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Abstract. We formulate the abnormal event detection problem as an
outlier detection task and we propose a two-stage algorithm based on
k-means clustering and one-class Support Vector Machines (SVM) to
eliminate outliers. After extracting motion features from the training
video containing only normal events, we apply k-means clustering to find
clusters representing different types of motion. In the first stage, we con-
sider that clusters with fewer samples (with respect to a given threshold)
contain only outliers and we eliminate these clusters altogether. In the
second stage, we shrink the borders of the remaining clusters by training
a one-class SVM model on each cluster. To detected abnormal events
in the test video, we analyze each test sample and consider its maxi-
mum normality score provided by the trained one-class SVM models,
based on the intuition that a test sample can belong to only one cluster
of normal motion. If the test sample does not fit well in any narrowed
cluster, than it is labeled as abnormal. We also combine our approach
based on motion features with a recent approach based on deep appear-
ance features extracted with pre-trained convolutional neural networks
(CNN). We combine our two-stage algorithm with the deep framework
using a late fusion strategy, keeping the pipelines of the two approaches
independent. We compare our method with several state-of-the-art su-
pervised and unsupervised methods on four benchmark data sets. The
empirical results indicate that our abnormal event detection framework
can achieve better results in most cases, while processing the test video
in real-time at 32 frames per second on CPU.
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1 Introduction

Abnormal event detection in video is a challenging task in computer vision, since
it is extremely hard, if not impossible, to define abnormal events independent
of the context. For example, a truck driving by on the street is regarded as a
normal event, but if the truck enters a pedestrian area, then it is regarded as
an abnormal event. Two persons fighting in a box ring (normal event) versus
fighting on the street (abnormal event) is another example. Although what is
considered abnormal depends on the context, we can generally agree that abnor-
mal behaviour should rather be represented by unexpected events [1] that occur
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Fig. 1. Our anomaly detection framework based on Narrowed Motion Clusters. In the
training phase, we apply a two-stage outlier detection algorithm based on k-means
and one-class SVM. In the testing phase, we label a test sample as abnormal if its
maximum normality score among the scores provided by the trained one-class SVM
models is negative. Best viewed in color.

less often than familiar (normal) events. As it is generally impossible to find
a sufficiently representative set of anomalies, the use of traditional supervised
learning methods is usually ruled out. Hence, most abnormal event detection
approaches [2, 3, 4, 5, 6, 7, 8, 9, 10] learn a model of familiarity from training
video and label events as abnormal if they deviate from the model. We approach
abnormal event detection in a similar manner, and propose to build a model of
normality using a two-stage outlier detection algorithm illustrated in Figure 1.
We first extract spatio-temporal cubes [6, 11, 12], which we augment with ad-
ditional information about location and motion direction. After extracting aug-
mented spatio-temporal cubes from the training video containing only normal
events, we apply k-means clustering to find clusters representing different types
of motion. In the first stage, we eliminate the clusters with fewer samples (with
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respect to a pre-defined threshold), based on the hypothesis that these smaller
clusters contain predominantly outliers. Different from other outlier detection
approaches based on k-means [13, 14, 15], we do not modify the clustering al-
gorithm. Instead, we propose a simple and straightforward approach that aims
to coarsely remove some of the outliers, leaving the outliers that are harder to
pinpoint for the second stage. In the second stage, we narrow down the bor-
ders of the remaining clusters by training a one-class Support Vector Machines
(SVM) classifier on each individual cluster. In the end, the learned one-class
SVM models represent narrowed clusters of different types of normal motion.
We therefore coin the term Narrowed Motion Clusters (NMC) for our two-stage
outlier detection algorithm. To detected abnormal events in a test video, we ana-
lyze each augmented spatio-temporal cube and consider its maximum normality
score among the scores provided by the trained one-class SVM models, based on
the natural intuition that a test sample (spatio-temporal cube) should belong to
a single narrowed cluster of normal motion. The novelty of our paper consists of
(i) the idea of assembling together two popular approaches for outlier detection
(k-means and one-class SVM) into a simple and fast framework and (ii) the idea
of narrowing down the clusters by learning a tight border around each cluster.

We perform abnormal event detection experiments on the Avenue [6], the
Subway [16] and the UMN [8] data sets in order to compare our NMC approach
with several state-of-the-art abnormal event detection methods [3, 6, 8, 11, 12,
17, 18, 19, 20, 21, 22, 23, 24, 25]. The empirical results indicate that, on two of
the test sets (Avenue and Subway), we obtain better results than all these ap-
proaches. It is important to mention that our approach yields impressive results,
while running in real-time at 32 frames per second on CPU. We also combine our
approach based on motion features with a recent approach [23] based on deep
appearance features extracted with pre-trained convolutional neural networks
(CNN). In this approach, the CNN features are fed into a one-class SVM classi-
fier in order to learn a model of normality from training data. We combine our
NMC algorithm with the framework based on appearance features presented in
[23] using a late fusion strategy, keeping the pipelines of the two approaches in-
dependent. By combining motion and appearance features, we are able to further
improve the accuracy on all data sets.

We organize the paper as follows. We present related work on abnormal event
detection in Section 2. We describe our outlier detection framework in Section 3.
We present the abnormal event detection experiments in Section 4. Finally, we
draw our conclusions in Section 5.

2 Related Work

Abnormal event detection is usually formalized as an outlier detection task [2,
3, 4, 5, 6, 7, 8, 9, 10, 17, 24, 25, 26, 27], in which the general approach is to learn
a model of normality from training data and consider the detected outliers as
abnormal events. Some abnormal event detection approaches [3, 6, 17, 26, 27] are
based on learning a dictionary of atoms representing normal events, and label
the events not represented by the dictionary as abnormal. At a conceptual level,
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we can find some resemblance between our approach and dictionary learning.
However, going down to the implementation level, there are some important
differences. We can interpret the use of k-means to group the training samples
into clusters as an unconventional way of building a dictionary of atoms. To the
best of our knowledge, there are no dictionary learning approaches that try to
remove a part of the atoms as outliers. Unlike dictionary learning approaches,
we eliminate the smaller clusters in our framework. Another difference is that
we consider that a test sample can be belong to a single cluster, or in other
words, it can be reconstructed by a single atom. Hence, instead of using the
reconstruction error given by a set of basis vectors as the abnormality score,
we consider the maximum normality score among the scores given by a set of
one-class SVM models, each trained on a different cluster.

Recent abnormal event detection approaches have employed locality sensi-
tive hashing filters [25] or deep features [9, 18, 19, 20, 21, 23] to achieve better
results. Hasan et al. [18] propose two autoencoders, one that is learned on con-
ventional handcrafted spatio-temporal local features, and another one that is
learned end-to-end using a fully convolutional feed-forward architecture. Hinami
et al. [19] proposed to train convolutional neural networks on multiple visual
tasks to exploit semantic information that is useful for detecting and recounting
abnormal events, while Smeureanu et al. [23] simply applied convolutional neu-
ral networks (CNN) pre-trained on the ILSVRC benchmark [28]. Luo et al. [20]
propose a Temporally-coherent Sparse Coding approach, which can be mapped
to a stacked Recurrent Neural Network which facilitates the parameter optimiza-
tion and accelerates the anomaly prediction. The approach presented in [21] is
based on training Generative Adversarial Nets (GAN) using normal frames and
corresponding optical-flow images in order to learn an internal representation of
the scene normality. The test data is compared with both the appearance and
the motion representations reconstructed by the GAN and abnormal areas are
detected by computing local differences.

There have been some approaches that employ unsupervised steps for abnor-
mal event detection [9, 24, 26, 27]. The approach presented in [27] is to build a
model of familiar events from training data and incrementally update the model
in an unsupervised manner as new patterns are observed in the test data. In
a similar fashion, Sun et al. [24] train a Growing Neural Gas model starting
from training videos and continue the training process as they analyze the test
videos for anomaly detection. Ren et al. [26] use an unsupervised approach,
spectral clustering, to build a dictionary of atoms, each representing one type
of normal behavior. Their approach requires training videos of normal events to
construct the dictionary. Xu et al. [9] use Stacked Denoising Auto-Encoders to
learn deep feature representations in an unsupervised way. However, they still
employ one-class SVM to predict the anomaly scores. There are some works that
do not require any kind of training data for abnormal event detection [11, 12].
The approach proposed by Del Giorno et al. [11] is to detect changes on a se-
quence of data from the video to see which frames are distinguishable from all
the previous frames. As the authors want to build an approach independent
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of temporal ordering, they create shuffles of the data by permuting the frames
before running each instance of the change detection. Ionescu et al. [12] apply
unmasking, a technique based on training a binary classifier to distinguish be-
tween two consecutive video sequences while removing at each step the most
discriminant features. Their hypothesis is that higher training accuracy rates of
the intermediately obtained classifiers represent abnormal events.

Regarding the feature representation, we use spatio-temporal cubes to repre-
sent motion, as other recent approaches [6, 11, 12]. Unlike all these approaches,
we propose to augment each cube with its location within a spatial pyramid ap-
plied over the video frames, and with the mean direction given by the 3D motion
gradients inside the cube. Our experiments show that the augmentation is use-
ful. Regarding the outlier detection approach, there are a few works [13, 29] that
applied k-means clustering for abnormal event detection. Abuolaim et al. [29] use
k-means at a coarse level to divide the data points into precisely three clusters:
normal, abnormal and ambiguous. On the other hand, we apply k-means with a
completely different purpose, namely to obtain many clusters representing dif-
ferent types of normal motion. Moreover, their approach does not allow to set
an abnormality threshold. More closely to our approach, Auslander et al. [13]
define three possible assumptions (see Section 4.1 in [13]) for using clustering to
detect anomalies. Interestingly, our approach is based on similar assumptions.
However, their approach adopts only the first two assumptions defined in [13],
while we satisfy the second assumption by eliminating smaller clusters (in the
first stage), and the first and third assumptions by training a one-class SVM on
each cluster (in the second stage).

3 Method

We propose an abnormal event detection framework based on a two-stage al-
gorithm for outlier detection. Our anomaly detection framework is divided into
a training phase and testing phase, as illustrated in Figure 1. We next pro-
vide an overview of our approach, leaving the additional details about the more
important steps for later. From both training and testing videos, we extract
spatio-temporal cubes. In the training phase, we cluster the extracted spatio-
temporal cubes using k-means and we eliminate the smaller clusters as outliers.
On each remaining cluster, we train a one-class SVM model to remove outlier
cubes. In the testing phase, each spatio-temporal cube is tested against each
one-class SVM model to obtain a set of normality scores. The maximum score
is used (with a change of sign) as the abnormality score for the respective test
cube. By putting together the cubes from an entire frame, we obtain an anomaly
prediction map for each frame. To obtain pixel-level anomaly predictions, the
prediction map can be simply resized to match the size of the input video frame.
To obtain frame-level predictions, we consider the highest score in the prediction
map as the anomaly score of the respective frame. We then apply a Gaussian
filter to temporally smooth the final frame-level anomaly scores.
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3.1 Feature Extraction

Encoding motion. Given the input video, we uniformly partition each frame to
a set of non-overlapping 10×10 patches. Corresponding patches in 5 consecutive
frames are stacked together to form a spatio-temporal cube, each with resolution
10×10×5. We then compute 3D gradient features on each spatio-temporal cube
and normalize the resulted feature vectors using the L2-norm. Until this point,
our approach of representing motion is essentially the same as [6, 11, 12]. Similar
to [6, 11, 12], we eliminate cubes in a region, if the video is static in the respective
region. Different from [6, 11], we do not employ Principal Component Analysis
to reduce the feature vector dimension from 500 to 100 components. Moreover,
we diverge from standard spatio-temporal cube representation by augmenting
the cubes with additional information about location and motion direction, as
described next.
Encoding location. We divide each frame into a spatial pyramid [30] with two
levels, the first level containing 2 × 2 bins and the second one containing 4 × 4
bins. We encode the location of each spatio-temporal cube as a one-hot vector for
each level of the pyramid. This gives 20 additional features (2×2+4×4) for each
cube. The purpose of recording spatial information into the cube representation
is to accurately detect situations in which abnormal events can appear in only
some region of the video. For instance in a traffic surveillance video, people
crossing the street on a crosswalk is a normal event, but if they cross it outside
the designated area this should be labeled as abnormal.
Encoding mean direction. To extract the mean motion direction from each
spatio-temporal cube, we first consider the individual patches of the cube. In
each patch, we compute the center of mass of the 3D gradients. We then encode
the displacement of the center of mass in consecutive patches as vectors repre-
senting motion direction. For a better estimation of the mean motion direction,
we also compute motion direction vectors after dividing each patch into 2 × 2
bins. Finally, the motion direction vectors are quantized into an orientation-
based histogram with 8 bins. The histogram bins are evenly spread over 0 to
360 degrees. Our histogram is produced in a similar way to the histogram cor-
responding to a cell in the Histograms of Oriented Gradients (HOG) descriptor
[31]. Along with the histogram, we add another feature given by the sum of all
vector magnitudes. In total, there are 9 additional features for augmenting the
cube. The purpose of recording the mean direction into the cube representa-
tion is to enable the accurate detection of abnormal events triggered by objects
moving in a certain direction. For example in a traffic surveillance video, a car
driving the wrong way should be labeled as abnormal.

3.2 Two-Stage Outlier Detection

First stage detection based on k-means. We cluster the augmented spatio-
temporal cubes extracted from the training video to find clusters representing
different types of motion. Next, we eliminate the clusters with fewer samples,
based on the assumption that these smaller clusters contain mostly outlier sam-
ples. We note that the same assumption also sits at the basis of the method
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Fig. 2. A set of 400 data points sampled from two normal distributions of different
means. The points are clustered into 30 clusters using k-means. The centroids of clusters
with less than 10 samples are represented with a large blue square. Best viewed in color.

Fig. 3. A histogram representing the number of data points in each cluster. The his-
togram corresponds to the k-means clustering applied over the 400 data points illus-
trated in Figure 2. A threshold of 10 is used to detect clusters of outliers. Best viewed
in color.

proposed in [13]. Nonetheless, we motivate the assumption through the follow-
ing toy example. We generate 400 data points sampled from two normal dis-
tributions of different means. We group the points into k = 30 clusters using
k-means and we illustrate the result in Figure 2. We then count the number of
points in each cluster and obtain the histogram depicted in Figure 3. In this
example, we consider that the clusters with less than 10 data points contain
mostly outliers. The centroids of these smaller clusters are marked with a large
blue square in Figure 2. We can clearly see that the marked clusters are farthest
from both normal distribution means, indicating that the containing points are
indeed outliers. Nevertheless, our aim is to test out the assumption on real data
for abnormal event detection in video. Although the training does not contain
abnormal events, we believe that k-means helps to remove noisy or weak patterns
that can be observed in the normal video.

Second stage detection based on one-class SVM. After removing the
smaller k-means clusters, we are left with a set of clusters C = {c1, c2, ..., cr | r ≤
k} that accurately model the stronger patterns of normality. However, k-means
does not provide a tight boundary around the remaining clusters, and, in some
cases, it leaves a lot of room to accommodate outliers. For example, the borders
of some remaining clusters represented in Figure 2 span to infinity. To alleviate
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this problem, we propose to narrow down the borders of the remaining clusters
by training a one-class SVM [32] classifier on each cluster. We note that the
border learned by SVM is tighter (or narrower) than the border of the original
cluster (which includes all cluster’s samples), since the one-class SVM model is
forced to single out a small percentage of samples within the cluster as outliers.
In this sense, we can say that one-class SVM narrows (or tightens) the border
around the cluster’s centroid. Hence, the learned one-class SVM models can be
interpreted as a set of narrowed clusters representing different types of normal
motion. To train our set of classifiers, we consider each spatio-temporal cube
as an individual and independent sample, disregarding the temporal relations
between cubes. Let X = {x1, x2, ..., xn |xi ∈ Rm} denote the set of training
cubes in a given cluster cj . In this formulation, our one-class SVM model will
learn to separate a small region capturing most of the normal cubes from the
rest of feature space, by maximizing the distance from the separating hyperplane
to the origin. This results in a binary classification function g which captures a
region in the input space where the probability density of a particular type of
normal motion lives:

g(x) = sign

(
n∑

i=1

αik(x, xi)− ρ

)
, (1)

where x is a test cube that needs to be classified either as normal or abnormal,
xi ∈ X is a training cube, αi are the weights assigned to the support vectors
xi, ρ is the distance from the hyperplane to the origin, and k is a kernel func-
tion, in our case, the linear kernel. If we desire a score reflecting the normality
level of a spatio-temporal cube, we can simply remove the sign transfer function
from Equation (1) and obtain a scoring function. It is important to note that for
each cluster cj ∈ C, we have a different scoring function gcj . Then, for a given
test cube, we will have a set of r normality scores. However, since the narrowed
clusters are independent (they reside in different areas of the feature space), we
can naturally assume that a spatio-temporal cube belongs to a single cluster.
Therefore, we consider the maximum normality score, the one that corresponds
to the narrowed cluster that better fits (is closer to) the test cube. If the test
spatio-temporal cube does not fit well in any normality cluster, its correspond-
ing maximum normality score will be negative (the cube is outside the nearest
cluster). Consequently, the respective test sample is labeled as abnormal.

4 Experiments

4.1 Data Sets

Avenue. We first consider the Avenue data set [6], which contains 16 training
and 21 test videos. In total, there are 15328 frames in the training set and 15324
frames in the test set. Each frame is 640 × 360 pixels. Locations of anomalies
are annotated in ground truth pixel-level masks for each frame in the testing
videos. Hinami et al. [19] argue that the Avenue test set contains five videos (1,
2, 8, 9 and 10) with static abnormal objects that are not properly annotated.
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Hence, they evaluate their approach on a subset (Avenue17) that excludes these
five videos. When we compare our results with those reported in [19], we also
remove the five videos for a fair comparison.

Subway. One of the largest data sets for anomaly detection in video is the
Subway surveillance data set [16]. It contains two videos, one of 96 minutes
(Entrance gate) and another one of 43 minutes (Exit gate). The Entrance gate
video contains 144251 frames and the Exit gate video contains 64903 frames,
each with 512× 384 resolution. Abnormal events are labeled at the frame level.

UMN. The UMN Unusual Crowd Activity data set [8] consists of three differ-
ent crowded scenes, each with 1453, 4144, and 2144 frames, respectively. The
resolution of each frame is 320× 240 pixels. In the normal settings people walk
around in the scene, and the abnormal behavior is defined as people running in
all directions.

4.2 Evaluation

As evaluation metrics, we employ ROC curves and the corresponding area under
the curve (AUC) computed with respect to ground truth frame-level annotations,
and, when available (Avenue), pixel-level annotations. We define the frame-level
and pixel-level AUC as in previous works [6, 7, 9, 11, 12, 17, 24]. At the frame-
level, a frame is considered a correct detection if it contains at least one abnormal
pixel. At the pixel-level, the corresponding frame is considered as being correctly
detected if more than 40% of truly anomalous pixels are detected. We smooth
the pixel-level detection maps with the same filter used by [6, 11, 12] in order
to obtain our final pixel-level detections. We exclude the recent approach (based
on k-means) of Abuolaim et al. [29] from our evaluation, because their approach
is constrained to provide a single point on the ROC curve and the frame-level
or pixel-level AUC metrics cannot be determined in their case. Many works
[6, 7, 9, 17, 25, 27] include the Equal Error Rate (EER) as evaluation metric,
but some recent works [11, 12] argue that metrics such as the EER can be
misleading in a realistic anomaly detection setting, in which abnormal events
are expected to be very rare. As we agree with perspective of [11, 12], we do not
employ the EER in our evaluation.

4.3 Implementation Details

We extract spatio-temporal cubes from the training and test video sequences
using the code available online at https://alliedel.github.io/anomalydetection/.
We use our own implementation to augment the cubes with location and mean
direction. To cluster the cubes, we employ the k-means implementation from
VLFeat [33] based on the original Lloyd algorithm [34]. We use k-means++ [35]
initialization. We repeat the clustering 10 times and choose the partitioning with
the minimum energy. We choose the number of clusters k such that we have on
average 1000 cubes per cluster, hence k is proportional to the size of the training
data. We then eliminate the clusters with less than 500 cubes. To remove the
outliers from each cluster, we employ the one-class SVM implementation from
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Method Frame AUC Pixel AUC

Lu et al. [6] 80.9 92.9
Hasan et al. [18] 70.2 -
Del Giorno et al. [11] 78.3 91.0
Smeureanu et al. [23] 84.6 93.5
Ionescu et al. [12] 80.6 93.0
Luo et al. [20] 81.7 -

cubes + one-class SVM 81.3 93.0
aug. cubes + one-class SVM 82.8 93.2
aug. cubes + k-means + one-class SVM 85.4 93.5
aug. cubes + k-means + 1-NN 77.6 90.6

Ours (NMC) 87.6 93.7
Ours (NMC + CNN) 87.8 93.8

Table 1. Abnormal event detection results (in %) in terms of frame-level and pixel-
level AUC on the Avenue data set. Our framework and its preliminary versions are
compared with several state-of-the-art approaches [6, 11, 12, 18, 20, 23], which are
listed in temporal order.

Method Frame AUC Pixel AUC

Hinami et al. [19] 89.8 -

Ours (NMC) 90.2 93.9
Ours (NMC + CNN) 90.4 94.0

Table 2. Abnormal event detection results (in %) in terms of frame-level and pixel-level
AUC on the Avenue17 data set. Our framework is compared with [19].

LibSVM [36]. In all the experiments, we set the regularization parameter of one-
class SVM to 0.01, which means that the model will have to single out 99% of
the training frames as normal (the other 1% are outliers).

We combine our approach based on motion features with the approach based
on appearance features presented in [23]. For the appearance features, we con-
sider the pre-trained VGG-f [37] model provided in MatConvNet [38], and extract
the features from the conv5 layer according to [23]. For a faster processing time,
we extract features for one in every two frames in the test video, without observ-
ing any drop in performance. A one-class SVM classifier with regularization 0.2
is employed to learn a model of normal appearance from the training videos. The
frame-level scores produced by this framework are assigned to the corresponding
spatio-temporal cubes. The cube-level scores thus obtained are combined with
the cube-level scores of our approach as a simple average. At test time, we are
able to process the test videos at nearly 32 FPS using two parallel threads (one
for each abnormal event detection framework) on a computer with Intel Core i7
2.3 GHz processor and 8 GB of RAM.

4.4 Results on the Avenue Data Set

We first compare our approach with several state-of-the-art approaches [6, 11,
12, 18, 20, 23] that reported results on the Avenue data set. The corresponding
frame-level and pixel-level AUC metrics are presented in Table 1. The table also
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Fig. 4. Frame-level anomaly detection scores (between 0 and 1) provided by our ap-
proach based on combining NMC and CNN, for test video 4 in the Avenue data set.
The video has 947 frames. Ground-truth abnormal events are represented in pink, and
our scores are illustrated in blue. Best viewed in color.

Fig. 5. True positive (top row) versus false positive (bottom row) detections of our
framework based on NMC and CNN. Examples are selected from the Avenue data set.
Best viewed in color.

includes results for preliminary versions of our approach to show the performance
gain brought by each component. A basic approach based on spatio-temporal
cubes and one-class SVM yields a frame-level AUC of 81.3%. When we augment
the cubes, the frame-level AUC grows by 1.5%. Another 2.6% are gained when we
employ k-means and train one-class SVM models on all k clusters. By removing
the smaller clusters we obtain an improvement of 2.2% and reach a frame-level
AUC of 87.6%. We also tested an approach that removes the smaller k-means
clusters in the first stage, but replaces the one-class SVM in the second stage
with a one nearest neighbor (1-NN) model based the Euclidean distance to the
nearest cluster centroid. The obtained frame-level AUC is 77.6%, which is exactly
10% lower than the result of NMC. This ablation result shows the importance of
using one-class SVM after k-means to learn a tight border around each cluster.

Using Narrowed Motion Clusters of spatial-temporal cubes alone, we are
able to surpass the results reported in previous works in terms of frame-level
and pixel-level AUC. When we combine NMC with the one-class SVM based on
CNN features [23], the results slightly improve. Compared to the most recent
works [12, 20, 23], our framework brings an improvement of more than 3.2%
in terms of frame-level AUC. Since our framework is able to process the video
online, we consider that our results on the Avenue data set are noteworthy.

We also compared our approach with [19] on the Avenue17 data set, a subset
of the Avenue data set. Our frame-level AUC scores presented in Table 2 are
better than those reported by Hinami et al. [19]. It is worth nothing that our
approach yields better performance on the Avenue17 data set, indicating that the
five removed test videos are actually more difficult than those left in Avenue17.
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Method Frame AUC
Entrance gate Exit gate Average

Cong et al. [17] 80.0 83.0 81.5
Saligrama et al. [22] 89.1 - -
Cheng et al. [3] 92.7 - -
Hasan et al. [18] 94.3 80.7 87.5
Del Giorno et al. [11] 69.1 82.4 75.8
Ionescu et al. [12] 71.3 86.3 78.8

Ours (NMC) 91.8 94.2 93.0
Ours (NMC + CNN) 92.4 94.5 93.5

Table 3. Abnormal event detection results (in %) in terms of frame-level AUC on the
Subway data set. Our framework is compared with several state-of-the-art approaches
[3, 11, 12, 17, 18, 22], which are listed in temporal order.

Fig. 6. True positive (top row) versus false positive (bottom row) detections of our
framework based on NMC and CNN. Examples are selected from the Subway Entrance
gate. Best viewed in color.

As Hinami et al. [19] observed, the removed videos contain abnormal objects
that are not properly annotated, hence methods are prone to reach high false
positive rates on these five test videos.

Figure 4 depicts the frame-level anomaly scores produced by our approach
against the ground-truth labels on test video 4 of the Avenue data set. We notice
that our scores correlate well to the ground-truth labels. There are two abnor-
mal events in this video and we can easily identify both of them by setting a
threshold of 0.5, without including any false positive detections. We also show
some examples of true positive and false positive detections in Figure 5. The
true positive abnormal events are (from left to right) a person running, a child
running and a person throwing an object. The first (left-most) false positive de-
tection represents two persons walking synchronously. The last two false positive
example indicate that our method detects a child running even if the child is
partially occluded, or a person throwing an object before the object is in the air.

4.5 Results on the Subway Data Set

Although there are many works that used the Subway data set in the experiments
[3, 6, 11, 12, 17, 18, 22, 25, 27], some of these works [6, 25, 27] did not use the
frame-level AUC as evaluation metric. Therefore, we only compare our approach
with those methods [3, 11, 12, 17, 18, 22] that reported the frame-level AUC.
The results of the comparative study are reported in Table 3. On the Entrance
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Method Frame AUC
Scene 1 Scene 2 Scene 3 Average

Mehran et al. [8] - - - 96.0
Cong et al. [17] 99.5 97.5 96.4 97.8
Saligrama et al. [22] - - - 98.5
Del Giorno et al. [11] - - - 91.0
Zhang et al. [25] 99.2 98.3 98.7 98.7
Sun et al. [24] 99.8 99.3 99.9 99.7
Smeureanu et al. [23] 98.8 93.6 98.9 97.1
Ionescu et al. [12] 99.3 87.7 98.2 95.1
Ravanbakhsh et al. [21] - - - 99.0

Ours (NMC) 99.8 96.2 99.6 98.5
Ours (NMC + CNN) 99.9 96.8 99.8 98.8

Table 4. Abnormal event detection results (in %) in terms of frame-level AUC on
the UMN data set. Our framework is compared with several state-of-the-art methods
[8, 11, 12, 17, 21, 22, 23, 24, 25], which are listed in temporal order.

Fig. 7. Frame-level anomaly detection scores (between 0 and 1) provided by our frame-
work based on the late fusion strategy, for the third scene in the UMN data set. The
video has 1744 test frames. Ground-truth abnormal events are represented in pink, and
our scores are illustrated in blue. Best viewed in color.

gate video, we obtain the third best score after [3, 18]. Hasan et al. [18] report
a frame-level AUC of 94.3%, which is 1.9% higher than our best score (92.4%).
Things look differently on the Exit gate video, as we obtain the best score (94.5%)
among all methods, surpassing the approach of Hasan et al. [18] by 13.8% and
the second best method [12] by 8.2%. On average, we obtain the best results on
the Subway data set.

In Figure 6, we present some interesting qualitative results obtained by our
framework on the Entrance gate video. The true positive abnormal events are
a person jumping over the fence, two persons walking in wrong direction and a
person jumping over the gate, while false positive detections are a person running,
two persons walking synchronously and camera shifting.

4.6 Results on the UMN Data Set

On the UMN data set, we compare our approach with several methods [8, 11,
12, 17, 21, 22, 23, 24, 25]. In Table 4, we report the frame-level AUC score for
each individual scene, as well as the average score for all the three scenes. It is
worth noting that UMN seems to be the easiest abnormal event detection data
set, since most works report frame-level AUC scores above 95.0%. We reach the
highest performance (99.9%) among all methods on the first scene. On the last
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Fig. 8. True positive (top row) versus false positive (bottom row) detections of our
framework based on NMC and CNN. Examples are selected from the UMN data set.
Best viewed in color.

scene, we obtain the second best score (99.8%). Remarkably, our approach is
able to correctly identify the three abnormal events in the third scene without
any false positives, by applying a threshold of 0.5, as illustrated in Figure 7. Our
lowest performance (96.8%) is on the second scene. Over all scenes, we reach the
third highest frame-level AUC (98.8%), which is 0.9% lower than the best score
(99.7%) obtained by Sun et al. [24].

In Figure 8, we present some interesting qualitative results obtained by our
framework on the second scene, as it was almost impossible to find false positive
detections in the other scenes. The true positive examples represent people run-
ning around in all directions, while the false detections are triggered by people
opening the doors to enter or exit the room. In the first (left-most) false posi-
tive example it seems that our method detects the significant amount of light
that enters the room as the doors open. Perhaps the first impression is that our
approach is not robust to illumination variations. However, we noticed that our
training video does not contain examples of people walking through the doors.
Therefore, it is impossible to learn a complete model of normality that includes
this kind of event (people walking through the doors).

5 Conclusion and Future Work

In this work, we proposed Narrowed Motion Clusters, a novel framework for
abnormal event detection in video that is based on a two-stage outlier elimi-
nation algorithm. The algorithm works by removing outlier clusters obtained
with k-means and by learning a tight border around each remaining cluster
using one-class SVM. We also combined our approach based on motion fea-
tures with a recent approach [23] based on CNN features in order to improve
the performance. We conducted abnormal event detection experiments on four
data sets to compare our approach with a series of state-of-the-art approaches
[3, 6, 8, 11, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25]. The empirical results indicate
that our approach yields better performance than all other methods on the Av-
enue and the Subway data sets. Furthermore, our approach is in the top three
methods on the UMN data set. In the same time, we can process the test video
in real-time at 32 frames per second on CPU.

In future work, we aim to replace the approach of Smeureanu et al. [23] with
a CNN that is fine-tuned on the abnormal event detection task. Alternatively,
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we could develop an approach to train deep features on a related task, such as
action recognition, and transfer the learned features to our task. We also aim
to combine the spatio-temporal cubes with the learned deep features before the
training stage, using an early fusion strategy. This could yield better results than
the late fusion strategy applied in this work.
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