18), and hence, for the regret bound of the

GAA. This allows us to compare the regret bound RΦ
` of any entropy Φ (such that ` is Φ-mixable)

with that of the Shannon entropy S. In this case, we show (Theorem 19) that RS
` ≤ RΦ

` ; that
is, the Shannon entropy achieves the lowest worst-case regret when using the GAA. This fact is
similar to Vovk’s result regarding the fundamental nature of log-loss (Vovk, 2015). Nevertheless,
by leveraging the connection between the GAA and MDA, we discuss possible modifications to the
GAA to enable better regret bounds in practice.

In Section 2, we introduce notations used throughout the paper and give some background on
key notions in convex analysis which will be crucial in our proofs. We also present loss functions
considered in the paper and state some new results (Theorem 3 and 4) along with corrected proofs for
old ones (Theorem 5). In Section 3, we introduce the notions of classical and generalized mixability
and derive some useful properties and characterizations. In particular, we derive a necessary and
sufficient condition for Φ-mixability (Theorems 15 and 16). We also elucidate the tight relationship
between the GAA and the MDA first observed by Reid et al. (2015). We conclude this paper by a
general discussion and direction for future work.
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GENERALIZED MIXABILITY

2. Preliminaries

In this section, we introduce the notation used throughout the paper and present some key concepts
in convex analysis. We also define entropies and describe loss functions considered in this paper.
Furthermore, we present some new results regarding the latter.

2.1. Notations

For n ∈ N, we define ñ = n − 1. We denote [n] := {1, . . . , n} the set of integers between 1 and
n. Let 〈·, ·〉 denote the standard inner product in Rn and ‖·‖ the corresponding norm. Let In and 1n
denote the n×n identity matrix and the vector of all ones in Rn. Let e1, . . . , en denote the standard
basis for Rn. For a set I ( N and r1, . . . , rn ∈ Rk, we denote [ri]i∈I := [ri1 , . . . , rik ] ∈ Rn×k,
where I = {i1, . . . , ik} and i1 ≤ · · · ≤ ik. We denote its transpose by [ri]

T
i∈I ∈ Rk×n. For two

vectors p, q ∈ Rn, we write p ≤ q [resp. p < q], if ∀i ∈ [n], pi ≤ qi [resp. pi < qi]. We also
denote p � q = [piqi]

T
1≤i≤n ∈ Rn the Hadamard product of p and q. If (ck) is a sequence of

vectors in C ⊆ Rn, we simply write (ck) ⊂ C. For a sequence (vm) ⊂ Rn, we write vm
m→∞→ v

or limm→∞ vm = v, if ∀i ∈ [n], limm→∞[vm]i = vi. For a square matrix A ∈ Rn×n, λmin(A)
[resp. λmax(A)] denote its minimum [resp. maximum] eigenvalue. For k ≥ 1, u ∈ [0,+∞[k and
w ∈ Rk, we define logu := [log ui]

T
1≤i≤k ∈ Rk and expw := [expwi]

T
1≤i≤k ∈ Rk.

Let ∆n := {p ∈ [0,+∞[n: 〈p,1n〉 = 1} be the probability simplex in Rn. We also define
∆̃n := {p̃ ∈ [0,+∞[ñ: 〈p̃,1ñ〉 ≤ 1}. We will use the notations ∆k

n := (∆n)k and ∆̃k
n := (∆̃n)k.

For I ⊆ [n], the set ∆I = {q ∈ ∆n : qi = 0,∀i ∈ [n] \ I} is a |I|-face of ∆n. We denote
Πn
I : Rn → R|I| the linear projection operator satisfying Πn

Iu = [ui]
T
i∈I . It is easy to verify that

Πn
I [Π

n
I ]

T = I|I| and that q 7→ Πn
Iq is a bijection from ∆I to ∆|I|. In the special case where

I = [ñ], we write Πn := Πn
[ñ] and we define the affine operator qn : Rñ → Rn by qn(u) :=

[u1, . . . , uñ, 1− 〈u,1ñ〉]T = Jnu+ en, where Jn :=
[
Iñ
−1T

ñ

]
∈ Rn×ñ.

For u ∈ Rn and c ∈ R, we denote Hu,c := {y ∈ Rn : 〈y,u〉 ≤ c} and B(u, c) := {v ∈ Rn :
‖u− v‖ ≤ c}. Hu,c is a closed half space and B(u, c) is the c-ball in Rn centered at u. Let C ⊆ Rn
be a non-empty set. We denote int C, ri C, bd C, and rbd C the interior, relative interior, boundary,
and relative boundary of a set C ∈ Rn, respectively (Hiriart-Urruty and Lemaréchal, 2001). We
denote the indicator function of C by ιC , where for u ∈ C, ιC(u) = 0, otherwise ιC(u) = +∞. The
support function of C is defined by

σC(u) := sup
s∈C
〈u, s〉 , u ∈ Rn.

Let f : Rn → R ∪ {+∞}. We denote dom f := {u ∈ Rn : f(u) < +∞} the effective
domain of f . The function f is proper if dom f 6= ∅. The function f is convex if ∀(u,v) ∈ Rn
and λ ∈]0, 1[, f(λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v). When the latter inequality is strict
for all u 6= v, f is strictly convex. When f is convex, it is closed if it is lower semi-continuous;
that is, for all u ∈ Rn, lim infv→u f(v) ≥ f(u). The function f is said to be 1-homogeneous
if ∀(u, α) ∈ Rn×]0,+∞[, f(αu) = αf(u), and it is said to be 1-coercive if f(u)

‖u‖ → +∞ as
‖u‖ → ∞. Let f be proper. The sub-differential of f is defined by

∂f(u) := {s∗ ∈ Rn : f(v) ≥ f(u) + 〈s∗,v − u〉 , ∀v ∈ Rn}.

3



GENERALIZED MIXABILITY

Any element s ∈ ∂f(u) is called a sub-gradient of f at u. We say that f is directionally differen-
tiable if for all (u,v) ∈ dom f×Rn the limit limt↓0

f(u+tv)−f(u)
t exists in [−∞,+∞]. In this case,

we denote the limit by f ′(u;v). When f is convex, it is directionally differentiable (Rockafellar,
1997). Let f be proper and directionally differentiable. The divergence generated by f is the map
Df : Rn × dom f → [0,+∞] defined by

Df (v,u) :=

{
f(v)− f(u)− f ′(u;v − u), if v ∈ dom f ;
+∞, otherwise.

For I ⊂ [n] and fI := f ◦ [Πn
I ]

T, it is easy to verify that (fI)′(Πn
Ip; Πn

Iq − Πn
Ip) = f ′(p; q −

p),∀(p, q) ∈ ∆I . In this case, it holds that Df (q,p) = DfI (Π
n
Iq,Π

n
Ip). If f is differentiable

[resp. twice differentiable] at u ∈ int dom f , we denote ∇f(u) ∈ Rn [resp. Hf(u) ∈ Rn×n] its
gradient vector [resp. Hessian matrix] at u. A vector-valued function g : Rn → Rm is differentiable
at u if for all i ∈ [m], gi is differentiable at u. In this case, the differential of g at u is the
linear operator Dg(u) : Rn → Rm defined by Dg(u) := [∇gi(u)]T1≤i≤m. If f has k continuous
derivatives on a set Ω ⊂ Rk, we write f ∈ Ck(Ω).

We define f̃ : Rñ → R ∪ {+∞} by f̃ := f ◦ qn + ι∆̃n
. That is,

f̃(ũ) :=

{
f(Jnũ+ en), for ũ ∈ ∆̃n;

+∞, for ũ ∈ Rn−1 \ ∆̃n.
(1)

If f̃ is directionally differentiable, then f ′(p, q − p) = f̃ ′(p̃, q̃ − p̃), for p, q ∈ ∆n. If f̃ is
differentiable at p̃ = Πn(p), then f̃ ′(p̃, q̃−p̃) = 〈∇f̃(p̃), q̃−p̃〉. If, additionally, f is differentiable
at p ∈ ri ∆k, the chain rule yields∇f̃(p̃) = JT

n∇f(p). Since Jn(p̃− q̃) = qn(p̃− q̃) = p− q, it
also follows that 〈p̃− q̃,∇f̃(p̃)〉 = 〈p− q,∇f(p)〉.

The Fenchel dual of a (proper) function f is defined by f∗(v) := supu∈dom f 〈u,v〉−f(u), and
it is a closed, convex function on Rn (Hiriart-Urruty and Lemaréchal, 2001). Some useful properties
of the Fenchel dual are given in Appendix A.

2.2. Entropies on the simplex

A function Φ: Rk → R∪{+∞} is an entropy if it is closed, convex, and ∆k ⊆ dom Φ. Its entropic
dual Φ? : Rk → R ∪ {+∞} is defined by Φ?(z) := supq∈∆k

〈q, z〉 − Φ(q), z ∈ Rk. For the
remainder of this paper, we consider entropies defined on Rk, where k ≥ 2.

Let Φ: Rk → R ∪ {+∞} be an entropy and Φ∆ := Φ + ι∆k
. In this case, Φ? = Φ∗∆. It is clear

that Φ∆ is 1-coercive, and therefore, dom Φ? = dom Φ∗∆ = Rk (Hiriart-Urruty and Lemaréchal,
2001, Prop. E.1.3.8). The entropic dual of Φ can also be expressed using the Fenchel dual of
Φ̃ : Rk−1 → R ∪ {+∞} defined by (1) after substituting f by Φ and n by k. In fact,

Φ?(z) = sup
q̃∈∆̃k

〈Jkq̃ + ek, z〉 − Φ(Jkq̃ + ek),

= 〈ek, z〉+ sup
q̃∈∆̃k

〈
q̃, JT

k z
〉
− Φ̃(q̃),

= 〈ek, z〉+ Φ̃∗(JT
k z), (2)

where (2) follows from the fact that dom Φ̃ = ∆̃k. Note that when Φ is an entropy, Φ̃ is a closed
convex function on Rk−1. Hence, it holds that Φ̃∗∗ = Φ̃ (Rockafellar, 1997).
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GENERALIZED MIXABILITY

The Shannon entropy by S(q) :=
∑

i∈[k]:qi 6=0 qi log qi,1 if q ∈ [0,+∞[k; and +∞ otherwise. In
the next proposition, we give the expressions of the entropic dual of S as well as the Fenchel dual
S̃. The proof is in Appendix C.1.

Proposition 1 For the Shannon entropy S, it holds that S̃
∗
(v) = log(〈exp(v),1k̃〉+1), ∀v ∈ Rk−1,

and S?(z) = log〈exp(z),1k〉, ∀z ∈ Rk.

2.3. Loss Functions

In general, a loss function is a map ` : X × A → [0,+∞] where X is an outcome set and A is a
prediction set. In this paper, we consider the case of n possible outcomes; X = [n]. Overloading
notation slightly, we define the mapping ` : A → [0,+∞]n by [`(a)]x = `(x,a),∀x ∈ [n] and
denote `x(·) := [`(·)]x. We further extend the new definition of ` to the set

⋃
k≥1Ak such that

for x ∈ [n] and A := [aθ]
T
θ∈[k] ∈ A

k, we have `x(A) := [`x(aθ)]
T
θ∈[k] ∈ [0,+∞]k. We define

the effective domain of ` by dom ` := {a ∈ A : `(a) ∈ [0,+∞[n}, and the loss surface by
S` := {`(a) : a ∈ dom `}. We say that ` is closed if S` is closed. The superprediction set of `
is defined by S⊕` := S` ⊕ [0,+∞[n, where ⊕ denotes the Minkowski sum. The η-exponentiated
superprediction set of ` is defined by exp(−ηS⊕` ) := {exp(−ηs) : s ∈ S⊕` }. Let a0,a1 ∈ A. The
prediction a0 is said to be better than a1 if `(a0) ≤ `(a1) and for some x ∈ [n], `x(a0) < `x(a1)
(Williamson et al., 2016). A loss ` is admissible if for any a ∈ A there are no better predictions. A
loss ` is said to be trivial if there exists a prediction a ∈ A which minimizes ` over all outcomes
x ∈ [n]. Thus, a closed loss is non-trivial if there exists (x0, x1,a0,a1) ∈ [n]× [n]×A×A such
that

a1 ∈ argmin{`x0(a) : `x1(a) = inf
â∈A

`x1(â)} and inf
a∈A

`x0(a) = `x0(a0) < `x0(a1). (3)

In the rest of this paper, we will often make use of the following condition on losses.

Condition I ` is a closed, admissible, and non-trivial loss such that dom ` 6= ∅.

In this paragraph letA = ∆n. We define the conditional risk L` : ∆n×∆n → R by L`(p, q) =
Ex∼p[`x(q)] = 〈p, `(q)〉 and the Bayes risk by L`(p) := infq∈∆n L`(p, q). In this case, the loss `
is proper [resp. strictly proper] if L`(p) = 〈p, `(p)〉 ≤ 〈p, `(q)〉 [resp. 〈p, `(p)〉 < 〈p, `(q)〉] for
all p 6= q in ∆n. For example, the log-loss `log : ∆n → [0,+∞]n is defined by `log(p) = − log p,
where the “log” of a vector applies coordinate-wise. One can easily check that `log is strictly proper.
We denote Llog the corresponding Bayes risk.

The above definition of the Bayes risk is restricted to losses defined on the simplex. For a loss
` : A → [0,+∞]n, we use the following definition of the Bayes risk.

Definition 2 (Bayes Risk (Williamson, 2014)) Let ` : A → [0,+∞]n be a loss such that S⊕` 6= ∅.
The Bayes risk L` : Rn → R ∪ {−∞} is defined by

∀u ∈ Rn, L`(u) := inf
z∈S⊕`

〈u, z〉 = −σS⊕` (−u).

1. The Shannon entropy is usually defined with a minus sign. However, it will be more convenient for us to work
without it.

5



GENERALIZED MIXABILITY

Note that since S⊕` is a non-empty subset of [0,+∞[n, u 7→ σS⊕`
(−u) is convex and finite on

[0,+∞[n; it is bounded from above by 0. In particular, ∂σS⊕` (−p) 6= ∅ for all p ∈ ri ∆n ⊂
int domσS⊕`

=]0,+∞[n (Rockafellar, 1997, Thm. 23.4).
We call ` : ∆n → [0,+∞]n a support loss of ` if ∀p ∈ ri ∆n, `(p) ∈ ∂σS⊕`

(−p), and

∀p ∈ rbd ∆n, there exists a sequence (pm) ⊂ ri ∆n, such that `(pm)
m→∞→ `(p).

Theorem 3 Any loss ` : A → [0,+∞]n such that dom ` 6= ∅, has a proper support loss ` whose
Bayes risk is L`.

The proof of the proposition is in Appendix C.2. Note that when the Bayes risk is differentiable
on ]0,+∞[n, or equivalently, when u 7→ σS⊕`

(−u) is differentiable on ]0,+∞[n, the support loss
of ` is uniquely defined on ri ∆n. This is because when σS⊕` is differentiable at −p, ∂σS⊕` (−p) =

{∇σS⊕` (−p)} = {`(p)} (Hiriart-Urruty and Lemaréchal, 2001, Cor. D.2.1.4).

Theorem 4 Let ` : A → [0,+∞]n be a loss satisfying Condition I and ` a proper support loss of
`. If L` is not differentiable at p then there exist a0,a1 ∈ dom `, such that `(a0) 6= `(a1) and
L`(p) = 〈p, `(p)〉 = 〈p, `(a0)〉 = 〈p, `(a1)〉.

If the Bayes risk L` is differentiable on ]0,+∞[n, then

∀p ∈ dom `, ∃a∗ ∈ dom `, `(a∗) = `(p),

∀a ∈ dom `, ∃(pm) ⊂ ri ∆n, `(pm)
m→∞→ `(a).

The proof is in Appendix C.3. Note that we always have ri ∆n ⊂ dom `. Consistent with the
notations introduced in the previous subsection, we write ˜̀ := ` ◦ qn and L̃` := L` ◦ qn.

In the literature, many theoretical results involving loss functions relied on the fact that the
superprediction set of a proper loss is convex (Williamson et al., 2016; Dawid, 2007). An earlier
proof of this result by Williamson et al. (2016) was incomplete2. In the next theorem, we restate
this result and prove it in Appendix C.4.

Theorem 5 If ` : ∆n → [0,+∞[n is a continuous proper loss, then S⊕` =
⋂
p∈∆n

H−p,−L`(p). In
particular, S⊕` is convex.

3. Mixability in the Game of Prediction with Expert Advice

Here, we consider the setting of prediction with expert advice (Vovk, 1998); there is pool of k
experts, parameterized by θ ∈ [k], which make predictions atθ ∈ A at each round t. In the same
round, the learner predicts a∗ ∈ F (At) ∈ A, where At = [atθ]1≤θ≤k ∈ Ak is the matrix of experts’
predictions and F is set valued aggregating function on Ak. At the end of the round, the outcome
xt ∈ [n] is announced and each expert θ [resp. learner] suffers a loss `xt(aθ) [resp. `xt(a∗)], where
` : A → [0,+∞]n. We will refer to such a game by G`(k, T ).

Vovk (1998) introduced the Aggregating Algorithm (AA) which specifies the aggregating func-
tion F of the learner. When a loss ` is η-mixable (see below) the AA achieves constant regret in

2. It was claimed that if S⊕` is non-convex, there exists a point s0 on the loss surface S` such that no hyperplane supports
S⊕` at s0. The non-convexity of a set by itself is not sufficient to make such a claim; the continuity of the loss ` is
required.

6



GENERALIZED MIXABILITY

the G`(k, T ) game; the difference between the cumulative loss of the learner and the best expert is
upper bounded by a constant independent of the number of rounds T .

The Generalized Aggregating Algorithm (GAA) (Reid et al., 2015) uses an entropy function
Φ: Rk → R ∪ {+∞} to specify the learner’s aggregating function F . The GAA also achieves a
constant regret when a certain condition is satisfied (Φ-mixability). The GAA reduces to the AA
when Φ is a scaled Shannon entropy S.

Definition 6 (η-mixability) For η > 0, a loss ` : A → [0,+∞]n is said to be η-mixable, if ∀q ∈
∆k, ∀A := [aθ]θ∈[k] ∈ Ak, ∃a∗ ∈ A, such that

∀x ∈ [n], `x(a∗) ≤ −η−1 log 〈exp(−η`x(A)), q〉 . (4)

Chernov et al. (2010) showed that the η-mixability condition (4) is equivalent to the convexity
of the η-exponentiated superprediction set exp(−ηS⊕` ). The largest η such that ` is η-mixable is
denoted η`. If η` > 0, we say that ` is classically mixable.

For a strictly proper loss ` : ∆n → [0,+∞[n whose Bayes risk satisfies L` ∈ C2(]0,+∞[n),
van Erven et al. (2012) showed that the mixability constant η` is equal to

η` := inf
p̃∈int ∆̃n

(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1, (5)

The next theorem extends this result by showing that the mixability constant η` of any loss ` : A →
[0,+∞[n satisfying condition I and such that L` is twice differentiable is lower bounded by η`.

Theorem 7 Let η > 0, ` : A → [0,+∞]n a loss satisfying Condition I, and ` a proper support
loss of `. Suppose that dom ` = A and that L` is twice differentiable on ]0,+∞[n. Then for η` as
in (5), we have η` > 0 =⇒ ` is η`-mixable. In particular, η` ≥ η`.

The proof of the theorem is in Appendix C.5. We will show later (Corollary 17) that, under the
same conditions of Theorem 7, we actually have η` = η`.

Definition 8 (Φ-mixability) 3 Let Φ: Rk → R ∪ {+∞} be an entropy. A loss ` : A → [0,+∞]n

is Φ-mixable if ∀q ∈ ∆k, ∀A := [aθ]1≤θ≤k ∈ Ak, ∃a∗ ∈ A, such that

∀x ∈ [n], `x(a∗) ≤ MΦ(`x(A), q) := inf
q̂∈∆k

〈q̂, `x(A)〉+DΦ(q̂, q). (6)

As stated earlier, when ` is ( 1
ηΦ)-mixable, the GAA (see Figure 1) can achieve a constant regret

in the G`(k, T ) game, where the constant does not depend on T . In fact, Reid et al. (2015) showed
that for all T ≥ 1 and θ ∈ [k], ∑

1≤i≤T
`xt(a

t
∗) ≤

∑
1≤i≤T

`xt(a
t
θ) +RΦ

` ,

where RΦ
` := infq∈∆k

maxθ∈[k]DΦ(eθ, q)/ηΦ
` is the worst-case regret, ηΦ

` is the generalized mixa-
bility constant (defined formally in Corollary 18), and (at∗) are the outputs of the GAA with initial
distribution over experts q0 = argminq∈∆k

maxθ∈[k]DΦ(eθ, q).

3. Our definition of Φ-mixability is slightly different than that introduced by Reid et al. (2015); we use the directional
derivative to define the divergence DΦ.
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Aggregating Algorithm
Input: q0 ∈ ∆k, η ≤ η`, T ≥ 1.
for t = 1 to T

Observe At = [atθ]1≤θ≤k ∈ Ak.
Find at∗ ∈ A such that ∀x ∈ [n],
`x(at∗) ≤ −η−1 log〈exp[−η`x(A)], qt−1〉.

Observe outcome xt ∈ [n].

Set qtθ =
qt−1
θ exp(−η`xt (a

t
θ))∑

θ∈[k] q
t−1
θ exp(−η`xt (atθ))

, ∀θ ∈ [k].

end for

Generalized Aggregating Algorithm
Input: q0 ∈ ∆k, η ≤ ηΦ

` , T ≥ 1.
for t = 1 to T

Observe At = [atθ]1≤θ≤k ∈ Ak.
Find at∗ ∈ A such that ∀x ∈ [n],

`x(at∗) ≤ MΦη(`x(At), qt−1).
Observe outcome xt ∈ [n].
Set qt = argmin

µ∈∆k

〈µ, `xt(At)〉+DΦ(µ, qt−1).

end for

Figure 1: The AA versus the GAA in the G`(k, T ) game. At and xt are the experts’ predictions
and environment outcome at round t, respectively. q0 is a prior distribution over experts
and η is the learning rate. We used the notation Φη := η−1Φ. When ` is η-mixable [resp.
Φ-mixable] the AA [resp. GAA] achieves constant regret using the learner’s predictions
(at∗)1≤t≤T , which are guaranteed to exist. The GAA reduces to the AA when Φ = η−1 S
and S is the Shannon entropy.

Remark 9 In order for the update distribution qt of the GAA (Figure 1) to be well defined, the
infimum of the map µ 7→ 〈µ,d〉 + DΦ(µ, q) must be attained at some q∗ ∈ ∆k for any given
(d, q) ∈ [0,+∞]n × ∆k. We verify this for q ∈ ri ∆k; since q̃ ∈ int dom Φ̃ = int ∆̃k, the
function µ̃ 7→ −Φ̃′(q̃; µ̃ − q̃) is lower semicontinuous (Rockafellar, 1997, Cor. 24.5.1). Given
that µ̃ 7→ 〈qk(µ̃),d〉+ Φ̃(µ̃)− Φ̃(q̃) is a closed convex function, it is also lower semi-continuous.
Therefore, the function µ̃ 7→ 〈qk(µ̃),d〉+Φ̃(µ̃)−Φ̃(q̃)−Φ̃′(q̃; µ̃−q̃) is lower semicontinuous, and
thus attains its minimum on the compact set ∆̃k at some point q̃∗ (Holder, 2005, Thm. 1.13). Using
the fact that DΦ(µ, q) = DΦ̃(µ̃, q̃), we get that q∗ := qk(q̃∗) = argminµ∈∆k

〈µ,d〉+DΦ(µ, q).

When q in Remark 9 is in rbd ∆k, then either q is a vertex or there exists I ⊂ [k], with |I| > 1,
such that q ∈ ri ∆I . In either case, if we require the existence of a Φ-mixable loss one can use
Proposition 11 below and ΦI := Φ◦ [Πk

I ]
T to show that µ 7→ 〈µ,d〉+DΦ(µ, q) attains a minimum

in ∆I by following the steps of Remark 9. In this case, the GAA’s update step is well defined.
From Figure 1, it is clear that the GAA is divided into two steps; 1) a substitution step which

consists of finding the prediction a∗ ∈ A satisfying the mixability condition (5); and 2) an update
step where a new distribution over experts is computed. Note that the substitution step is not well
defined in the sense that there is not a unique choice of a∗. One systematic way of choosing a∗
is through inverse losses serving as substitution functions (Williamson, 2014). Kamalaruban et al.
(2015) discuss other alternatives depending on the curvature of the Bayes risk. Note, however, that
the choice of the substitution function does not affect the regret bound of the GAA when the loss
` is Φ-mixable. On the other hand, the update step is well defined and we show next that this is
exactly the MDA for a certain sequence of losses.

Example 10 (GAA versus MDA) Let ` : A → [0,+∞[n be a loss and Φ: Rk → R ∪ {+∞} an
entropy such that Φ̃ is differentiable on int ∆̃k. Let qt be the update distribution of the GAA at
round t and q̃t = Πk(q

t). From Remark 9, it holds that

8
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q̃t = argmin
q̃∈∆̃k

〈
qk(q̃), `xt(A

t)
〉

+ η−1DΦ̃(q̃, q̃t−1),

= argmin
q̃∈∆̃k

〈
q̃, JT

k `xt(A
t)
〉

+ η−1DΦ̃(q̃, q̃t−1),

= argmin
q̃∈∆̃k

〈
q̃,∇lt(q̃t−1)

〉
+ η−1DΦ̃(q̃, q̃t−1), (7)

where lt(µ̃) := 〈qk(µ̃), `xt(A
t)〉 = 〈µ, `xt(At)〉. Update (7) is, by definition (Beck and Teboulle,

2003), the MDA with the sequence of losses lt on int ∆̃k, “distance” functionDΦ̃(·, ·), and learning
rate η. Therefore, the MDA is exactly the update step of the GAA.

3.1. Useful Properties

Given a differentiable entropy on ∆k, Reid et al. (2015) showed that for a non-trivial loss to be
Φ-mixable, Φ must have gradients whose norms diverge to infinity near the relative boundary of the
simplex. However, the proof of this result assumed differentiability of Φ on the boundary of ∆k,
which is imprecise given that in their definition, Φ is a function on ∆k — a set with empty interior.
In the next proposition, we show that a variant of their result holds when working with directional
derivatives. This will be crucial for subsequent results. Before stating the next proposition, note that
given an entropy Φ: Rk → R ∪ {+∞} and I ⊆ [k] with |I| > 1, the function ΦI := Φ ◦ [Πk

I ]
T :

R|I| → R ∪ {+∞} is also an entropy.

Proposition 11 Let Φ: Rk → R∪{+∞} be an entropy and ` : A → [0,+∞]n a closed non-trivial
loss. If ` is Φ-mixable, then ∀I ⊆ [k] with |I| > 1, ` is ΦI-mixable and

∀q ∈ rbd ∆I , ∀q̂ ∈ ri ∆I , Φ′(q; q̂ − q) = −∞. (8)

The proof of Proposition 11 is in Appendix C.6. Contrary to what was claimed previously (Reid
et al., 2015), condition (8) together with the strict convexity and differentiability of Φ on ri ∆k is
not sufficient for the existence of a Φ-mixable loss (see Appendix D for a counter-example).

In the next proposition, we show that the Bayes risk and the Fenchel dual of Φ̃ need to be
differentiable in the interior of their respective domains for the existence of a Φ mixable loss. As we
will argue later (Lemma 35), the differentiability of Φ̃∗ implies the strict convexity of Φ on ri ∆k.
The proof of the next proposition is in Appendix C.7.

Proposition 12 Let Φ: Rk → R ∪ {+∞} be an entropy and ` : A → [0,+∞]n a loss satisfying
Condition I. If ` is Φ-mixable, then the Bayes risk satisfies L` ∈ C1(]0,+∞[n). If, additionally, L`
is twice differentiable on ]0,+∞[n, then Φ̃∗ ∈ C1(Rk−1).

In the next lemma (proved in Appendix C.8), we provide a useful expression of MΦ(d, q), which
will be used to prove a sufficient condition for Φ-mixability (Theorem 15).

Proposition 13 Let Φ: Rk → R ∪ {+∞} be an entropy. Let x ∈ [n],d ∈ Rk, q ∈ ri ∆k, and
q∗ = argminµ∈∆k

〈µ,d〉+DΦ(µ, q). Then any s∗q ∈ argmax{〈s, q̃∗ − q̃〉 : s ∈ ∂Φ̃(q̃)} satisfies

q̃∗ ∈ ∂Φ̃∗(s∗q − JT
k d), (9)

MΦ(d, q) = dk + Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k d). (10)

9
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3.2. The generalized aggregating algorithm using the Shannon entropy S

The purpose of this subsection is to show that the GAA reduces to the AA when the former uses the
Shannon entropy. In this case, generalized and classical mixability are equivalent.

Let ` : A → [0,+∞]n be a loss and Φ be as in Proposition 13 and suppose that Φ and Φ̃∗ are
differentiable on ri ∆k and Rk−1, respectively. If we substitute d for `x(A) in (9) and (10), where
A ∈ (dom `)k, it is possible to show that

∇Φ?(∇Φ(q)− `x(A)) = argmin
µ∈∆k

〈µ, `x(A)〉+DΦ(µ, q), (11)

MΦ(`x(A), q) = Φ?(∇Φ(q))− Φ?(∇Φ(q)− `x(A)). (12)

This result was already established by Reid et al. (2015).
Let q ∈ ri ∆k. By definition of S, ∇ S(q) = log q + 1k, and due to Proposition 1, S?(z) =

log〈exp z,1k〉, z ∈ Rk. Therefore, ∇ S(q) − η`x(A) = log(exp(−η`x(A)) � q) + 1k and
∇ S?(z) = expz

〈expz,1k〉 , ∀(x,A) ∈ [n]× (dom `)k. Thus,

∇S?(∇ S(q)− η`x(A)) =
exp(−η`x(A))� q
〈exp(−η`x(A)), q〉

. (13)

Let Sη := η−1 S. Then ∇ S = η∇ Sη and ∀z ∈ Rk,∇ S?η(z) = ∇ S?(ηz) (Reid et al., 2015).4

Then the left hand side of (13) can be written as ∇ S?η(∇ Sη(q)− `x(A)). Using this fact, (11) and
(13) show that the update distribution qt of the GAA (Figure 1) coincides with that of the AA after
substituting q, x, and A by qt−1, xt, and At := [aθ]θ∈[k], respectively.

Now using the fact that MSη(`x(A), q) = η−1MS(η`x(A), q) (Reid et al., 2015) and (12), we
get MSη(`x(A), q) = η−1[S?(∇ S(q)) − S?(∇ S(q) − η`x(A))] = −η−1 log〈exp(−η`x(A)), q〉.
Suppose now that q belongs to relative interior of a face ∆I ( ∆k with I ( [k]. We can repeat the
argument above for SI := S ◦[Πk

I ]
T to show that

MSIη
(Πk
I`x(A),Πk

Iq) = −η−1 log〈exp(−ηΠk
I`x(A)),Πk

Iq〉,

= −η−1 log〈exp(−η`x(A)), q〉. (14)

Equation 14 will now allow us to prove the equivalence between classical and generalized mix-
ability when using the Shannon entropy. The proof of Theorem 14 is in Appendix C.8.

Theorem 14 Let η > 0 and Sη := η−1 S, where S is the Shannon entropy. For a loss ` : A →
[0,+∞]n, ` is η-mixable if and only if ` is Sη-mixable.

3.3. Necessary and Sufficient Conditions for Φ-Mixability

In this subsection, we show that given an entropy Φ: Rk → R∪{+∞} and a loss ` : A → [0,+∞[n

satisfying certain regularity conditions, ` is Φ-mixable if and only if

η`Φ− S is convex on ∆k. (15)

4. Reid et al. (2015) showed the equality ∇Φ?η(u) = ∇Φ?(ηu), ∀u ∈ dom Φ?, for any entropy differentiable on ∆k -
not just for the Shannon Entropy.

10
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Theorem 15 Let Φ: Rk → R ∪ {+∞} be an entropy and ` : A → [0,+∞]n be a loss. If η`Φ− S
is convex on ∆k, then ` is Φ-mixable.

As consequence of Theorem 15 (whose proof is in Appendix C.10), if a loss ` is not classically
mixable (that is, η` = 0) it cannot be Φ-mixable for any entropy Φ. This is because η`Φ− S = −S
is not convex. The converse of Theorem 15 also holds under additional smoothness conditions on
Φ and ` as stated in the next theorem. The proof is in Appendix C.11.

Theorem 16 Let Φ: Rk → R ∪ {+∞} be an entropy such that Φ̃ := Φ ◦ qk is twice differen-
tiable on int ∆̃k, and ` : A → [0,+∞]n a loss satisfying Condition I and such that L` is twice
differentiable on ]0,+∞[n. Then ` is Φ-mixable only if η`Φ− S is convex on ∆k.

The twice differentiability condition of L` in Theorem 16 is not as strong as it may first appear;
we showed in Proposition 12 that ` is Φ-mixable only if L` ∈ C1(]0,+∞[)n. Furthermore, since
L` is concave, Alexandrov’s Theorem (see e.g. (Borwein et al., 2010, Thm. 6.7)) guarantees that
L` is twice differentiable almost everywhere in ]0,+∞[n. A version of Theorem 16 which does not
assume the twice differentiability of the Bayes risk is given in Appendix D (Theorem 38).

Corollary 17 Let ` and Φ be as in Theorem 16. If dom ` = A, then η` = η`. Furthermore, ` is
Φ-mixable if and only if η`Φ− S is convex on ∆k.

Proof We already know from Theorem 7 that η` ≤ η`. Suppose now that ` is classically mixable.
By definition of η`, ` is η`-mixable, and thus from Theorem 14, ` is (η−1

` S)-mixable. Substituting
Φ for η−1

` S in Theorem 16 implies that (η`/η` − 1) S is convex on ri ∆k. Consequently, η` ≤ η`,
and hence η` = η`. From this fact and Theorems 15 and 16, it follows that ` is Φ-mixable if and
only if η`Φ− S is convex on ∆k.

Corollary 17 suggests that when the Bayes risk is twice differentiable on the interior of its
domain it contains all necessary information for the characterization of classical mixability.

Corollary 18 (The Generalized Mixability Constant) Let ` and Φ be as in Theorem 16. If dom ` =
A, then the largest η ≥ 0 such that ` is Φη-mixable is given by

ηΦ
` = η` inf

q̃∈int ∆̃k

λmin(HΦ̃(q̃)(HS̃(q̃))−1). (16)

The proof is in Appendix C.12. Observe that if we substitute Φ by S in (14), we get ηS
` = η`.

4. Discussion and Future Work

So far, we showed that the Φ-mixability of losses satisfying Condition I are characterized by the
convexity of η∗Φ − S, where η∗ ∈ {η`, η`} (see Theorems 15 and 16). As a consequence of this,
and contrary to what was conjectured previously (Reid et al., 2015), the generalized mixability
condition does not induce a correspondence between losses and entropies; for a given loss `, there
is no particular entropy Φ` — specific to the choice of ` — which minimizes the regret of the GAA.
Rather, the Shannon entropy S minimizes the regret regardless of the choice of ` (see Theorem 19

11
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for the precise statement). This is consistent with Vovk’s result regarding the fundamental nature of
the log-loss (Vovk, 2015).

Nevertheless, given a loss ` and entropy Φ, the curvature of the loss surface S` determines the
maximum learning rate ηΦ

` of the GAA; in other words, it determines for which scaled entropies
Φη := η−1Φ, ` is Φη-mixable. In fact, the curvature of S` is linked to η` through the Hessian of
the Bayes risk (see Theorem 41 in Appendix E.1 for the precise statement). The magnitude of η`
determines the learning rate ηΦ

` as per Corollary 18.
Given a loss ` satisfying Condition I, we will now use the expression of the generalized mixabil-

ity constant ηΦ
` to explicitly compare the regret bounds achieved using the GAA with different en-

tropies. For an entropy Φ: Rk → R∪{+∞}, we defineRΦ
` (q) := maxθDΦ(eθ, q)/ηΦ

` , q ∈ ri ∆k.
The optimal regret bound achieved using the GAA is given by RΦ

` := infq∈∆k
RΦ
` (q) (Reid et al.,

2015). The next theorem shows that RS
` ≤ RΦ

` . The proof is in Appendix C.13.

Theorem 19 Let S,Φ: Rk → R ∪ {+∞}, where S is the Shannon entropy and Φ is an entropy
such that Φ̃ is twice differentiable on int ∆̃k. A loss ` : A → [0,+∞[n, satisfying Condition I and
with L` twice differentiable on ]0,+∞[n, is Φ-mixable only if RS

` ≤ RΦ
` .

We conjecture that the result of Theorem 19 still holds even if one relaxes the smoothness require-
ment on Φ̃ and L`.

The result of Theorem 19 only concerns the worst case bound of the GAA. Since the update step
of the GAA is exactly the MDA one can perhaps benefit from varying the entropy and the learning
rate at each round to improve the regret bounds (Steinhardt and Liang, 2014; Joulani et al., 2017).
In this scenario, at each round t the (adaptive) GAA would use a different entropy Φt computed
according to the past performance of experts. Corollary 18 would still give an upper bound on the
learning rate ηt at each round t as a function of the Hessian of Φt. Furthermore, this upper bound
could be made larger by only requiring the Φ-mixability condition (5) to be satisfied locally; that
is, ensuring (5) for q = qt−1 and A = At ∈ Ak, where qt−1 is the previous distribution over
experts and At is their prediction matrix. This would allow higher learning rates and potentially
faster convergence.
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Appendix A. Additional Background Results

The following proposition gives some useful properties of the Fenchel dual which will be used in
several proofs.

Proposition 20 (Hiriart-Urruty and Lemaréchal (2001)) Let f, h : Rn → R ∪ {+∞}. If f and
h are proper and there are affine functions minorizing them on Rn, then for v ∈ Rn

(i) g(u) = f(u) + r =⇒ g∗(v) = f∗(v)− r,
(ii) g(u) = f(u) + 〈v0,u〉 =⇒ g∗(v) = f∗(v − v0),
(iii) f ≤ h =⇒ f∗ ≥ h∗,
(iv) s ∈ ∂f∗(v) =⇒ f∗(v) = 〈v, s〉 − f(s),
(v) g(u) = f(tu), t > 0 =⇒ g∗(v) = f∗(v/t),

The following result due to Chernov et al. (2010) will be crucial to prove the convexity of the
superprediction set (Theorem 5).

Lemma 21 (Chernov et al. (2010)) Let ∆(Ω) be the set of distributions over some set Ω ⊆ R. Let
a functionQ : ∆(Ω)×Ω→ R be such thatQ(·, ω) is continuous for all ω ∈ Ω. If for all π ∈ ∆(Ω)
it holds that Eω∼πQ(π, ω) ≤ r, where r ∈ R is some constant, then

∃π ∈ ∆(Ω),∀ω ∈ Ω, Q(π, ω) ≤ r.

Note that when Ω in the lemma above is [n], ∆([n]) ≡ ∆n.
We make use of the following lemma due to Bernstein (2011) in proving a necessary condition

for Φ-mixability (Theorem 16).

Lemma 22 ∀m ≥ 1,∀A,B ∈ Rm×m, λmax(AB) = λmax(BA) and λmin(AB) = λmin(BA).

Appendix B. Technical Lemmas

This appendix presents technical lemmas which will be needed in various proofs within this paper.
For an open convex set Ω in Rn, a function φ : Ω → R is said to be α-strongly convex if z 7→

φ(u)−α ‖u‖2 is convex on Ω (Merentes and Nikodem, 2010). The next lemma is a generalization
of α-strong convexity, where u 7→ ‖u‖2 is replaced by any strictly convex function.

Lemma 23 Let Ω ⊆ Rn be an open convex set. Let φ, ψ : Ω→ R be twice differentiable.
If ψ is strictly convex, then ∀u ∈ Ω, Hψ(u) is invertible, and for any α > 0

∀u ∈ Ω, λmin(Hφ(u)(Hψ(u))−1) ≥ α ⇐⇒ φ− αψ is convex, (17)

Furthermore, if α > 1, then the left hand side of (17) implies that φ− ψ is strictly convex.

Proof Suppose that infu∈Ω λmin(Hφ(u)(Hψ(u))−1) ≥ α. Since g is strictly convex and twice
differentiable on Ω, Hψ(u) is symmetric positive definite, and thus invertible. Therefore, there
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exists a symmetric positive definite matrix G ∈ Rn×n such that GG = Hψ(u). Lemma 22 implies

infu∈Ω λmin(Hφ(u)(Hψ(u))−1) ≥ α,
⇐⇒ infu∈Ω λmin(G−1Hφ(u)G−1) ≥ α,

⇐⇒ ∀u ∈ Ω,∀v ∈ Rn \ {0}, v
TG−1(Hφ(u))G−1v

vTv
≥ α,

⇐⇒ ∀u ∈ Ω, ∀w ∈ Rn \ {0},wT(Hφ(u))w ≥ αwTGGw = wT(αHψ(u))w,

⇐⇒ ∀u ∈ Ω,Hφ(u) � αHψ(u),

⇐⇒ ∀u ∈ Ω,H(φ− αψ)(u) � 0,

where in the third and fifth lines we used the definition of minimum eigenvalue and performed
the change of variable w = G−1v, respectively. To conclude the proof of (17), note that the
positive semi-definiteness of H(φ − αψ) is equivalent to the convexity of φ − αψ (Hiriart-Urruty
and Lemaréchal, 2001, Thm B.4.3.1).

Finally, note that the equivalences established above still hold if we replace α, “≥”, and “� ”
by 1, “>”, and “�” , respectively. The strict convexity of φ−ψ would then follow from the positive
definiteness of H(φ− ψ) (ibid.).

The next crucial lemma is a slight modification of a result due to Chernov et al. (2010).

Lemma 24 Let f : ri ∆n × [n] → R be a continuous function in the first argument and such that
∀(q, x) ∈ ri ∆n × [n],−∞ < f(q, x). Suppose that ∀p ∈ ri ∆n,Ex∼p[f(p, x)] ≤ 0, then

∀ε > 0, ∃pε ∈ ri ∆n,∀x ∈ [n], f(pε, x) ≤ ε.

Proof Pick any δ > 0 such that δ(n − 1) < 1, and c0 < 0 such that ∀(q, x) ∈ ri ∆n × [n], c0 ≤
f(q, x). We define ∆δ

n := {p ∈ ∆n : ∀x ∈ [n], px ≥ δ} and g(q,p) := Ex∼q[f(p, x)]. For
a fixed q, p 7→ g(q,p) is continuous, since f is continuous in the first argument. For a fixed p,
q 7→ g(q,p) is linear, and thus concave. Since ∆δ

n is convex and compact, g satisfies Ky Fan’s
minimax Theorem (Agarwal et al., 2001, Thm. 11.4), and therefore, there exists pδ ∈ ∆δ

n such that

∀q ∈ ∆δ
n, Ex∼q[f(pδ, x)] = g(q,pδ) ≤ sup

µ∈∆δ
n

g(µ,µ) = sup
µ∈∆δ

n

Ex∼µ[f(µ, x)] ≤ 0. (18)

For x0 ∈ [n], let q̂ ∈ ∆δ
n be such that q̂x0 = 1− δ(n−1) and q̂x = δ for x 6= x0 (this is a legitimate

distribution since δ(n− 1) < 1 by construction). Substituting q̂ for q in (18) gives

(1− δ(n− 1))f(pδ, x0) + δ
∑

x 6=x0
f(pδ, x) ≤ 0,

=⇒ (1− δ(n− 1))f(pδ, x0) ≤ −c0δ(n− 1),
=⇒ f(pδ, x0) ≤ [−c0δ(n− 1)]/[1− δ(n− 1)].

Choosing δ∗ := ε/[(−c0 + ε)(n− 1)], and pε := pδ
∗

gives the desired result.

Lemma 25 Let f, g : I → Rn, where I ⊆ R is an open interval containing 0. Suppose g(t) [resp.
f] is continuous [resp. differentiable] at 0. Then t 7→ 〈f(t), g(t)〉 is differentiable at 0 if and only
if t 7→ 〈f(0), g(t)〉 is differentiable at 0, and we have

d

dt
〈f(t), g(t)〉

∣∣∣∣
t=0

=

〈
d

dt
f(t)

∣∣∣∣
t=0

, g(0)

〉
+

d

dt
〈f(0), g(t)〉

∣∣∣∣
t=0

.
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Proof We have

〈f(t), g(t)〉 − 〈f(0), g(0)〉
t

=
〈f(t), g(t)〉 − 〈f(0), g(t)〉

t
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t
,

=

〈
f(t)− f(0)

t
, g(t)

〉
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t
.

But since g [resp. f ] is continuous [resp. differentiable] at 0, the first term on the right hand
side of the above equation converges to 〈 ddtf(t)

∣∣
t=0

, g(0)〉 as t → 0. Therefore, 1
t (〈f(0), g(t)〉 −

〈f(0), g(0)〉) admits a limit when t→ 0 if and only if 1
t (〈f(t), g(t)〉 − 〈f(0), g(0)〉) admits a limit

when t→ 0. This shows that t 7→ 〈f(0), g(t)〉 is differentiable at 0 if an only if t 7→ 〈f(t), g(t)〉 is
differentiable at 0, and in this case the above equation yields

d

dt
〈f(t), g(t)〉

∣∣∣∣
t=0

= lim
t→0

〈f(t), g(t)〉 − 〈f(0), g(0)〉
t

,

= lim
t→0

(〈
f(t)− f(0)

t
, g(t)

〉
+
〈f(0), g(t)〉 − 〈f(0), g(0)〉

t

)
,

=

〈
d

dt
f(t)

∣∣∣∣
t=0

, g(0)

〉
+

d

dt
〈f(0), g(t)〉

∣∣∣∣
t=0

.

Note that the differentiability of t 7→ 〈f(0), g(t)〉 at 0 does not necessarily imply the differen-
tiability of g at 0. Take for example n = 3, f(t) = 1/3 for t ∈]− 1, 1[, and

g(t) =

{
−te1 + t13 , if t ∈]− 1, 0[;
−t13 + te2, if t ∈ [0, 1[.

Then the function t 7→ 〈f(0), g(t)〉 = 0 is differentiable at 0 but g is not. The preceding Lemma
will be particularly useful in settings where it is desired to compute the derivative d

dt〈f(0), g(t)〉|t=0

without any explicit assumptions on the differentiability of g(t) at 0. For example, this will come
up when computing d

dt〈p, D ˜̀(α̃t)v〉|t=0, where v ∈ Rn−1 and t 7→ α̃t is smooth curve on int ∆̃n,
with the only assumption that L̃` is twice differentiable at α̃0 ∈ int ∆̃n.

Lemma 26 Let ` : ∆n → [0,+∞]n be a proper loss. For any p ∈ ri ∆n, it holds that

` is continuous at p
(i)⇐⇒ L` is differentiable at p

(ii)⇐⇒ ∂[−L`](p) = {∇L`(p)} = {`(p)}.

Proof [
(i)⇐⇒ ] This equivalence has been shown before by Williamson et al. (2016).

[
(ii)⇐⇒ ] Since L`(p) = −σS⊕` (−p), for all p ∈ ri ∆n, it follows that L` is differentiable at

p if and only if ∂[−L`](p) = ∂σS⊕`
(−p) = {−∇σS⊕` (−p)} = {∇L`(p)} (Hiriart-Urruty and

Lemaréchal, 2001, Cor. D.2.1.4). It remains to show that ∇L`(r) = `(r) when L` is differentiable
at r ∈ ri ∆n. Let αtx = r + tex and α̃tx = Πn(αtx), where (ex)x∈[n] is the standard basis of Rn.
For x ∈ [n], the functions fx(t) := αtx and gx(t) := ˜̀(α̃tx) satisfy the conditions of Lemma 25.
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Therefore, hx(t) := 〈fx(0), gx(t)〉 = 〈r, ˜̀(α̃tx)〉 is differentiable at 0 and

∇L̃(r)ex =
d

dt
L̃(αtx)

∣∣∣∣
t=0

=
d

dt
〈fx(t), gx(t)〉

∣∣∣∣
t=0

,

=
〈
ex, ˜̀(r̃)

〉
+

d

dt
hx(t)

∣∣∣∣
t=0

,

= ˜̀
x(r̃),

where the last equality holds because hx attains a minimum at 0 due to the properness of `. The
result being true for all x ∈ [n] implies that∇L̃(r̃) = ˜̀(r̃) = `(r).

The next Lemma is a restatement of earlier results due to van Erven et al. (2012). Our proof
is more concise due to our definition of the Bayes risk in terms of the support function of the
superprediction set.

Lemma 27 (van Erven et al. (2012)) Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk
is twice differentiable on ]0,+∞[n and let Xp = Iñ − 1ñp̃

T. The following holds

(i) ∀p ∈ ri ∆n, 〈p,D˜̀(p̃)〉 = 0Tñ .

(ii) ∀p̃ ∈ int ∆̃n, D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃).

(iii) ∀p̃ ∈ int ∆̃n, HL̃log(p̃) = −(Xp)−1(diag (p̃))−1.

Proof [We show (i) and (ii)] Let p ∈ ri ∆n and f(q̃) := 〈p, ˜̀(q̃)〉 = 〈p,∇L`(q)〉, where the
equality is due to Lemma 26. SinceL` is twice differentiable ]0,+∞[n, f is differentiable on int ∆̃n

and we have Df(q̃) = 〈p,D˜̀(p̃)〉. Since ` is proper, f reaches a minimum at p̃ ∈ int ∆n, and thus
〈p,D˜̀(p̃)〉 = 0Tñ (this shows (i)). On the other hand, we have∇L̃`(p̃) = JT

n∇L`(p) = JT
n

˜̀(p̃). By
differentiating and using the chain the rule, we get HL̃`(p̃) = [D˜̀(p̃)]TJn. This means that ∀i ∈ [ñ],
[HL̃`(p̃)]•,i = ∇˜̀

i(p̃)−∇˜̀
n(p̃), and thus

∑ñ
i=1 pi[HL̃`(p̃)]•,i =

∑ñ
i=1 pi∇˜̀

i(p̃)−(1−pn)∇˜̀
n(p̃).

On the other hand, it follows from point (i) of the lemma that
∑n

i=1 pi∇˜̀
i(p̃) = 0ñ. Therefore,

[HL̃`(p̃)]p̃ = −∇˜̀
n(p̃) and, as a result, ∀i ∈ [ñ], [HL̃`(p̃)]•,i − [HL̃`(p̃)]p̃ = ∇˜̀

i(p̃). The last two

equations can be combined as D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃).

[We show (iii)] It follows from (ii), since ∀i ∈ [ñ],∇[˜̀log]i(p̃) = 1
pi
ei, for p̃ ∈ int ∆̃n.

In the next lemma we state a new result for proper losses which will be crucial to prove a
necessary condition for Φ-mixability (Theorem 16) — one of the main result of the paper.

Lemma 28 Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk is twice differentiable on
]0,+∞[n. For v ∈ Rn−1 and p̃ ∈ int ∆̃n,

〈
p, (D˜̀(p̃)v)� (D˜̀(p̃)v)

〉
= −vTHL̃`(p̃)[HL̃log(p̃)]−1HL̃`(p̃)v, (19)

where p = qn(p̃) and Llog is the Bayes risk of the log loss.
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Furthermore, if t 7→ α̃t is a smooth curve in int ∆̃n and satisfies α̃0 = p̃ and d
dtα̃

t
∣∣
t=0

= v,
then t 7→ 〈p,D˜̀(α̃t)v〉 is differentiable at 0 and we have

d

dt

〈
p,D˜̀(α̃t)v

〉∣∣∣∣
t=0

= −vTHL̃`(p̃)v. (20)

Proof We know from Lemma 27 that for p̃ ∈ int ∆̃n, we have D˜̀(p̃) =
[
Xp

−p̃T

]
HL̃`(p̃), where

Xp = In−1 − 1n−1p̃
T. Thus, we can write〈

p,D˜̀(p̃)v � D˜̀(p̃)v
〉

= vT(D˜̀(p̃))T diag (p)D˜̀(p̃)v,

= vT(HL̃`(p̃))T[XT
p , −p̃] diag (p)

[
Xp
−p̃T

]
HL̃`(p̃)v. (21)

Observe that [XT
p , −p̃] diag (p) = [In−1 − p̃1Tn−1, −p̃] diag (p) = [diag (p̃) − p̃p̃T, −p̃pn].

Therefore,[
XT
p , −p̃

]
diag (p)

[
Xp
−p̃T

]
=
[
diag (p̃)− p̃p̃T, −p̃pn

] [In−1 − 1n−1p̃
T

−p̃T
]
,

= diag (p̃)− p̃p̃T − p̃p̃T + p̃p̃T(1− pn) + pnp̃p̃
T,

= diag (p̃)− p̃p̃T,
= diag (p̃)Xp,

= −(HL̃log(p̃))−1, (22)

where the last equality is due to Lemma 27. The desired result follows by combining (21) and (22).
[We show (20)] Let p̃ ∈ int ∆̃n, we define α̃t := p̃ + tv, αt := qn(α̃t) = p + tJnv, and

r(t) := αt/
∥∥αt∥∥, where t ∈ {s : p̃ + sv ∈ int ∆̃n}. Since t 7→ r(t) is differentiable at 0 and

t 7→ D˜̀(α̃t)v is continuous at 0, it follows from Lemma 23 that

d

dt

〈
r(0),D˜̀(α̃t)v

〉∣∣∣∣
t=0

=
d

dt

〈
r(t),D˜̀(α̃t)v

〉∣∣∣∣
t=0

−
〈
d

dt
r(t)

∣∣∣∣
t=0

,D˜̀(p̃)v

〉
,

= −
〈
d

dt
r(t)

∣∣∣∣
t=0

,D˜̀(p̃)v

〉
,

where the second equality holds since, according to Lemma 27, we have 〈αt,D˜̀(α̃t)v〉 = 0. Since

r(0) = p/ ‖p‖, d
dtr(t)

∣∣
t=0

= ‖p‖−1 (In − r(0)[r(0)]T)Jnv, and Jn =

[
In−1

−1Tn−1

]
, we get

‖p̃‖ d

dt

〈
r(0),D˜̀(α̃t)v

〉∣∣∣∣
t=0

= −
〈(
In − r(0)[r(0)]T

)
Jnv,D˜̀(p̃)v

〉
,

= −
〈
Jnv,D˜̀(p̃)v

〉
, (23)

= −
〈
Jnv,

[
Xp
−p̃T

]
HL̃`(p̃)v

〉
,

= −vTHL̃`(p̃)v,
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where the passage to (23) is due to r(0) = p/ ‖p‖ ⊥ D˜̀(p̃). In the last equality we used the fact

that JT
n

[
Xp
−p̃T

]
= [In−1, −1n−1]

[
In−1 − 1n−1p̃
−p̃T

]
= In−1.

Lemma 29 For η > 0, Sη := η−1 S satisfies (8), where S is the Shannon entropy.

Proof Let (q̂, q) ∈ (rbd ∆I)× (ri ∆I) and qλ := q̂ + λ(q − q̂), for λ ∈]0, 1[. Let J := {j ∈ I :
q̂j 6= 0} andH := I \ J . We have

S(q̂; q − q̂) = lim
λ↓0

λ−1
[∑

θ∈I
qλθ log qλθ −

∑
θ′∈J

q̂θ′ log q̂θ′
]
,

= lim
λ↓0

λ−1
[∑

θ∈J
(qλθ log qλθ − q̂θ log q̂θ) +

∑
θ′∈H

qλθ′ log qλθ′
]
. (24)

Observe that the limit of either summation term inside the bracket in (24) is equal to zero. Thus,
using l’Hopital’s rule we get

S(q̂; q − q̂) = lim
λ↓0

[∑
θ∈J

[(qθ − q̂θ) log qλθ + (qθ − q̂θ)] +
∑

θ′∈H
[qθ′ log qλθ′ + qθ′ ]

]
,

=
∑

θ∈J
(qθ − q̂θ) log q̂θ +

∑
θ′∈H

qθ′

[
lim
λ↓0

log qλθ′

]
, (25)

where in (25) we used the fact that
∑

θ∈J (qθ − q̂θ) +
∑

θ′∈H qθ′ = 0. Since for all θ′ ∈ H,
limλ↓0 q

λ
θ′ = 0, the right hand side of (25) is equal to −∞. Therefore S satisfies (8). Since Sη =

η−1 S, it is clear that Sη also satisfies (8).

Lemma 30 Let Φ: Rk → R ∪ {+∞} be an entropy. If Φ satisfies (8), then ∂Φ̃(q̃) = ∅,∀q̃ ∈
bd ∆̃k, and ∀d ∈ Rk, ∀q ∈ ri ∆I , MΦ(d, q) = MΦI (Π

k
Id,Π

k
Iq).

Proof Let µ ∈ rbd ∆k. Since Φ satisfies (8), it follows that ∀q ∈ ri ∆k, Φ̃(µ̃; q̃− µ̃) = Φ′(µ; q−
µ) = −∞. Therefore, ∂Φ̃′(µ̃) = ∅ (Rockafellar, 1997, Thm. 23.4).

Let d ∈ Rn, I ⊆ [k], with |I| > 1, and q ∈ ri ∆I . Then

MΦI (Π
k
Id,Π

k
Iq) = inf

π∈∆|I|

〈
π,Πk

Id
〉

+DΦI (π,Π
k
Iq),

= inf
µ∈∆I

〈µ,d〉+DΦ(µ, q),

≤ inf
µ∈∆k

〈µ,d〉+DΦ(µ, q), (26)

= MΦ(d, q).

To complete the proof, we need to show that (26) holds with equality. For this, it suffice to prove
that ∀µ ∈ ∆k \ ∆I , DΦ(µ, q) = +∞. Let µ ∈ ∆k \ ∆I and J := {θ ∈ [k] : µθ 6= 0} ∪ I.
In this case, we have q ∈ rbd ∆J and q + 2−1(µ − q) ∈ ri ∆J . Thus, since Φ satisfies (8) and
Φ′(q; ·) is 1-homogeneous (Hiriart-Urruty and Lemaréchal, 2001, Prop. D.1.1.2), it follows that
2−1Φ′(q;µ− q) = Φ′(q; 2−1(µ− q)) = −∞. Hence DΦ(µ, q) = +∞.
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Lemma 31 For q ∈ ∆k, there exists a sequence (dm) in [0,+∞[k converging to d ∈ [0,+∞]k

such that for any entropy Φ: Rk → R ∪ {+∞}, we have MΦ(dm, q)
m→∞→ MΦ(d, q).

Proof Let Φ: Rk → R ∪ {+∞} be an entropy and let d ∈ [0,+∞]n. Note that if J := {θ ∈ [k] :
dθ < +∞} = ∅, then by definition of MΦ, it trivially holds that MΦ(dm, q)

m→∞→ MΦ(d, q) =
+∞, for any sequence (dm) such that dm

m→∞→ d. Similarly, if I := {θ ∈ [k] : dθ 6= 0} = ∅,
then the zero sequence gives the desired result. Assume now that J , I 6= ∅ and define the function
fµ : Rk → R ∪ {+∞} by

fµ(z) =

{ ∑
θ∈I

µi/zi +DΦ(µ, q), if z ∈]0,+∞[k;

+∞, otherwise.

Since ∀µ ∈ ∆k, fµ is upper-semicontinuous and concave, fµ is a closed concave function. It
follows that f := infµ∈∆k

fµ is also closed and concave (Hiriart-Urruty and Lemaréchal, 2001,
Prop. B.2.1.2). Let b ∈ [0,+∞[k be such that bθ = 1

dθ
, if θ ∈ I (with the convention that

1/∞ = 0); and bθ = 0 otherwise. Note that f(b) = MΦ(d, q). Let z ∈ Rk be such that zθ = bθ, if
θ ∈ J ; and zθ = 1 otherwise. Note that z ∈ int dom f . Thus, since f is closed and concave, we
have f(b) = limλ↓0 f(b + λ(z − b)) (ibid., Prop. B.1.2.5). Choosing dm ∈ [0,+∞[n such that
[dm]θ = dθ + 1/m(z−1

θ − dθ), if θ ∈ I; and 0 otherwise, gives the desired sequence.

Appendix C. Proofs of Results in the Main Body

C.1. Proof of Proposition 1

Proof Given v ∈ Rk−1, we first derive the expression of the Fenchel dual S̃
∗
(v) := supq̃∈∆̃k

〈q̃,v〉−
S̃(q̃). Setting the gradient of q̃ 7→ 〈q̃,v〉 − S̃(q̃) to 0k̃ gives v = ∇S̃(q̃). For q ∈]0,+∞[k, we
have ∇ S(q) = log q + 1k, and from §2.1 we know that∇S̃(q̃) = JT

k ∇ S(q). Therefore,

v = ∇S̃(q̃) =⇒ v = JT
k ∇ S(q) =⇒ v = log

q̃

qk
,

where the right most equality is equivalent to q̃/qk = exp(v). Since 〈q̃,1k̃〉 = 1 − qk, we get
qk = (〈exp(v),1k̃〉 + 1)−1. Therefore, the supremum in the definition of S̃

∗
(v) is attained at

q̃∗ = exp(v)(〈exp(v),1k̃〉+1)−1. Hence S̃
∗
(v) = 〈q̃∗,v〉−〈q̃∗, log q̃∗〉 = log(〈exp(v),1k̃〉+1).

Finally, using (2) we get S?(z) = log〈exp(z),1k〉, for z ∈ Rk.

C.2. Proof of Theorem 3

Proof We will construct a proper support loss ` of `.
Let p ∈ ri ∆n (−p ∈ int domσS⊕`

). Since the support function of a non-empty set is closed
and convex, we have σ∗∗S⊕`

= σS⊕`
(Hiriart-Urruty and Lemaréchal, 2001, Prop. C.2.1.2). Pick

any v ∈ ∂σS⊕`
(−p) = ∂σ∗∗S⊕`

(−p) 6= ∅. Since σ∗S⊕`
= ιS⊕`

(Rockafellar, 1997), we can apply

Proposition 20-(iv) with f replaced by σ∗S⊕`
to obtain 〈−p,v〉 = σS⊕`

(−p) + ιS⊕`
(v). The fact that
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〈−p,v〉 and σS⊕` (−p) are both finite implies that ιS⊕` (v) = 0. Therefore, v ∈ S⊕` and 〈p,v〉 =

−σS⊕` (−p) = L`(p). Define `(p) := v ∈ S⊕` .
Now let p ∈ rbd ∆n and q := 1n/n. Since the L` is a closed concave function and q ∈

int domL`, it follows that L`(p+m−1(q−p))
m→∞→ L`(p) (Hiriart-Urruty and Lemaréchal, 2001,

Prop. B.1.2.5). Note that qm := p+m−1(q−p) ∈ ri ∆n, ∀m ∈ N. Now let vx,m := `x(qm), where
`(qm) is as constructed in the previous paragraph. If (v1,m) is bounded [resp. unbounded], we can
extract a subsequence (v1,ϕ1(m)) which converges [resp. diverges to +∞], where ϕ1 : N → N
is an increasing function. By repeating this process for (v2,ϕ1(m)) and so on, we can construct
an increasing function ϕ := ϕn ◦ · · · ◦ ϕ1 : N → N, such that vm := [vx,ϕ(m)]

T
x∈[n] has a well

defined (coordinate-wise) limit in [0,+∞]n. Define `(p) := limm→∞ vm. By continuity of the
inner product, we have

〈p, `(p)〉 = lim
m→∞

〈qϕ(m),vm〉 = lim
m→∞

〈qϕ(m), `(qϕ(m))〉,

= lim
m→∞

L`(qϕ(m)) = L`(p).

By construction, ∀m ∈ N,pm := qϕ(m) ∈ ri ∆n and `(pm) = vm
m→∞→ `(p). Therefore, ` is

support loss of `.
It remains to show that it is proper; that is ∀p ∈ ∆n,∀q ∈ ∆n, 〈p, `(p)〉 ≤ 〈p, `(q)〉. Let

q ∈ ri ∆n. We just showed that ∀p ∈ ∆n, 〈p, `(p)〉 = L`(p) and that `(q) ∈ S⊕` . Using the fact
that L`(p) = infz∈S⊕`

〈p, z〉, we obtain 〈p, `(p)〉 ≤ 〈p, `(q)〉.
Now let q ∈ rbd ∆k. Since ` is a support loss, we know that there exists a sequence (qm) ⊂

ri ∆n such that `(qm)
m→∞→ `(q). But as we established in the previous paragraph, 〈p, `(p)〉 ≤

〈p, `(qm)〉. By passing to the limit m → ∞, we obtain 〈p, `(p)〉 ≤ 〈p, `(q)〉. Therefore ` is a
proper loss with Bayes risk L`.

C.3. Proof of Theorem 4

For a set C, we denote co C and coC its convex hull and closed convex hull, respectively.

Definition 32 ((Hiriart-Urruty and Lemaréchal, 2001)) Let C be non-empty convex set in Rn.
We say that u ∈ C is an extreme point of C if there are no two different points u1 and u2 in C and
λ ∈]0, 1[ such that u = λu1 + (1− λ)u2.

We denote the set of extreme points of a set C by ext C.

Lemma 33 Let ` : A → [0,+∞]n be a closed loss. Then ext coS⊕` ⊆ S`.

Proof Since coS⊕` ⊆ Rn is connected, coS⊕` = {v +
∑n

k=1 αk`(ak): (ak∈[n],α,v) ∈ An ×
∆n × [0,+∞[n} (Hiriart-Urruty and Lemaréchal, 2001, Prop. A.1.3.7).

We claim that coS⊕` = coS⊕` . Let (zm) := (vm +
∑n

k=1 αm,k`(am,k)) be a convergent se-
quence in [0,+∞[n, where (αm), ([am,k]k∈[n]) and (vm) are sequences in ∆n, An, and [0,+∞[n,
respectively. Since ∆n is compact, we may assume, by extraction a subsequence if necessary, that
αm

m→∞→ α∗ ∈ ∆n. Let K := {k ∈ [n] : α∗k 6= 0}. Since zm converges, ([[`(am,k)]k∈K,vm])
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is a bounded sequence in [0,+∞[n|K|+n. Since ` is closed, we may assume, by extraction a subse-
quence if necessary, that ∀k ∈ K, `(am,k)

m→∞→ `(a∗k) and vm
m→∞→ v∗, where [a∗k]k∈K ∈ A|K|

and v∗ ∈ [0,+∞[n. Consequently,

v∗ +
n∑
k=1

α∗k`(a
∗
k) = lim

m→∞

[
vm,k +

∑
k∈K

αm,k`(am,k)

]
,

≤ lim
m→∞

zm,

where the last inequality is coordinate-wise. Therefore, there exists v′ ∈ [0,+∞[n such that
limm→∞ zm = v′ + v∗ +

∑n
k=1 α

∗
k`(a

∗
k) ∈ coS⊕` . This shows that coS⊕` ⊂ coS⊕` , and thus

coS⊕` = coS⊕` which proves our first claim.
By definition of an extreme point, ext coS⊕` ⊆ coS⊕` . Let e ∈ ext coS⊕` and (ak∈[n],α,v) ∈

An×∆n× [0,+∞[n such that e =
∑n

k=1 αk`(ak)+v. If there exists i, j ∈ [n] such that αiαj 6= 0
or αivj 6= 0 then e would violate the definition of an extreme point. Therefore, the only possible
extreme points are of the form {`(a) : a ∈ dom `)} = S`.

Proof [Theorem 4] Suppose L` is not differentiable at p ∈ ri ∆n. Then from the definition of
the Bayes risk, σS⊕` is not differentiable at −p. This implies that F(p) := ∂σS⊕`

(−p) has more
than one element (Hiriart-Urruty and Lemaréchal, 2001, Cor. D.2.1.4). Since σS⊕` = σcoS⊕`

(ibid..

Prop. C.2.2.1), F(p) = ∂σcoS⊕`
(−p) is a subset of coS⊕` and every extreme point of F(p) is also

an extreme point of coS⊕` (ibid., Prop. A.2.3.7). Thus, from Lemma 33, we have extF(p) ⊂ S`.
On the other hand, since −p ∈ int domσS⊕`

, F(p) is a compact, convex set (Rockafellar, 1997,
Thm. 23.4), and thus F(p) = co(extF(p)) (Hiriart-Urruty and Lemaréchal, 2001, Thm. A.2.3.4).
Hence, the fact that F(p) has more than one element implies that there exists a0,a1 ∈ A such
that `(a0), `(a1) ∈ extF(p) ⊆ F(p) and `(a0) 6= `(a1). Since F(p) = ∂σS⊕`

(−p), Proposition
20-(iv) and the fact that σ∗S⊕`

= ιS⊕`
imply that L`(p) = 〈p, `(p)〉 = 〈p, `(a0)〉 = 〈p, `(a1)〉.

Let p ∈ ri ∆n and suppose that L` is differentiable at p. In this case, σS⊕` is differentiable at
−p, which implies that F(p) = ∂σS⊕`

(−p) is the singleton {∇σS⊕` (−p)} (ibid., Cor. D.2.1.4). In

this case, `(p) = ∇σS⊕` (−p) is the only extreme point of F(p) ⊂ coS⊕` . From Lemma 33, there
exists a∗ ∈ A such that `(a∗) = `(p). In this paragraph, we showed the following

∀p ∈ ri ∆n, ∃a∗ ∈ dom `, `(a∗) = `(p). (27)

For the rest of this proof we will assume that L` is differentiable on ]0,+∞[n. Let p ∈ rbd ∆n∩
dom `. Since ` is a support loss, there exists (pm) in ri ∆n such that (`(pm))m converges to `(p).
From (27) it holds that ∀pm ∈ ri ∆n, ∃am ∈ A, `(am) = `(pm). Since (`(am))m converges and `
is closed, there exists a∗ ∈ A such that `(a∗) = limm→∞ `(am) = `(p).

Now let a ∈ dom ` and f(p, x) := `x(p) − `x(a). Since `(a) ∈ S⊕` and ` is proper, we
have for all p ∈ ri ∆n,Ex∼p[f(p, x)] ≤ 0 and −∞ < f(p, x), ∀x ∈ [n]. Therefore, Lemma
24 implies that for all m ∈ N \ {0} there exists pm ∈ ri ∆n, such that ∀x ∈ [n], `x(pm) ≤
`x(a) + 1/m. On one hand, since (`(pm)) is bounded (from the previous inequality), we may
assume by extracting a subsequence if necessary, that (`(pm))m converges. On the other hand,
since pm ∈ ri ∆n, (27) implies that there exists am ∈ dom ` such that `(pm) = `(am). Since
` is closed and (`(am))m converges, there exists a∗ ∈ A, such that `(a∗) = limm→∞ `(am) =
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limm→∞ `(pm) ≤ `(a). But since ` is admissible, the latter component-wise inequality implies
that `(a∗) = `(a) = limm→∞ `(p).

C.4. Proof of Theorem 5

Proof [S⊕` ⊆
⋂
p∈∆n

H−p,−L`(p)]: Let v ∈ S⊕` , u ∈ [0,+∞[n, and q ∈ ∆n such that v =
`(q)+u. Since ` is proper then ∀p ∈ ∆n, L`(p) = 〈p, `(p)〉 ≤ 〈p, `(q)〉 ≤ 〈p, `(q)+u〉 = 〈p,v〉.
Therefore, v ∈

⋂
p∈∆n

H−p,−L`(p).
[
⋂
p∈∆n

H−p,−L`(p) ⊆ S⊕` ]: Let v ∈
⋂
p∈∆n

H−p,−L`(p). Let Ω = [n], ∆(Ω) = ∆n, and
Q(p, x) = `x(p) − vx for all (p, x) ∈ ∆n × [n]. Since v ∈

⋂
p∈∆n

H−p,−L`(p), Ex∼pQ(p, x) =
〈p, `(p)〉 − 〈p,v〉 ≤ 0 for all p ∈ ∆n. Lemma 21, implies that there exists p∗ ∈ ∆n such that
Q(p∗, x) = `x(p∗)− vx ≤ 0, for all x ∈ [n]. This shows that v ∈ S⊕` .

C.5. Proof of Theorem 7

Proof Let η := η`. We will show that exp(−ηS⊕` ) is convex, which will imply that ` is η-mixable
(Chernov et al., 2010).

Since η` = inf p̃∈int ∆̃n
(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1 > 0, ηL` − Llog is convex on ri ∆n

(van Erven et al., 2012, Thm. 10). Let p ∈ ri ∆n and define

Λ(r) := Llog(r) + 〈r, η`(p)− `log(p)〉, r ∈ ri ∆n.

Since Λ is equal to Llog plus an affine function, it follows that ηL` −Λ is also convex on ri ∆n. On
one hand, since ` and `log are proper losses, we have 〈p, `(p)〉 = L`(p) and 〈p, `log(p)〉 = Llog(p)
which implies that

ηL`(p)− Λ(p) = 0. (28)

On the other hand, since L` and Llog are differentiable we have `(p) = ∇L`(p) and ∇Llog(p) =
`log(p), which yields η∇L`(p) − ∇Λ(p) = 0n. This implies that ηL` − Λ attains a minimum
at p (Hiriart-Urruty and Lemaréchal, 2001, Thm. D.2.2.1). Combining this fact and (28) gives
ηL`(r) ≥ Λ(r),∀r ∈ ri ∆n. By Proposition 20-(iii), −ηL` ≤ −Λ implies

[−ηL`]∗ ≥ [−Λ]∗. (29)

Using Proposition 20-(ii), we get [−Λ∗](s) = [−Llog]∗(s − `log(p) + η`(p)) for s ∈ Rn. Since
−ηL`(u) = −L`(ηu) = σS⊕`

(−ηu) and σ∗S⊕`
= ιS⊕`

, Proposition 20-(v) implies [−ηL`]∗(s) =

ιS⊕`
(−s/η). Similarly, we have [−Llog]∗(s) = ιS⊕log

(−s). Therefore, (29) implies

∀s ∈ Rn, ιS⊕`
(−s/η) ≥ ιS⊕log

(−s+ `log(p)− η`(p)).

This inequality implies that if s ∈ −ηS⊕` , then s ∈ −S⊕log + `log(p) − η`(p). In particular, if

u ∈ e−ηS
⊕
` then

u ∈ e−S
⊕
log+`log(p)−η`(p) ⊆ Hτ(p),1 = {v ∈ Rn : 〈v,p� eη`(p)〉 ≤ 1}. (30)
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To see the set inclusion in (30), consider s ∈ −S⊕log + `log(p) − η`(p), then by definition of the
superprediction set S⊕log there exists r ∈ ∆n and v ∈ [0,+∞[n, such that s = log r − log p −
η`(p)− v. Thus,

〈es,p� eη`(p)〉 = 〈r, e−v〉 ≤ 1, (31)

where the inequality is true because r ∈ ∆n and v ∈ [0,+∞[n. The above argument shows
that e−ηS

⊕
` ⊆ Hτ(p),1. Furthermore, e−ηS

⊕
` ⊆ Hτ(p),1 ∩ [0,+∞[n, since all elements of e−ηS

⊕
`

have non-negative components. The latter set inclusion still holds for p̂ ∈ rbd ∆n. In fact, from
the definition of a support loss, there exists a sequence (pm) in ri ∆n converging to p̂ such that
`(pm)

m→∞→ `(p̂). Equation 31 implies that for u ∈ e−ηS
⊕
` , 〈u,pm�eη`(pm)〉 ≤ 1. Since the inner

product is continuous, by passage to the limit, we obtain 〈u, p̂� eη`(p̂)〉 ≤ 1. Therefore,

e−ηS
⊕
` ⊆

⋂
p∈∆n

Hτ(p),1 ∩ [0,+∞[n. (32)

Now suppose u ∈
⋂
p∈∆n

Hτ(p),1 ∩ [0,+∞[n; that is, for all p ∈ ∆n,

1 ≥
〈
u,p� eη`(p)

〉
=
〈
p,u� eη`(p)

〉
=
〈
p, eη`(p)+logu

〉
,

≥ e〈p,η`(p)〉+〈p,logu〉, (33)

where the first equality is obtained merely by expanding the expression of the inner product, and
the second inequality is simply Jensen’s Inequality. Since u 7→ eu is strictly convex, the Jensen’s
inequality in (33) is strict unless ∃(c,p) ∈ R×∆n, such that

η`(p) + logu = c1n. (34)

By substituting (34) into (33), we get 1 ≥ exp(c), and thus c ≤ 0. Furthermore, (24) implies that
p ∈ dom `, and thus there exists a ∈ dom ` such that `(a) = `(p) (Theorem 4). Using this and
rearranging (34), we get u = exp(−η`(a) + c1). Since c ≤ 0, this means that u ∈ exp(−ηS⊕` ).
Suppose now that (34) does not hold. In this case, (33) must be a strict inequality for all p ∈ ∆n.
By applying the log in (33),

∀p ∈ ∆n, L`(p) + 〈p, logu〉 = 〈p, η`(p)〉+ 〈p, logu〉 < 0. (35)

Since p 7→ L`(p) = −σS⊕` (−p) is a closed concave function, the map g : p 7→ L`(p) + 〈p, logu〉
is also closed and concave, and thus upper semi-continuous. Since ∆n is compact, the function g
must attain its maximum in ∆n (Holder, 2005, Thm. 1.13). Due to (35) this minimum is negative;
there exists c1 > 0 such that 〈p, η`(p)〉 − 〈p,− logu〉 ≤ −c1. Let f(p, x) := `x(p) + log ux + c1,
for x ∈ [n]. Consequently for all p ∈ ∆n, Ex∼pf(p, x) ≤ 0 and ∀x ∈ [n],−∞ < f(p, x).
Thus, Lemma 25 applied to f with ε = c1/2, implies that there exists p∗ ∈ ri ∆n, such that
η`(p∗) ≤ − logu− c1/2 ≤ − logu. From this inequality, p∗ ∈ dom `, and therefore, there exists
a∗ ∈ dom ` such that `(a∗) = `(p∗) (Theorem 4). This shows that η`(a∗) ≤ − logu, which
implies that u ∈ exp−ηS⊕` . Therefore,

⋂
p∈∆n

Hτ(p),1 ∩ [0,+∞[n⊆ e−ηS
⊕
` . Combining this with

(32) shows that e−ηS
⊕
` =

⋂
p∈∆n

Hτ(p),1 ∩ [0,+∞[n. Since e−ηS
⊕
` is the intersection of convex

set, it is a convex set itself. Therefore ` is η-mixable.
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C.6. Proof of Proposition 11

Given an entropy Φ: Rk → R ∪ {+∞} and a loss ` : A → [0,+∞], we define

∆mΦ(x,A,a, q̂,µ) := 〈µ, `x(A)〉+DΦ(µ, q̂)− `x(a),

where x ∈ [n], A ∈ Ak, a ∈ A, and q, q̂ ∈ ∆k. Reid et al. (2015) showed that ` is Φ mixable if
and only if ∆MΦ := infA∈Ak,q̂∈∆k

supa∗∈A infµ∈∆k,x∈[n] ∆mΦ(x,A,a, q̂,µ) ≥ 0.

Proof [Proposition 11]
[We show that ` is ΦI-mixable] Let I ⊆ [k], with |I| > 1, A ∈ Ak, and q ∈ ∆I . Since ` is

Φ-mixable, the following holds

∃a∗ ∈ ∆n,∀x ∈ [n], `x(a∗) ≤ inf
q̂∈∆k

〈q̂, `x(A)〉+DΦ(q̂, q), (36)

≤ inf
q̂∈∆I

〈q̂, `x(A)〉+DΦ(q̂, q), (37)

= inf
q̂∈∆I

〈
Πk
I q̂,Π

k
I`x(A)

〉
+DΦI (Π

k
I q̂,Π

k
Iq),

= inf
µ̂∈∆|I|

〈
µ̂, `x(A[Πk

I ]
T)
〉

+DΦI (µ̂,Π
k
Iq), (38)

where in (36) we used the fact that ΦI(Πk
Iq) = Φ(q), ∀q ∈ ∆I . Given that A 7→ A[Πk

I ]
T [resp.

q 7→ Πk
Iq] is onto from Ak to A|I| [resp. from ∆I to ∆|I|], (38) implies that ` is ΦI-mixable.

[We show (8)] Suppose that there exists q̂ ∈ rbd ∆k and q ∈ ri ∆k such that |Φ′(q̂; q − q̂)| <
+∞. Let f : [0, ε] → R be defined by f(λ) := Φ(q̂ + λ(q − q̂)), where ε > 0 is such that
q̂+ε(q−q̂) ∈ ri ∆k. The function f is closed and convex on dom f = [0, ε] and limλ↓0

f(λ)−f(0)
λ =

f ′(0; 1) = Φ′(q̂; q − q̂) which is finite by assumption. Using this and the fact that λf ′(0; 1) =
f ′(0;λ), we have limλ↓0 λ

−1(f(λ) − f(0) − f ′(0;λ)) = 0. Substituting f by its expression in
terms of Φ in the latter equality gives

lim
λ↓0

λ−1DΦ(q̂ + λ(q − q̂), q̂) = 0. (39)

Let η > 0 and θ∗ ∈ [k] be such that q̂θ∗ = 0. Suppose that ` is a non-trivial Φ-mixable loss.
Let x1, x0, a1, and a0 be as in the definition of non-trivial (see (3)). In particular, it holds that
`x0(a0) < `x0(a1). Fix A ∈ Ak, such that A•,θ∗ = a0 and A•,θ = a1 for θ ∈ [k] \ {θ∗}. Let

a∗ = argmax
a∈∆n

inf
µ∈∆k,x∈[n]

∆mΦ(x,A,a, q̂,µ),

with q̂ ∈ rbd ∆k as in (39). Note that a∗ exists since ` is closed.
If a∗ is such that `x1(a∗) > `x1(a1), then taking µ = q̂ puts all weights on experts predicting

a1, while DΦ(µ, q̂) = 0. Therefore,

∆MΦ ≤ inf
µ∈∆k,x∈[n]

∆mΦ(x,A,a∗, q̂,µ) ≤ ∆mΦ(x1, A,a, q̂, q̂) < 0.
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This contradicts the Φ-mixability of `. Therefore, `x1(a∗) = `x1(a1), which by (3) implies
`x0(a∗) ≥ `x0(a1). For qλ = q̂ + λ(q − q̂), with q ∈ ri ∆k as in (36) and λ ∈ [0, ε],

∆MΦ ≤ inf
µ∈∆k,x∈[n]

∆mΦ(x,A,a∗, q̂,µ),

≤ ∆mΦ(x0, A,a, q̂, q
λ),

= 〈qλ, `x0(A)〉+DΦ(qλ, q̂)− `x0(a∗),

= (1− λqθ∗)`x0(a1) + λqθ∗`x0(a0) +DΦ(qλ, q̂)− `x0(a∗),

≤ (1− λqθ∗)`x0(a∗) + λqθ∗`x0(a0) +DΦ(qλ, q̂)− `x0(a∗),

= λqθ∗(`x0(a0)− `x0(a∗)) +DΦ(q̂ + λ(q − q̂), q̂).

Since qθ∗ > 0 (q ∈ ri ∆k) and `x0(a0) < `x0(a1) ≤ `x0(a∗), (36) implies that there exists
λ∗ > 0 small enough such that λ∗qθ∗(`x0(a0) − `x0(a∗)) + DΦ(q̂ + λ∗(q − q̂), q̂) < 0. But this
implies that ∆MΦ < 0 which contradicts the Φ-mixability of `. Therefore, Φ′(q̂; q − q̂) is either
equal to +∞ or −∞. The former case is not possible. In fact, since Φ is convex, it must have
non-decreasing slopes; In particular, it holds that Φ′(q̂; q− q̂) ≤ Φ(q− q̂)−Φ(q̂). Since Φ is finite
on ∆k (by definition of an entropy), we have Φ′(q̂; q − q̂) < +∞. Therefore, we have just shown
that

∀q̂ ∈ rbd ∆k,∀q ∈ ri ∆k, Φ′(q̂; q − q̂) = −∞. (40)

Now suppose that (q̂, q) ∈ (rbd ∆I) × (ri ∆I) for I ⊆ [k], with |I| > 1. Note that in this
case, we have (ΦI)′(Πk

I q̂; Πk
I(q − q̂)) = Φ′(q̂; q − q̂). We showed in the first step of this proof

that under the assumptions of the proposition, ` must be ΦI-mixable. Therefore, repeating the steps
above that lead to (40) for Φ, q̂, and q substituted by ΦI , Πk

Iq ∈ rbd ∆|I|, and Πk
Iq ∈ ri ∆|I|, we

obtain Φ′(q̂; q − q̂) = (ΦI)′(Πk
I q̂; Πk

I(q − q̂)) = −∞. This shows (8).

C.7. Proof of Proposition 12

Let “sgn” denote the sign function.
Proof [Proposition 12] Let I = {1, 2}. Since ` is Φ-mixable, it must be ΦI-mixable, where
ΦI := ΦI ◦ [Πk

I ]
T : R2 → R ∪ {+∞} (Proposition 11). Let Ψ := ΦI .

Forw ∈]0,+∞[ and z ∈ int dom Ψ̃∗ = R (see §2.2), we define (Ψ̃∗)′∞(w) := limt→+∞[Ψ̃∗(z+
tw) − Ψ̃∗(z)]/t. The value of (Ψ̃∗)′∞(w) does not depend on the choice of z, and it holds that
(Ψ̃∗)′∞(w) = σdom Ψ̃(w) and (Ψ̃∗)′∞(−w) = σdom Ψ̃(−w) (Hiriart-Urruty and Lemaréchal, 2001,
Prop. C.1.2.2). In our case, we have dom Ψ̃ = [0, 1] (by definition of Ψ̃), which implies that
σdom Ψ̃(1) = 1 and σdom Ψ̃(−1) = 0. Therefore, (Ψ̃∗)′∞(1) + (Ψ̃∗)′∞(−1) = 1. As a result Ψ̃∗

cannot be affine; that is, it cannot have a constant slope between any two points in R. For ∀δ > 0, let
gδ : R×{−1, 0,+1} → R be defined by gδ(s, u) := [Ψ̃∗(s+δ(u+1)/2)− Ψ̃∗(s+δ(u−1)/2)]/δ.
Since Ψ̃∗ is convex it must have non-decreasing slopes (ibid., p.13). Combining this with the fact
that Ψ̃∗ is not affine implies that

∃s∗δ ∈ R, gδ(s∗δ ,−1) < gδ(s
∗
δ ,+1). (41)
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The fact that Ψ̃∗ has non-decreasing slopes also implies that

gδ(s
∗
δ ,+1) = [Ψ̃∗(s∗δ + δ)− Ψ̃∗(s∗δ)]/δ ≤ lim

t→∞
[Ψ̃∗(s∗δ + t)− Ψ̃∗(s∗δ)]/t = (Ψ̃∗)′∞(1) = 1.

Similarly, we have 0 = −(Ψ̃∗)′∞(−1) ≤ gδ(s∗δ ,−1). Let µ̃ ∈ ∂Ψ̃∗(s∗δ). Since Ψ̃ is a closed convex
function the following equivalence holds µ̃ ∈ ∂Ψ̃∗(s∗δ) ⇐⇒ s∗δ ∈ ∂Ψ̃(µ̃) (ibid., Cor. D.1.4.4).
Thus, if µ̃ ∈ {0, 1} = bd ∆̃2, then ∂Ψ̃(µ̃) 6= ∅, which is not possible since ` is Ψ-mixable (Lemma
30).

[We show L` ∈ C1(]0,+∞[n)] We will now show that L` is continuously differentiable on
]0,+∞[n. Since L` is 1-homogeneous, it suffice to check the differentiability on ri ∆n. Suppose L`
is not differentiable at p ∈ ri ∆n. From Theorem 4, there exists a0,a1 ∈ A such that `(a0), `(a1) ∈
∂σS⊕`

(−p) and `(a0) 6= `(a1). Let A := [a0,a1] ∈ Rn×2, δ := min{|`x(a0) − `x(a1)| :

x ∈ [n], |`x(a0) − `x(a1)| > 0}, and s∗δ ∈ R as in (41). We denote g− := gδ(s
∗
δ ,−1) and

g+ := gδ(s
∗
δ ,+1) ∈]0, 1]. Let µ̃ ∈ ∂Ψ̃∗(s∗δ) ∈ int ∆̃2 and µ = q2(µ̃) ∈ ri ∆2. From the fact that

` is Ψ-mixable, JT
2 `x(A) = `x(a0) − `x(a1), and (9), there must exist a∗ ∈ A such that for all

x ∈ [n],

`x(a∗) ≤ MΨ(`x(A),µ) = `x(a1) + Ψ̃∗(s∗δ)− Ψ̃∗(s∗δ − `x(a0) + `x(a1)),

≤ `x(a1) + gδ(s
∗
δ ,− sgn[`x(a0)− `x(a1)])[`x(a0)− `x(a1)], (42)

where in (42) we used the fact that Ψ̃∗ has non-decreasing slopes and the definition of δ. When
`x(a0) ≤ `x(a1), (42) becomes `x(a∗) ≤ (1 − g+)`x(a1) + g+`x(a0). Otherwise, we have
`x(a∗) ≤ (1 − g−)`x(a1) + g−`x(a0) < (1 − g+)`x(a1) + g+`x(a0). Since ` is admissible,
there must exist at least one x ∈ [n] such that `x(a0) > `x(a1). Combining this with the fact that
px > 0, ∀x ∈ [n] (p ∈ ri ∆n), implies that 〈p, `(a∗)〉 < 〈p, (1 − g+)`(a1) + g+`(a0)〉 = L`(p).
This contradicts the fact that `(a∗) ∈ S⊕` . Therefore, L` must be differentiable at p. As argued
earlier, this implies that L` must be differentiable on ]0,+∞[n. Combining this with the fact that
L` is concave on ]0,+∞[n, implies that L` is continuously differentiable on ]0,+∞[n (ibid., Rmk.
D.6.2.6).

[We show Φ̃∗ ∈ C1(Rk−1)] Suppose that Φ̃∗ is not differentiable at some s∗ ∈ Rk−1. Then
there exists d ∈ Rk−1 \ {0k̃} such that (−Φ̃∗)′(s∗;−d) < (Φ̃∗)′(s∗;d). Since s∗ ∈ int dom Φ̃∗,
(Φ̃∗)′(s∗, ·) is finite and convex (Hiriart-Urruty and Lemaréchal, 2001, Prop. D.1.1.2), and thus it is
continuous on dom Φ̃∗ = Rk−1 (ibid., Rmk. B.3.1.3). Consequently, there exists δ∗ > 0 such that

∀d̂ ∈ Rn−1, ‖d̂− d‖ ≤ δ∗ =⇒ −(Φ̃∗)′(s∗;−d̂) < (Φ̃∗)′(s∗; d̂) (43)

Let g : {−1, 1} → R such that g(u) := sup‖d̂−d‖≤δ∗ u(Φ̃∗)′(s∗;ud̂). Note that since Φ̃∗ has

increasing slopes (Φ̃∗ is convex), g(1) ≤ sup‖d̂−d‖≤δ∗(Φ̃
∗)′∞(d̂) = sup‖d̂−d‖≤δ∗ σdom Φ̃(d̂) ≤

1, where the last inequality holds because ∆̃k ⊂ B(0k̃, 1), and thus σdom Φ̃(d̂) = σ∆̃k
(d̂) ≤

σB(0k̃,1)(d̂) = 1. Let ∆g := g(1)− g(−1). From (40), it is clear that ∆g > 0.
Suppose that L` is twice differentiable on ]0,+∞[n and let ` be a support loss of `. By definition

of a support loss, ∀p ∈ ri ∆k, ˜̀(p̃) = `(p) = ∇L`(p) (where ˜̀ := ` ◦ qn). Thus, since L` is twice
differentiable on ]0,+∞[n, ˜̀ is differentiable on int ∆̃n. Furthermore, ` is continuous on ri ∆k
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given that L` ∈ C1(]0,+∞[n) as shown in the first part of this proof. Since ` is non-trivial, it is non-
constant. Therefore, from Theorem 4, ` is also non-constant. Consequently, the mean value theorem
applied to ` (see e.g. (Rudin, 1964, Thm. 5.10)) between any two points in ri ∆n with distinct image
under `, implies that there exists (p̃∗,v∗) ∈ int ∆̃n × Rn−1, such that D˜̀(p̃∗)v∗ 6= 0ñ. For the rest
of the proof let (p̃,v) := (p̃∗,v∗) and define J := {x ∈ [n] : D˜̀

x(p̃)v 6= 0}. From Lemma 27,
we have 〈p,D˜̀(p̃)〉 = 0Tñ , which implies ∃x ∈ J ,D˜̀

x(p̃)v < 0. Let p̃t := p̃+ tv. From Taylor’s
Theorem (see e.g. (Hardy, 2008, §151)) applied to the function t 7→ ˜̀(p̃t), there exists ε∗ > 0 and
functions δx : [−ε∗, ε∗]→ Rn, x ∈ [n], such that limt→0 t

−1δx(t) = 0 and

∀|t| ≤ ε∗, `x(pt) = `x(p) + tD˜̀
x(p)v + δx(t). (44)

By shrinking ε∗ if necessary, we may also assume that

∀x ∈ J ,∀θ ∈ [k],∀|t| ≤ ε∗, t−1δx(tdθ) ≤
δ∗|D˜̀

x(p̃)v|√
n ‖d‖

, (45)

∀x 6∈ J ,∀θ ∈ [k],∀|t| ≤ ε∗, δx(t) ≤ ∆g

2
min
x∈J
{px}. (46)

Note that minx∈J {px} > 0, since p ∈ ri ∆n. Let λθ := t∗ dθ‖d‖ , for θ ∈ [k − 1]. From Theorem 4,

there exists [a∗θ]θ∈[k] ∈ Ak, such that `(ak) = `(p) and `(aθ) = `(pλθ) = `(p) + t∗ dθ‖d‖D
˜̀(p̃)v +

δ
(
t∗ dθ‖d‖

)
, where [δ(·)]x := δx(·). Let A := [aθ]θ∈[k]. From the fact that ` is Φ-mixable, it follows

that there exists a∗ ∈ A such that for all x ∈ [n],

`x(a∗) ≤ MΦ(`x(A),µ) = `x(ak) + Φ̃∗(s∗)− Φ̃∗(s∗ − JT
k `x(A)). (47)

Note that for all x ∈ [n], JT
k `x(A) = [`x(aθ)−`x(ak)]θ∈[k̃]. Thus, ∀x ∈ J ,∀θ ∈ [k̃], [JT

k `x(A)]θ =[
t∗

‖d‖D
˜̀
x(p̃)v

]
dx,θ, where dx,θ := dθ + ‖d‖

t∗[D˜̀
x(p̃)v]

δx

(
t∗ dθ‖d‖

)
. On the other hand, if θ 6∈ J , then

[JT
k `x(A)]θ = δx

(
t∗ dθ‖d‖

)
. From (45), we have ‖dx − d‖ ≤ δ∗, ∀x ∈ J , and from the monoticity

of the slopes of Φ̃∗

∀x ∈ J , Φ̃∗(s∗)− Φ̃∗(s∗ − JT
k `x(A)) ≤ (Φ̃∗)′

(
s∗;

t∗

‖d‖
[D˜̀

x(p̃)v]dx

)
,

≤ t∗

‖d‖
[D˜̀

x(p̃)v]g(sgn[D˜̀
x(p̃)v]),

≤ t∗

‖d‖
[D˜̀

x(p̃)v]g(1)−∆gJD˜̀
x(p̃)v < 0K, (48)

where J·K denotes the Iverson bracket. Equation 48 follows from the definition of ∆g. Combining
(48) with (47) yields

〈p, `(a∗)〉 ≤ 〈p, `(ak)〉+
t∗

‖d‖
〈p,D˜̀(p̃)v〉g(1)−∆g min

x′∈J
{px′}+

∑
x 6∈J

pxδx

(
t∗
dθ
‖d‖

)
,

≤ 〈p, `(ak)〉 −
∆g

2
min
x∈J
{px}, (49)

< 〈p, `(p)〉, (50)
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where in the first inequality we used the fact that ∃x ∈ J ,D˜̀
x(p̃)v < 0. In (49) we used (45) and

the fact that 〈p,D˜̀(p̃)〉 = 0Tñ (Lemma 27). Finally, (50) follows from the fact that minx∈J {px} > 0
(p ∈ ri ∆n) and `(p) = `(ak) (by definition of ak). Equation 50 shows that `(a∗) 6∈ S⊕` , which is
a contradiction.

C.8. Proof of Proposition 13

Proof First note that q∗ is well defined; the infimum of µ 7→ 〈µ, q〉 + DΦ(µ, q) is attained for
q ∈ ri ∆k (see Remark 9).

Now since Φ̃ is convex and q̃ = Πk(q) ∈ int ∆̃k = int dom Φ̃, we have ∂Φ̃(q̃) 6= ∅ (Rockafel-
lar, 1997, Thm. 23.4). This means that there exists s∗q ∈ ∂Φ̃(q̃) such that 〈s∗q, q̃∗− q̃〉 = Φ̃′(q̃; q̃∗−
q̃) (Hiriart-Urruty and Lemaréchal, 2001, p.166). We will now show that s∗q − JT

k d ∈ ∂Φ̃(q̃∗),
which will imply that q̃∗ ∈ ∂Φ̃∗(s∗q − JT

k d) (ibid., Cor. D.1.4.4). Let q∗ = argminµ∈∆k
〈µ,d〉 +

DΦ(µ, q). Thus, for all µ ∈ ∆k,

〈µ,d〉+ Φ̃(µ̃)− Φ̃(q̃)− Φ̃′(q̃; µ̃− q̃) ≥ 〈q∗,d〉+ Φ̃(q̃∗)− Φ̃(q̃)− 〈s∗q, q̃∗ − q̃〉,
=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗)− 〈µ̃− q̃∗, JT

k d〉+ 〈s∗q, q̃ − q̃∗〉+ Φ′(q̃; µ̃− q̃),

=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗)− 〈µ̃− q̃∗, JT
k d〉+ 〈s∗q, q̃ − q̃∗〉+ 〈s∗q, µ̃− q̃〉,

=⇒ Φ̃(µ̃) ≥ Φ̃(q̃∗) + 〈µ̃− q̃∗, s∗q − JT
k d〉,

where in the second line we used the fact that ∀q ∈ ∆k, 〈q,d〉 = 〈q̃, JT
k d〉 + dk, and in third

line we used the fact that ∀s ∈ ∂Φ̃(q̃), 〈s, µ̃ − q̃〉 ≤ Φ̃′(q̃; µ̃ − q̃) (ibid.). This shows that
s∗q − JT

k d ∈ ∂Φ̃(q̃∗).
Substituting Φ̃′(q̃; q̃∗ − q̃) by 〈s∗q, q∗ − q〉 in the expression of MΦ(d, q), we get

MΦ(d, q) = dk + 〈q̃∗, JT
k d〉+ Φ̃(q̃∗)− Φ̃(q̃)− 〈s∗q, q̃∗ − q̃〉,

= dk + 〈s∗q, q̃〉 − Φ̃(q̃)− [〈s∗q − JT
k d, q̃∗〉 − Φ̃(q̃∗)],

= dk + Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k d),

where in the last line we used the fact that Φ̃ is a closed convex function, and thus ∀q̃ ∈ ∆̃k,
s ∈ ∂Φ̃(q̃) =⇒ Φ̃∗(s) = 〈s, q̃〉 − Φ̃(q̃) (ibid., Cor. E.1.4.4).

C.9. Proof of Theorem 14

Proof Let q ∈ ∆k and A := [aθ]1≤θ≤k ∈ Ak. We claim that for x ∈ [n]

−η−1 log 〈exp(−η`x(A)), q〉 = MSη(`x(A), q). (51)

Let x ∈ [n]. Since q ∈ ∆k, q is either a vertex of ∆k or there exists I ⊆ [n], with |I| > 1, such
that q ∈ ri ∆I . Suppose the latter case holds. We showed (see (14)) that for A′ ∈ (dom `)k,

−η−1 log
〈
exp(−η`x(A′)), q

〉
= MSIη

(Πk
I`x(A′),Πk

Iq). (52)
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Since this result was obtained without any special assumptions on ` — we only assumed that
`x(A′) ∈ [0,+∞[k — then (52) still holds if we replace `x(A′) by any d ∈ [0,+∞[k; that is,

∀d ∈ [0,+∞[n, −η−1 log 〈exp(−ηd, q〉 = MSIη
(Πk
Id,Π

k
Iq),

= MSη(d, q), (53)

where (53) is implied by Lemma 30 since Sη satisfies (8) (see Lemma 29).
Fix x ∈ [n] and let d̂ := `x(A) ∈ [0,+∞]k. From Lemma 31, there exists a sequence (d̂m) ⊂

[0,+∞[k converging to d̂ such that MSη(d̂m, q)
m→∞→ MSη(d̂, q). Then, from (53)

−η−1 log 〈exp(−η`x(A)), q〉 = lim
m→∞

−η−1 log
〈

exp(−ηd̂m, q
〉
,

= lim
m→∞

MSη(d̂m, q),

= MSη(d̂, q) = MSη(`x(A), q). (54)

Now suppose that q is a vertex. Without loss of generality assume that q = e1 and let µ ∈
∆k \ {e1}. Then there exists I∗ ⊂ [k], such that (e1,µ) ∈ (rbd ∆I∗) × (ri ∆I∗) and by Lemma
29, S′(e1;µ− e1) = −∞. Therefore, ∀q ∈ ∆k \ {e1}, DSη(q, e1) = +∞, which implies

∀x ∈ [n],MSη(`x(A), e1) = inf
q∈∆k

〈q, `x(A)〉+DSη(q, e1),

= 〈e1, `x(A)〉+DSη(e1, e1),

= 〈e1, `x(A)〉,
= `x(a1) = −η−1 log 〈exp(−η`x(A)), e1〉 . (55)

Combining (55) and (54) proves the claim in (51). The desired equivalence follows trivially from
the definitions of η-mixability and Sη-mixability.

C.10. Proof of Theorem 15

We need the following lemma to show Theorem 15.

Lemma 34 Let Φ be as in Theorem 15. Then η`Φ− S is convex on ∆k only if Φ satisfies (8).

Proof Let q̂ ∈ rbd ∆k. Suppose that there exists q ∈ ri ∆k such that Φ′(q̂; q− q̂) > −∞. Since Φ
is convex, it must have non-decreasing slopes; in particular, it holds that Φ′(q̂; q−q̂) ≤ Φ(q)−Φ(q̂).
Therefore, since Φ is finite on ∆k (by definition of an entropy), we have Φ′(q̂; q− q̂) < +∞. Since
by assumption η`Φ− S is convex and finite on the simplex, we can use the same argument to show
that [η`Φ − S]′(q̂; q − q̂) = η`Φ

′(q̂; q − q̂) − S′(q̂; q − q̂) < +∞. This is a contradiction since
S′(q̂; q − q̂) = −∞ (Lemma 29). Therefore, it must hold that Φ′(q̂; q − q̂) = −∞.

Suppose now that (q̂, q) ∈ (rbd ∆I)× (ri ∆I) for I ⊆ [k], with |I| > 1. Let ΦI := Φ ◦ [Πk
I ]

T

and SI := S ◦[Πk
I ]

T. Since η`Φ − S is convex on ∆k and Πk
I is a linear function, η`ΦI − SI is

convex on ∆|I|. Repeating the steps above for Φ and S substituted by ΦI and SI , respectively, we
get that (ΦI)′(Πk

I q̂; Πk
Iq−Πk

I q̂) = −∞. Since (ΦI)′(Πk
I q̂; Πk

Iq−Πk
I q̂) = Φ′(q̂; q− q̂) the proof

is completed.
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Proof [Theorem 15] Assume η`Φ − S is convex on ∆k. For this to hold, it is necessary that
η` > 0 since −S is strictly concave. Let η := η` and Sη := η−1 S. Then S̃η = η−1S̃ and
Φ̃− S̃η = (Φ− Sη) ◦ qk is convex on ∆̃k, since Φ− Sη is convex on ∆k and qk is affine.

Let x ∈ [n], A := [aθ]θ∈[k], and q ∈ ∆k. Suppose that q ∈ ri ∆k and let s∗q ∈ ∂Φ̃(q̃) be as in
Proposition 13. Note that if `x(aθ) = +∞,∀θ ∈ [k], then the Φ-mixability condition (6) is trivially
satisfied. Suppose, without loss of generality, that `x(ak) < +∞. Let (dm) ⊂ [0,+∞[k be such
that dm

m→∞→ d := `x(A) ∈ [0,+∞]k and MΨ(dm, q)
m→∞→ MΨ(d, q) for Ψ ∈ {Φ, Sη}. This

sequence is guaranteed to exist by Lemma 31.
Let Υ̃q : Rk−1 → R ∪ {+∞} be defined by

Υ̃q(µ̃) := S̃η(µ̃) + 〈µ̃, s∗q −∇S̃η(q̃)〉 − Φ̃∗(s∗q) + S̃
∗
η(∇S̃η(q̃)),

and it’s Fenchel dual follows from Proposition 20 (i+ii):

Υ̃∗q(v) = S̃
∗
η(v − s∗q +∇S̃η(q̃)) + Φ̃∗(s∗q)− S̃

∗
η(∇S̃η(q̃)),

After substituting v by s∗q − JT
k d in the expression of Υ̃∗q and rearranging, we get

S̃
∗
η(∇S̃η(q̃))− S̃

∗
η(∇S̃η(q̃)− JT

k dm) = Φ̃∗(s∗q)− Υ̃∗q(s
∗
q − JT

k dm). (56)

Since s∗q ∈ ∂Φ̃(q̃) and Φ̃ is a closed convex function, combining Proposition 20-(iv) and the fact
that Φ̃∗∗ = Φ̃ (Hiriart-Urruty and Lemaréchal, 2001, Cor. E.1.3.6) yields 〈q̃, s∗q〉− Φ̃∗(s∗q) = Φ̃(q̃).
Thus, after substituting µ̃ by q̃ in the expression of Υ̃q, we get

Φ̃(q̃) = Υ̃q(q̃). (57)

On the other hand, Φ̃− Υ̃q is convex on ∆̃k, since Υ̃q is equal to S̃η plus an affine function. Thus,
∂[Φ̃ − Υ̃q](q̃) + ∂Υ̃q(q̃) = ∂Φ̃(q̃), since Φ̃ and Υ̃q are both convex (ibid., Thm. D.4.1.1). Since
Υ̃q is differentiable at q̃, we have ∂Υ̃q(q̃) = {∇Υ̃q(q̃)} = {s∗q}. Furthermore, since s∗q ∈ ∂Φ̃(q̃),
then 0k̃ ∈ ∂Φ̃(q)− ∂Υ̃q(q̃) = ∂[Φ̃− Υ̃q](q̃). Hence, Φ̃− Υ̃q attains a minimum at q̃ (ibid., Thm.
D.2.2.1). Due to this and (57), Φ̃ ≥ Υ̃q, which implies that Φ̃∗ ≤ Υ̃∗q (Proposition 20-(iii)). Using
this in (56) gives for all m ∈ N

S̃
∗
η(∇S̃η(q̃))− S̃

∗
η(∇S̃η(q̃)− JT

k dm) ≤ Φ̃∗(s∗q)− Φ̃∗(s∗q − JT
k dm),

=⇒ MSη(dm, q) ≤ MΦ(dm, q),

where the implication is obtained by adding [dm]k on both sides of the first inequality and using
Proposition 13.

Suppose now that q ∈ ri ∆I , with |I| > 1, and let ΦI := Φ ◦ [Πk
I ]

T and SI := S ◦[Πk
I ]

T.
Note that since η`Φ− S is convex on ∆k and Πk

I is a linear function, η`ΦI − SI is convex on ∆|I|.
Repeating the steps above for Φ, S, q, and A substituted by ΦI , SI , Πk

Iq, and A[Πk
I ]

T, respectively,
yields

MSIη
(Πk
Idm,Π

k
Iq) ≤ MΦI (Π

k
Idm,Π

k
Iq),

=⇒ MSη(dm, q) ≤ MΦ(dm, q),

=⇒ MSη(`x(A), q) ≤ MΦ(`x(A), q), (58)
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where the first implication follows from Lemma 30, since Sη and Φ both satisfy (8) (see Lemmas
29 and 34), and (58) is obtained by passage to the limit m→∞. Since η = η` > 0, ` is η-mixable,
which implies that ` is Sη-mixable (Theorem 14). Therefore, there exists a∗ ∈ A, such that

`x(a∗) ≤ MSη(`x(A), q) ≤ MΦ(`x(A), q). (59)

To complete the proof (that is, to show that ` is Φ-mixable), it remains to consider the case
where q is a vertex of ∆k. Without loss of generality assume that q = e1 and let µ ∈ ∆k \ {e1}.
Thus, there exists I∗ ⊆ [k], with |I∗| > 1, such that (e1,µ) ∈ (rbd ∆I∗) × (ri ∆I∗), and Lemma
34 implies that Φ′(e1;µ − e1) = −∞. Therefore, ∀q ∈ ∆k \ {e1}, DΦ(q, e1) = +∞, which
implies

∀x ∈ [n],MΦ(`x(A), e1) = inf
q∈∆k

〈q, `x(A)〉+DΦ(q, e1),

= 〈e1, `x(A)〉+DΦ(e1, e1) = 〈e1, `x(A)〉,
= `x(a1). (60)

The Φ-mixability condition (6) is trivially satisfied in this case. Combining (59) and (60) shows that
` is Φ-mixable.

C.11. Proof of Theorem 16

The following Lemma gives necessary regularity conditions on the entropy Φ under the assumptions
of Theorem 16.

Lemma 35 Let Φ and ` be as in Theorem 16. Then the following holds

(i) Φ̃ is strictly concave on int ∆̃k.

(ii) Φ̃∗ is be continuously differentiable on Rk−1.

(iii) Φ̃∗ is twice differentiable on Rk−1 and ∀q̃ ∈ int ∆̃k,HΦ̃∗(∇Φ̃(q̃)) = (HΦ̃(q̃))−1.

(iv) For the Shannon entropy, we have (HS̃(q̃))−1 = HS̃
∗
(∇S̃(q̃)) = diag q̃ − q̃q̃T.

Proof Since ` is Φ-mixable and L` is twice differentiable on ]0,+∞[n, Φ̃∗ is continously differ-
entiable on Rn−1 (Proposition 12). Therefore, Φ̃ is strictly convex on ri ∆k (Hiriart-Urruty and
Lemaréchal, 2001, Thm. E.4.1.2).

The differentiability of Φ̃ and Φ̃∗ implies ∇Φ̃∗(∇Φ̃(q̃)) = q̃ (ibid.). Since Φ̃ is twice dif-
ferentiable on int ∆̃k (by assumption), the latter equation implies that Φ̃∗ is twice differentiable on
∇Φ̃(int ∆̃k). Using the chain rule, we get HΦ̃∗(∇Φ̃(u))HΦ̃(u) = Ik̃. Multiplying both sides of the
equation by (HΦ̃(u))−1 from the right gives the expression in (iii). Note that HΦ̃(·) is in fact invert-
ible on int ∆̃k since Φ̃ is strictly convex on int ∆̃k. It remains to show that ∇Φ̃(int ∆̃k) = Rk−1.
This set equality follows from 1) [q̃ ∈ ∂Φ̃∗(s) ⇐⇒ s ∈ ∂Φ̃(q̃)] (ibid., Cor. E.1.4.4); 2)
dom Φ̃∗ = Rk−1; and 3) ∀q̃ ∈ bd ∆̃k, ∂Φ̃(q̃) = ∅ (Lemma 30).

For the Shannon entropy, we have S̃
∗
(v) = log(〈exp(v),1k̃〉+1) (Proposition 1) and∇S̃(q̃) =

log q̃
qk

, for (v, q̃) ∈ Rk−1 × ∆̃k. Thus (HS̃(q̃))−1 = HS̃
∗
(∇S̃(q̃)) = diag q̃ − q̃q̃T.

To show Theorem 16, we analyze a particular parameterized curve defined in the next lemma.
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Lemma 36 Let ` : ∆n → [0,+∞]n be a proper loss whose Bayes risk L` is twice differentiable on
]0,+∞[n, and let Φ be an entropy such that Φ̃ and Φ̃∗ are twice differentiable on int ∆̃k and Rk−1,
respectively. For (p̃, q̃, V ) ∈ int ∆̃n × int ∆̃k × Rñ×k̃, let β : R→ Rn be the curve defined by

∀x ∈ [n], βx(t) = ˜̀
x(p̃) + Φ̃∗(∇Φ̃(q̃))− Φ̃∗(∇Φ̃(q̃)− JT

k
˜̀
x(P̃ t)), (61)

where P̃ t = [p̃1T
k̃

+ tV, p̃] ∈ Rñ×k and t ∈ {s ∈ R : ∀j ∈ [k̃], p̃+ sV•,j ∈ int ∆̃n}. Then

β(0) = ˜̀(p̃),

β̇(0) = D˜̀(p̃)V q̃,

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T). (62)

Proof Since P̃ t = [p̃1T
k̃

+ tV, p̃] ∈ Rñ×k, P̃ 0 = p̃1Tk and ˜̀
x(P̃ 0) = ˜̀

x(p̃)1k. As a result,
JT
k

˜̀
x(P̃ 0) = 0k̃, and thus βx(0) = ˜̀

x(p̃) + Φ̃∗(∇Φ̃(q̃))− Φ̃∗(∇Φ̃(q̃)− 0k̃) = ˜̀
x(p̃). This shows

that β(0) = ˜̀(p̃). Let γx(t) := ∇Φ̃(q̃)− JT
k

˜̀
x(P̃ t). For j ∈ [k − 1],

d

dt
[γx(t)]j =

d

dt

(
[∇Φ̃(q̃)]j − [JT

k
˜̀
x(P̃ t)]j

)
,

= − d

dt

(
˜̀
x(P̃ t•,j)− ˜̀

x(P̃ t•,k)
)
,

= − d

dt

(
˜̀
x(p̃+ tV•,j)− ˜̀

x(p̃)
)
,

(
since

d

dt
`x(P̃ t•,k) =

d

dt
˜̀
x(p̃) = 0

)
= −D˜̀

x(P̃ t•,j)V•,j .

From the definition of P̃ t, P̃ 0
•,j = p̃, ∀j ∈ [k̃], and therefore, γ̇x(0) = −(D˜̀

x(p̃)V )T. By
differentiating βx in (61) and using the chain rule, β̇x(t) = −(γ̇x(t))T∇Φ̃∗(γx(t)). By setting
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t = 0 , β̇x(0) = −(γ̇x(0))T∇Φ̃∗(∇Φ̃(q̃)) = D˜̀
x(p̃)V q̃. Thus, β̇(0) = D˜̀(p̃)V q̃. Furthermore,

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

=
d

dt

n∑
x=1

px

k−1∑
j=1

D˜̀
x(P̃ t•,j)V•,j [∇Φ̃∗(γx(t))]j

∣∣∣∣∣∣
t=0

,

=

k−1∑
j=1

d

dt

(
n∑
x=1

pxD˜̀
x(P̃ t•,j)V•,j [∇Φ̃∗(γx(t))]j

)∣∣∣∣∣
t=0

,

=

k−1∑
j=1

(
d

dt

〈
p,D˜̀(P̃ t•,j)V•,jqj

〉∣∣∣∣
t=0

+

n∑
x=1

pxD˜̀
x(p̃)V•,j

d

dt
[∇Φ̃∗(γx(t))]j

∣∣∣∣
t=0

)
,

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j −

n∑
x=1

k−1∑
i=1
j=1

pxD˜̀
x(p̃)V•,j [HΦ̃∗(∇Φ̃(q̃))]j,iD˜̀

x(p̃)V•,i,

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V HΦ̃∗(∇Φ̃(q̃))(D˜̀(p̃)V )T),

= −
k−1∑
j=1

qjV
T
•,jHL̃`(p̃)V•,j − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T),

where in the third equality we used Lemma 25, in the fourth equality we used Lemma 28, and in the
sixth equality we used Lemma 35-(iii).

In next lemma, we state a necessary condition for Φ-mixability in terms of the parameterized
curve β defined in Lemma 36.

Lemma 37 Let `, Φ, and β be as in Lemma 36. If ∃(p̃, q̃, V ) ∈ int ∆̃n× int ∆̃k ×Rñ×k̃ such that
the curve γ(t) := ˜̀(p̃ + tV q̃) satisfies d

dt〈p, β̇(t)− γ̇(t)〉
∣∣∣
t=0

< 0, then ` is not Φ−mixable. In

particular, ∃P ∈ ri ∆k
n, such that [MΦ(`x(P ), q)]Tx∈[n] lies outside S⊕` .

Proof First note that for any triplet (p̃, q̃, V ) ∈ int ∆̃n×int ∆̃k×Rñ×k̃, the map t 7→
〈
p, β̇(t)− γ̇(t)

〉
is differentiable at 0. This follows from Lemmas 25 and 36. Let r(t) := qn(p̃ + tV q̃) and
δ(t) := 〈r(t), β(t)− γ(t)〉. Then

δ̇(t) =
〈
r(t), β̇(t)− γ̇(t)

〉
+ 〈V q̃, β(t)− γ(t)〉 .
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Since t 7→ 〈p, β̇(t)− γ̇(t)〉 is differentiable at 0, it follows from Lemma 25 that t 7→ δ̇(t) is also
differentiable at 0, and thus

δ̈(0) =
d

dt

〈
r(t), β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

+
〈
JnV q̃, β̇(0)− γ̇(0)

〉
,

=

〈
d

dt
r(t)

∣∣∣∣
t=0

, β̇(0)− γ̇(0)

〉
+

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

, (63)

=
〈
JnV q̃, β̇(0)− γ̇(0)

〉
+

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

,

=
d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

< 0, (64)

where (63) and (64) hold because β̇(0) = D˜̀(p̃)V q̃ = γ̇(0) (see Lemma 36). According to Taylor’s
theorem (see e.g. (Hardy, 2008, §151)), there exists ε > 0 and h : [−ε, ε]→ R such that

∀|t| ≤ ε, δ(t) = δ(0) + tδ̇(0) +
t2

2
δ̈(0) + h(t)t2, (65)

and limt→0 h(t) = 0. From Lemma 36, β(0) = γ(0) = 0 and β̇(0) = γ̇(0). Therefore, δ(0) =

δ̇(0) = 0 and (65) becomes δ(t) = t2

2 δ̈(0) + h(t)t2. Due to (64) and the fact that limt→0 h(t) = 0,

we can choose ε∗ > 0 small enough such that δ(ε∗) = ε2∗
2 δ̈(0) + h(ε∗)ε

2
∗ < 0. This means that

〈qn(p̃ + ε∗V q̃), β(ε∗)〉 < 〈qn(p̃ + ε∗V q̃), ˜̀(p̃ + ε∗V q̃)〉 = 〈qn(p̃ + ε∗V q̃), `(qn(p̃ + ε∗V q̃)〉.
Therefore, β(ε∗) must lie outside the superprediction set. Thus, the mixability condition (6) does
not hold for P ε∗ = qn[p̃1T

k̃
+ ε∗V, p̃] ∈ ri ∆k

n. This completes the proof.

Proof [Theorem 16] We will prove the contrapositive; suppose that η`Φ−S is not convex on ∆k and
we show that ` cannot be Φ-mixable. Note first that from Lemma 35-(iii), Φ̃∗ is twice differentiable
on Rk−1. Thus Lemmas 36 and 37 apply. Let ` be a proper support loss of ` and suppose that
η`Φ− S is not convex on ∆k, This implies that η`Φ̃− S̃ is not convex on int ∆̃k, and by Lemma 23
there exists q̃∗ ∈ int ∆̃k, such that 1 > η`λmin(HΦ̃(q̃∗)(HS̃(q̃∗))

−1). From this and the definition
of η`, there exists p̃∗ ∈ int ∆̃n such that

1 >
λmin(HΦ̃(q̃∗)(HS̃(q̃∗))

−1)

λmax([HL̃log(p̃∗)]−1HL̃`(p̃∗))
=
λmin(HΦ̃(q̃∗)(diag (q̃∗)− q̃∗q̃T∗ ))

λmax([HL̃log(p̃∗)]−1HL̃`(p̃∗))
, (66)

where the equality is due to Lemma 35-(iv). For the rest of this proof let (p̃, q̃) = (p̃∗, q̃∗). By
assumption, L̃` twice differentiable and concave on int ∆̃n, and thus −HL̃`(p̃) is symmetric pos-
itive semi-definite. Therefore, their exists a symmetric positive semi-definite matrix Λp such that
ΛpΛp = −HL̃`(p̃). From Lemma 35-(i), Φ̃ is strictly convex on int ∆̃k, and so there exists a sym-
metric positive definite matrix Kq such that KqKq = HΦ̃(q̃). Let w ∈ Rn−1 be the unit norm
eigenvector of [HL̃log(p̃)]−1HL̃`(p̃) associated with λ`∗ := λmax([HL̃log(p̃)]−1HL̃`(p̃)). Suppose
that c` := wTHL̃`(p̃)w = 0. Since wTΛpΛpw = −c` = 0, it follows from the positive semi-
definiteness of Λp that Λpw = 0ñ, and thus HL̃`(p̃)w = −ΛpΛpw = 0ñ. This implies that
λ`∗ = 0, which is not possible due to (66). Therefore, HL̃`(p̃)w 6= 0ñ. Furthermore, the negative
semi-definiteness of HL̃`(p̃) implies that

c` = wTHL̃`(p̃)w < 0. (67)
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Let v ∈ Rk−1 be the unit norm eigenvector of Kq(diag (q̃) − q̃q̃T)Kq associated with λΦ
∗ :=

λmin(Kq(diag (q̃) − q̃q̃T)Kq) = λmin(HΦ̃(q̃)(diag (q̃) − q̃q̃T)), where the equality is due to
Lemma 22. Let v̂ := Kqv.

We will show that for V = wv̂T, the parametrized curve β defined in Lemma 36 satisfies
d
dt〈p, β̇(t)− γ̇(t)〉

∣∣∣
t=0

< 0, where γ(t) = ˜̀(p̃ + tV q̃). According to Lemma 37 this would

imply that there exists P ∈ ri ∆k
n, such that [MΦ(`x(P ), q)]Tx∈[n] lies outside S⊕` . From Theo-

rem 4, we know that there exists A∗ ∈ Ak, such that `x(A∗) = `x(P ),∀x ∈ [n]. Therefore,
[MΦ(`x(A∗), q)]Tx∈[n] = [MΦ(`x(P ), q)]Tx∈[n] /∈ S

⊕
` , and thus ` is not Φ-mixable.

From Lemma 36 (Equation 62) and the fact that V•,j = v̂jw, for j ∈ [k̃], we can write

d

dt

〈
p, β̇(t)

〉∣∣∣∣
t=0

= −
k−1∑
j=1

qj v̂
2
jw

THL̃`(p̃)w − tr(diag (p)D˜̀(p̃)V (HΦ̃(q̃))−1(D˜̀(p̃)V )T),

= −〈q̃, v̂ � v̂〉wTHL̃`(p̃)w − (v̂T(HΦ̃(q))−1v̂)〈p, [D˜̀(p̃)w]� [(D˜̀(p̃)w]〉,

where the second equality is obtained by noting that 1) (v̂T(HΦ̃(q))−1v̂) is a scalar quantity and
can be factorized out; and 2) tr(diag(p)D˜̀(p̃)w(D˜̀(p̃)w)T) = 〈p, (D˜̀(p̃)w)� (D˜̀(p̃)w)〉.

On the other hand, from Lemma 28, d
dt〈p, γ̇(t)〉

∣∣
t=0

= −〈q̃, v̂〉2wTHL̃`(q̃)w. Using (19) and
the definition of c`, we get

d

dt

〈
p, β̇(t)− γ̇(t)

〉∣∣∣∣
t=0

= [−〈q̃, v̂ � v̂〉+ 〈q̃, v̂〉2]c`+

(v̂T(HΦ̃(q))−1v̂)(wT(HL̃`(p̃))(HL̃log(p̃))−1HL̃`(p)w),

= −c`[〈q̃, v̂ � v̂〉 − 〈q̃, v̂〉2 − λ`∗(v̂T(HΦ̃(q))−1v̂)],

= −c`[v̂T(diag (q̃)− q̃q̃T)v̂ − λ`∗(v̂T(HΦ̃(q))−1v̂)],

= −c`[v̂T(diag (q̃)− q̃q̃T)v̂ − λ`∗(vTKq(KqKq)−1Kqv)],

= −c`[vTKq(diag (q̃)− q̃q̃T)Kqv − λ`∗], (68)

= −c`[λΦ
∗ − λ`∗],

= −c`[λmin(HΦ̃(q)(diag (q̃)− q̃q̃T))− λmax(HL̃`(p̃)(HL̃log(p̃))−1)],

where in (68) we used the fact that vTv = 1. The last equality combined with (66) and (67) shows
that d

dt〈p, β̇(t)− γ̇(t)〉
∣∣∣
t=0

< 0, which completes the proof.

C.12. Proof of Corollary 18

Proof From Corollary 17, ` is Φη-mixable if and only if η`Φη − S = η−1η`Φ− S is convex on ∆k.
When this is the case, Lemma 23 implies that

1 ≤ η−1η`( inf
q̃∈int ∆̃k

λmin[HΦ̃(q̃)[HS̃(q̃)]−1]), (69)

where we used the facts that H(η−1η`Φ̃) = η−1η`HΦ̃, λmin(·) is linear, and η−1η` is independent
of q̃ ∈ int ∆̃k. Inequality 69 shows that the largest η such that ` is Φη-mixable is given by ηΦ

` in
(16).
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C.13. Proof of Theorem 19

Proof Suppose ` is Φ-mixable. Then from Corollary 17, η`Φ − S is convex on ∆k, and thus
η` = ηS

` > 0 (Corollary 18). Furthermore, η`Φ̃− S̃ = [η`Φ− S] ◦qk is convex on int ∆̃k, since qk
is an affine function. It follows from Lemma 23 and Corollary 18 that

ηΦ
` = η` inf

q̃∈int ∆̃k

λmin(HΦ̃(q̃)(HS̃(q̃))−1) ≥ 1 > 0.

Let µ ∈ ri ∆k and θ∗ := argmaxθDS(eθ,µ). By definition of an entropy and the fact that the
directional derivatives Φ′(µ; ·) and S′(µ; ·) are finite on ∆k (Hiriart-Urruty and Lemaréchal, 2001,
Prop. D.1.1.2), it holds that DΦ(eθ∗ ,µ), DS(eθ∗ ,µ) ∈]0,+∞[. Therefore, there exists α > 0 such
that α−1DΦ(eθ∗ ,µ) = DS(eθ∗ ,µ). If we let Ψ := α−1Φ, we get

DΨ(eθ∗ ,µ) = DS(eθ∗ ,µ). (70)

Let dΨ(q̃) := Ψ̃(q̃) − Ψ̃(µ̃) − 〈q̃ − µ̃,∇Ψ̃(µ̃)〉. Observe that dΨ(q̃) = Ψ(q) − Ψ(µ) −
〈q − µ,∇Ψ(µ)〉 = DΨ(q,µ). We define dS similarly. Suppose that ηΨ

` > ηS
` = η`. Then,

from Corollary 18, ∀q̃ ∈ int ∆̃k, λmin(HΨ̃(q̃)(HS̃(q̃))−1) > 1. This implies that ∀q̃ ∈ int ∆̃k,
λmin(HdΨ(q̃)(HdS(q̃))−1) > 1, and from Lemma 23, dΨ − dS must be strictly convex on int ∆̃k.
We also have ∇dΨ(µ̃) − ∇dS(µ̃) = 0 and dΨ(µ̃) − dS(µ̃) = 0. Therefore, dΨ − dS attains a
strict minimum at µ̃ (ibid., Thm. D.2.2.1); that is, dΨ(q̃) > dS(q̃), ∀q̃ ∈ ∆̃k \ {µ̃}. In particular,
for q̃ = Πk(eθ∗), we get DΨ(eθ∗ ,µ) = dΨ(q̃) > dS(q̃) = DS(eθ∗ ,µ), which contradicts (70).
Therefore, ηΨ

` ≤ ηS
` , and thus

RS
` (µ) = maxθDS(eθ,µ)/ηS

` = DS(eθ∗ ,µ)/ηS
` ,

≤ DΨ(eθ∗ ,µ)/ηΨ
` , (71)

≤ maxθDΨ(eθ,µ)/ηΨ
` ,

= RΨ
` (µ), (72)

where (71) is due to DΨ(eθ∗ ,µ) = DS(eθ∗ ,µ) and ηΨ
` ≤ ηS

` . Equation 72, implies that RS
` (µ) ≤

RΦ
` (µ), since RΨ

` (µ) = RαΦ
` (µ) = RΦ

` (µ) (Reid et al., 2015). Therefore,

∀µ ∈ ri ∆k, R
S
` (u) ≤ RΦ

` (u). (73)

It remains to consider the case where µ is in the relative boundary of ∆k. Let µ ∈ rbd ∆k.
There exists I0 ( [k] such that µ ∈ ∆I0 . Let θ∗ ∈ [k] \ I0 and I := I0 ∪ {θ∗}. It holds that
µ ∈ rbd ∆I and µ+ 2−1(eθ∗ − µ) ∈ ri ∆I . Since ` is Φ-mixable, it follows from Proposition 11
and the 1-homogeneity of Φ′(µ; ·) (Hiriart-Urruty and Lemaréchal, 2001, Prop. D.1.1.2) that

Φ′(µ; eθ∗ − µ) = 2Φ′(µ; [µ+ 2−1(eθ∗ − µ)]− µ) = −∞.
Hence,

RΦ
` (µ) = maxθ∈[k]DΦ(eθ,µ),

≥ DΦ(eθ∗ ,µ) = Φ(eθ∗)− Φ(µ)− Φ′(µ; eθ∗ − µ) = +∞. (74)

Inequality 74 also applies to S, since ` is (η`
−1 S)-mixable. From (74) and (73), we conclude that

∀µ ∈ ∆k, R
S
` (µ) ≤ RΦ

` (µ).
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Appendix D. Legendre Φ, but no Φ-mixable `

In this appendix, we construct a Legendre type entropy (Rockafellar, 1997) for which there are no
Φ-mixable losses satisfying a weak condition (see below).

Let ` : A → [0,+∞]n be a loss satisfying condition I. According to Alexandrov’s Theorem,
a concave function is twice differentiable almost everywhere (see e.g. (Borwein et al., 2010, Thm.
6.7)). Now we give a version of Theorem 16 which does not assume the twice differentiability of
the Bayes risk. The proof is almost identical to that of Theorem 16 with only minor modifications.

Theorem 38 Let Φ: Rk → R∪{+∞} be an entropy such that Φ̃ is twice differentiable on int ∆̃k,
and ` : A → [0,+∞]n a loss satisfying Condition I and such that ∃(p̃,v) ∈ D × Rñ,HL̃`(p̃)v 6=
0ñ, where D ⊂ int ∆̃n is a set of Lebesgue measure 1 where L̃` is twice differentiable, and define

η`
∗ := inf

p̃∈D
(λmax([HL̃log(p̃)]−1HL̃`(p̃)))−1. (75)

Then ` is Φ-mixable only if η`∗Φ− S is convex on ∆k.

The new condition on the Bayes risk is much weaker than requiring L` to be twice differentiability
on ]0,+∞[n. In the next example, we will show that there exists a Legendre type entropy for which
there are no Φ-mixable losses satisfying the condition of Theorem 38.

Example 39 Let Φ : R2 → R ∪ {+∞} be an entropy such that

∀q ∈]0, 1[, Φ(q, 1− q) = Φ̃(q) =

∫ q

1/2
log

(
log(1− t)

log t

)
dt.

Φ̃ is differentiable and strictly convex on the open set (0, 1). Furthermore, it satisfies (8) which
makes it a function of Legendre type (Rockafellar, 1997, Lem. 26.2). In fact, (8) is satisfied due to∣∣∣∣ ddq Φ̃(q)

∣∣∣∣ =

∣∣∣∣log

(
log(1− q)

log q

)∣∣∣∣ q→b→ +∞, where b ∈ {0, 1},

d2

dq2
Φ̃(q) =

−1

q log q
+

−1

(1− q) log(1− q)
> 0, ∀q ∈]0, 1[.

The Shannon entropy on ∆2 is defined by S(q, 1 − q) = S̃(q) = q log q + (1 − q) log(1 − q), for
q ∈]0, 1[. Thus, d2

dq2 S̃(q) = 1
q(1−q) .

Suppose now that there exists a Φ-mixable loss ` : A → [0,+∞]n satisfying condition I and
such that ∃(p̃,v) ∈ D × Rñ,HL̃`(p̃)v 6= 0ñ. Let η`∗ be as in (75). By definition, we have
η`
∗ < +∞, and thus

η`
∗
[
d2

dq2
Φ̃(q)

] [
d2

dq2
S̃(q)

]−1

= η`
∗
(
q − 1

log q
+

−q
log(1− q)

)
q→b→ 0, (76)

where b ∈ {0, 1}. From Lemma 23, (76) implies that η`∗Φ − S is not convex on ∆k, which is a
contradiction according to Theorem 38.
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Appendix E. Loss Surface and Superprediction Set

In this appendix, we derive an expression for the curvature of the image of a proper loss function.
We will need the following lemma.

Lemma 40 Let σ : [0,+∞[n→ R be a 1-homogeneous, twice differentiable function on ]0,+∞[n.
Then σ is concave on ]0,+∞[n if and only if σ̃ = σ ◦ qn is concave on int ∆̃n.

Proof The forward implication is immediate; if σ is concave on ]0,+∞[n, then σ ◦ qk is concave
on int ∆̃k, since qk is an affine function.

Now assume that σ̃ is concave on int ∆̃k. Let λ ∈ [0, 1] and (p, q) ∈ [0,+∞[n×[0,+∞[n. We
need to show that

λσ(p) + (1− λ)σ(q) ≤ σ(λp+ (1− λ)q). (77)

Note that if p = 0 or q = 0, (77) is trivially with equality due to the 1-homogeneity of σ. Now
assume that p and q are non-zero and let c := λ ‖p‖1 + (1 − λ) ‖q‖1. For convenience, we also
denote p1 = p/ ‖p‖1 and q1 = q/ ‖q‖1 which are both in ∆n. It follows that

λσ(p) + (1− λ)σ(q) = cM

(
λ
‖p‖1
c

σ(p1) + (1− λ)
‖q‖1
c

σ(q1)

)
,

= c

(
λ
‖p‖1
c

σ̃(p̃1) + (1− λ)
‖q‖1
c

σ̃(q̃1)

)
,

≤ cσ̃
(
λ
‖p‖1
c
p̃1 + (1− λ)

‖q‖1
c
q̃1

)
,

= cσ

(
λ
‖p‖1
c
p1 + (1− λ)

‖q‖1
c
q1

)
,

= σ(λp+ (1− λ)q),

where the first and last equalities are due the 1-homogeneity of σ and the inequality is due to σ̃
being concave on the int ∆̃n.

E.1. Curvature of the Loss Surface

The normal curvature of a ñ-manifold S (Thorpe, 1994) at a point r ∈ S in the direction of
w ∈ TrS, where TrS is the tangent space of S at r ∈ S, is defined by

κ(r,w) =

〈
w,DNS(r)w

〉
〈w,w〉

, (78)

where NS(r) is the normal vector to the surface at r. The minimum principal curvature of S at r is
expressed as κ(r) := inf{κ(r,w) : w ∈ TrS ∩ B(r, 1)}.

In the next theorem, we establish a direct link between the curvature of a loss surface and the
Hessian of the loss’ Bayes risk.

Theorem 41 Let ` : ri ∆n → [0,+∞[n be a loss whose Bayes risk is twice differentiable and
strictly concave on ]0,+∞[n. Let p ∈ ri ∆n, Xp := Iñ − p̃1Tñ , and w ∈ T˜̀(p̃)S`. Then

40



GENERALIZED MIXABILITY

1. ∃v ∈ Rn−1 such that D˜̀(p̃)v = w.

2. S` is a ñ-manifold.

3. The normal curvature of S` at `(p) = ˜̀(p̃) in the direction w is given by

κ`(`(p),w) =

∥∥∥∥[ Xp−p̃T
]

(−HL̃`(p̃))
1
2u

∥∥∥∥−1

, (79)

where u = (−HL̃`(p̃))
1
2v/‖(−HL̃`(p̃))

1
2v‖.

It becomes clear from (79) that smaller eigenvalues of −HL̃`(p̃) will tend to make the loss surface
more curved at `(p), and vice versa.

Before proving Theorem 41, we first define parameterizations on manifolds.

Definition 42 (Local and Global Parameterization) Let S ⊆ Rn be a ñ-manifold and U an open
set in Rñ. The map ϕ : U → S is called a local parameterization of S if Dϕ(u) : Rñ → Tϕ(u)S is
injective for all u ∈ U , where Tϕ(u)S is the tangent space of S at ϕ(u) ∈ S. ϕ is called a global
parameterization of S if it is, additionally, onto.

Let ϕ be a global parameterization of S and Nϕ := NS ◦ ϕ. By a direct application of the chain
rule, (78) can be written as

κ(ϕ(u),w) =
〈w,DNϕ(u)v〉
〈w,w〉

, (80)

where v is such that Dϕ(u)v = w. The existence of such a v is guaranteed by the fact that Dϕ is
injective and dimRñ = dimTϕ(u)S = ñ.
Proof [Theorem 41] First we show that S` is a ñ-manifold. Consider the map ˜̀ : int ∆̃n → S` and
note that int ∆̃n is trivially a ñ-manifold. Due to the strict concavity of the Bayes risk, ˜̀ is injective
(van Erven et al., 2012) and from Lemmas 27 and 40, D˜̀(p̃) : Rñ → T˜̀(p̃)S` is also injective.

Therefore, ˜̀ is an immersion (Robbin and Salamon, 2011). ˜̀ is also proper in the sense that the
preimage of every compact subset of S` is compact. Therefore, ˜̀ is a proper injective immersion,
and thus it is an embedding from the ñ-manifold int ∆̃n to S` (ibid.). Hence, S` is a manifold.

Now we prove (79). The map ˜̀ is a global parameterization of S`. In fact, from Lemma
27, D˜̀(p̃) has rank ñ, for all p̃ ∈ int ∆̃n, which implies that D˜̀(p̃) is onto from Rñ to T˜̀(p̃)S`.
Therefore, given w ∈ T˜̀(p̃)S`, there exists v ∈ Rñ such that w = D˜̀(p̃)v. Furthermore, Lemma

27 implies that N˜̀
(p̃) = p, since 〈p,D˜̀(p̃)〉 = 0Tñ . Substituting N

˜̀ into (80) yields
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κ`(˜̀(p̃),w) =

vT(D˜̀(p̃))T
[
Iñ,
1ñ

]
v〈

D˜̀(p̃)v,D˜̀(p̃)v
〉 ,

=

vTHL̃`(p̃)
[
XT
p , −p̃

] [Iñ
1ñ

]
v〈

D˜̀(p̃)v,D˜̀(p̃)v
〉 ,

=
vTHL̃`(p̃)v

vTHL̃`(p̃)
[
XT
p , −p̃

] [ Xp
−p̃T

]
HL̃`(p̃)v

. (81)

Setting u = (−HL̃`(p̃))
1
2v/‖(−HL̃`(p̃))

1
2v‖ in (81) gives the desired result.

Appendix F. Classical Mixability

In this appendix, we provide a more concise proof of the necessary and sufficient conditions for the
convexity of the superprediction set (van Erven et al., 2012).

Theorem 43 Let ` : ∆n → [0,+∞[n be a strictly proper loss whose Bayes risk is twice differen-
tiable on ]0,+∞[n. The following points are equivalent;

(i) ∀p̃ ∈ int ∆̃n, ηHL̃`(p̃) � HL̃log(p̃).

(ii) e−ηS
⊕
` =

⋂
p∈∆n

Hτ(p),1

⋂
[0,+∞[n, where τ(p) := p� eη`(p).

(iii) e−ηS
⊕
` is convex.

Proof We already showed (i) =⇒ (ii) =⇒ (iii) in the proof of Theorem 7.
We now show (iii) =⇒ (i). Since e−ηS

⊕
` is convex, any point s ∈ bd e−ηS

⊕
` is supported

by a hyperplane (Hiriart-Urruty and Lemaréchal, 2001, Lem. A.4.2.1). Since u → e−ηu is a
homeomorphism, it maps boundaries to boundaries. From this and Lemma 33, bd e−ηS

⊕
` = e−ηS` .

Thus, for p ∈ ri ∆n, there exists a unit-norm vector u ∈ Rn such that for all s ∈ S⊕` it either holds
that 〈u, e−η`(p)〉 ≤ 〈u, e−ηs〉; or 〈u, e−η`(p)〉 ≥ 〈u, e−ηs〉. It is easy to see that it is the latter case
that holds, since we can choose s = `(r) + c1 ∈ S⊕` , for r ∈ ∆n, and make 〈u, e−ηs〉 arbitrarily
small by making c ∈ R large. Therefore, ∀r ∈ ri ∆n, 〈u, e−η

˜̀(p̃)〉 = 〈u, e−η`(p)〉 ≥ 〈u, e−η`(r)〉 =

〈u, e−η ˜̀(r̃)〉 and p̃ is a critical point of the function f(r̃) := 〈u, e−η ˜̀(r̃)〉 on int ∆̃n. This implies
that ∇f(p̃) = 0ñ; that is, −η〈u,diag(e−η

˜̀(p̃))D˜̀(p̃)〉 = −η〈diag(e−η
˜̀(p̃))u,D˜̀(p̃)〉 = 0Tñ . From

Lemma 27, there exists λ ∈ R such that diag(e−η
˜̀(p̃))u = λp. Therefore, u = λp� eη ˜̀(p̃), where

λ = ‖p � eη ˜̀(p̃)‖−1, since ‖u‖ = 1. For v ∈ Rn−1, let α̃t := p̃ + tv, where t ∈ {s : p̃ + sv ∈
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int ∆̃n}. Since f is twice differentiable and attains a maximum at p̃,

0 ≥ 1

λη

d2

dt2
f ◦ α̃t

∣∣∣∣
t=0

=
1

λ

d

dt

〈
u,diag e−η

˜̀(α̃t)D˜̀(α̃t)v
〉∣∣∣∣
t=0

,

=
d

dt

〈
p� eη ˜̀(p̃), diag e−η

˜̀(α̃t)D˜̀(p̃)v
〉∣∣∣∣
t=0

+
d

dt

〈
p,D˜̀(α̃t)v

〉∣∣∣∣
t=0

,

= ηvTHL̃`(p̃)(HL̃log(p̃))−1HL̃`(p̃)v − vTHL̃`(p̃)v, (82)

where in the second equality we substituted u by λp�eη ˜̀(p̃) and in (82) we used (19) and (20) from
Lemma 28. Note that by the assumptions on ` it follows that the Bayes risk L̃` is strictly concave
(van Erven et al., 2012, Lemma 6) and −HL̃`(p̃) is symmetric negative-definite. In particular,
HL̃`(p̃) is invertible. Setting v̂ := HL̃`(p̃)v in (82) yields

0 ≥ ηv̂(HL̃log(p̃))−1v̂ − v̂(HL̃`(p̃))−1v̂.

Since v ∈ Rn−1 was chosen arbitrarily, (HL̃`(p̃))−1 � η(HL̃log(p̃))−1, ∀p̃ ∈ int ∆̃n. This is
equivalent to the condition ∀p̃ ∈ int ∆̃n, ηHL̃`(p̃) � HL̃log(p̃).
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