
ar
X

iv
:1

70
5.

10
41

7v
2

 [
m

at
h.

G
R

]
 2

1
Fe

b
20

18

SOLVING THE CONJUGACY DECISION PROBLEM VIA

MACHINE LEARNING

JONATHAN GRYAK, ROBERT M. HARALICK, AND DELARAM KAHROBAEI

Abstract. Machine learning and pattern recognition techniques have been
successfully applied to algorithmic problems in free groups. In this paper, we
seek to extend these techniques to finitely presented non-free groups, with a
particular emphasis on polycyclic and metabelian groups that are of interest
to non-commutative cryptography.

As a prototypical example, we utilize supervised learning methods to con-
struct classifiers that can solve the conjugacy decision problem, i.e., determine
whether or not a pair of elements from a specified group are conjugate. The
accuracies of classifiers created using decision trees, random forests, and N-
tuple neural network models are evaluated for several non-free groups. The
very high accuracy of these classifiers suggests an underlying mathematical
relationship with respect to conjugacy in the tested groups.

1. Introduction

Group theory has been a rich source of decision problems dating back to Max
Dehn, who in 1911 [5] articulated the word, conjugacy, and isomorphism prob-
lems for finitely generated groups. For a given group G, the word problem is to
determine, for any word w ∈ G, if w is equivalent to the identity of G, while the con-
jugacy problem is to determine, for any two elements u, v ∈ G, if u is conjugate to v.

The exploration of solutions to these problems gave rise to combinatorial group
theory - the study of groups via their presentations, i.e., sets of generators and
relations. Following the advent of computability theory and building upon the un-
decidability of the word problem in semigroups by Post [23], Novikov proved in 1955
that the word problem in groups is in general undecidable [21]. Much subsequent
work in combinatorial group theory has determined the decidability of the word,
conjugacy, and (to a lesser extent) the isomorphism problem for many classes of
groups.

Algorithmic problems in finitely presented groups can be studied through various
branches of algebra - representation theory, combinatorial group theory, and geo-
metric group theory. In [12], Haralick et al. suggested a machine learning approach
to solving algorithmic problems in free groups. In this paper we seek to extend
these results to non-free groups. As a prototypical example, we will use machine
learning techniques to solve the conjugacy decision problem in a variety of groups.
Beyond their utilitarian worth, the developed methods provide the computational
group theorist a new digital “sketchpad” with which one can explore the structure
of groups and other algebraic objects, and perhaps yielding heretofore unknown

1

http://arxiv.org/abs/1705.10417v2

2 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

mathematical relationships.

We begin in section 2 with discussion of the work of Haralick et al. in free groups
and the general framework that they advance to apply machine learning to group-
theoretic problems. In section 3 we leverage the additional structure available in
non-free groups to the task of feature extraction - the method by which salient
information is gleaned from the training data.

Beyond feature extraction, the machine learning system components of model se-
lection, data generation, and performance evaluation are developed in section 4.
The learning models of decision trees, random forests, and N -tuple neural net-
works are introduced, along with their attendant parameters. With respect to data
generation we recommend three independent data sets used throughout the su-
pervised learning process. While there are many methods of evaluating classifier
performance, accuracy will be the primary metric used.

In section 5 we apply our machine learning system to the specific task of solving
the conjugacy decision problem. We chose six different groups for evaluation, in-
cluding polycyclic, metabelian, and non-solvable groups. We test the performance
of all three learning models with various parameters over all test groups, and, in
addition to overall classifier accuracy, provide per class and word length analysis of
the performance of the best classifier for each group. We conclude in section 6 with
a discussion of our results, as well as outlining the subsequent task of exposing the
underlying mathematical relationship intimated by our positive results.

This paper is based in part on the Ph.D. dissertation of Jonathan Gryak at the
City University of New York, 2017, written under the supervision of Gryak’s advisor
Delaram Kahrobaei.

2. Related Work

In [12], Haralick et al. posited that pattern recognition techniques are an ap-
propriate methodology for solving problems in combinatorial group theory. To
demonstrate, they constructed a machine learning system for discovering effec-
tive heuristics for the Whitehead automorphism problem, a search problem in free
groups that uses the successive application of the namesake automorphisms to re-
duce a word to its minimal length.

As mentioned in [12], every machine learning system must contend with the fol-
lowing tasks: data generation, feature extraction, model selection, and evaluation.
Once the system is constructed, analysis of the system’s performance can yield in-
sights into the nature of the problem at hand, and potentially be used to improve
upon it. In the following sections we will delve into each of these aforementioned
tasks, showing in the process how these techniques can be extended from free groups
to finitely presented groups, and ultimately be adapted to solving the conjugacy
decision problem The primary difference in the construction of machine learning
systems for free and not-free groups is in feature extraction, which is the focus of
the next section.

SOLVING THE CDP VIA MACHINE LEARNING 3

3. Feature Extraction in Non-Free Groups

One of the most important aspects of creating a machine learning system is the
process of feature extraction, the means by which relevant information is distilled
from the raw dataset and presented to the learning algorithm. If the raw dataset
is unstructured, subsets of data may first be aggregated into units of observation,
from which the features will be extracted. Some datasets may come with an intrin-
sic structure, such as that of a list, a matrix, or a string of text. Regardless of the
data’s inherent structure, the ability to extract features from the underlying data
that provide information relevant to the learning process requires domain-specific
knowledge.

Finitely presented groups, in addition to their representation as generators and
relators, have a combinatorial structure that is manifested by their Cayley graphs.
A Cayley graph is a rooted, labeled digraph, with a vertex for every element in the
group and each edge labeled by a generator or an inverse generator. The root of the
graph is the identity element. If the group is infinite then so is its Cayley graph.
The graph is connected, and the label of every path from the root to a vertex is
a word representing a group element. Circuits from the root represent words that
are equivalent to the identity and are therefore in the normal closure of the set of
relators.

The Cayley graph also enables groups to be considered as metric spaces. Let G be
a finitely generated group with generating set X and φ : F (X)→ G the canonical
epimorphism. Given a word w over the alphabet X , let |w| be the length of w. For
g ∈ G, the geodesic length of g over X is then defined as

lX(g) = min{|w| | w ∈ F (X), φ(w) = g}.

The geodesic length of g corresponds to the shortest path in the Cayley graph
whose label represents g. If every edge in the Cayley graph is given unit length,
then lX(g) corresponds to the number of edges in the shortest path labeled by w.
Given words u and v representing elements g and h respectively, we can now define
the word metric dX(g, h) = lX(g−1h) that satisfies the axioms required of a metric
function. Note that as the notation implies, dX(g, h) is dependent upon the choice
of the generating set X . Word length and the word metric provide useful means by
which we can associate numerical values with group elements.

The Cayley graph is but one way that graphs can be used to extract numerical
information concerning group elements and their word representations. In [12], Har-
alick et al. introduced a directed variant of the Whitehead graph that allows one to
assign numerical values to subwords and subsequently form feature vectors using
these values. Let F (X) be a free group over the alphabet X , and w ∈ F (X). The
labeled Whitehead graph ΓW (w) = (V,E) for w is an undirected, weighted graph,
with the set of vertices V equal to the set X∪X−1, and for every xi, xj ∈ X∪X

−1,

an edge (xi, xj) is added to E if xix
−1
j or xjx

−1
i occurs in the cyclic form of w. Ev-

ery edge (xi, xj) ∈ E is assigned a weight C(w, xixj), which is equal to the number

of times the subwords xix
−1
j or xjx

−1
i occur in w.

4 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

These graphs can be generalized to count the occurrence of any pattern of letters
within a word. Let F (X) be a free group over X , with ǫ denoting the empty word.
For a fixed word w ∈ F (X) and a finite set of words U = {u1, . . . , uk | uj ∈ F (X)},
let us define a weighted directed graph Γ(w) = (V,E) for w as follows. The set of
vertices V is equal to X ∪ X−1 as before. For any x, y ∈ X ∪ X−1 and uj ∈ U ,
we form a directed edge (x, y) ∈ E, labeled by xujy and assigned the weight
C(w, xujy), which is equal to the number of times the reduced subword xujy oc-
curs in w. Note that unlike in the previous case of the Whitehead graph, we are not
considering w cyclically. If xujy is equivalent to the empty word in F (X) then no
edge is drawn, and C(w, ǫ) is defined to be 0. If xujy is a single letter a ∈ X∪X−1,
then an unlabeled loop (a, a) is added to E and assigned the weight C(w, a). In
this framework, every pair consisting of a set of words U and a set of counting
functions C(w, xujy) : F (X) → N corresponds to a subgraph of Γ(w), which we
call a counting subgraph.

We can now use these counting subgraphs and their attendant counting functions to
extract features from finitely presented groups. Let G be given by the presentation
〈X |R〉, with φ the canonical epimorphism, and U = {u1, . . . , uk} be a set of words
in F (X). Let xujy and w be the geodesic words representing the group elements
φ(xujy) (for 1 ≤ j ≤ k) and φ(w), and C(w, xu1y), . . . , C(w, xuky) be counting
functions as defined above. When normalized by the word length |w|, these give
rise to a real-valued feature vector v ∈ Rk:

v =
1

|w|
〈C(w, xu1y), . . . , C(w, xuky)〉.

Another means of extracting features from finitely presented groups is via their
normal forms. A normal form for elements of a group can in general be construed
as a unique and most concise representation of each element in the group. For free
groups the standard normal form of an element is its reduced word representation.
Normal forms need not be words; they can be numbers, sequences, or some other
formal representation. Note that in some contexts the uniqueness of normal forms
may be relaxed.

Every finitely presented group has at least one normal form, as one can impose a
total ordering such as shortlex [13] and use the least word under that ordering to
represent each group element. However, existence does not entail that the normal
form can be calculated efficiently. For some finitely presented groups the Knuth-
Bendix algorithm [15] can be used to create a confluent, terminating rewriting
system with respect to the generating set X , resulting in an efficiently calculable
normal form for the group. For the class of polycyclic groups the collection algo-
rithm can be used to reduce words to their normal form, and is generally efficient
in practice [9].

We now have at our disposal a bevy of combinatorial and geometric machinery to
extract information concerning group elements. In the definitions below, let G be
given by the finite presentation 〈X | R〉 with |X | = N , let g be an element of G,
and let w = w1 . . . wm be a word representation of g over X . Let Y = X∪X−1. We
first consider feature vectors that are applicable to finitely presented groups that
possess an efficiently calculable normal form:

SOLVING THE CDP VIA MACHINE LEARNING 5

• n0 (Normal Form) - Let G be a finitely presented group possessing an
efficiently calculable normal form. If w is a word in normal form, then w is
of the form

ye11 · · · y
eN
N

with yi ∈ Y and ei ∈ Z. The feature vector n0 is then

n0 = 〈e1, . . . , eN〉.

• n1 (Weighted Normal Form) - The feature vector n1 is the same as n0

above, except it is weighted by the word length |w|:

n1 =
1

|w|
〈e1, . . . , eN〉.

We now consider features for finitely presented groups that do not require a normal
form:

• f0 (Generator Count) - Let the generator set X be given a fixed order and
let xi ∈ X be the ith generator. The counting function C(w, xi) = |{wj |

wj = xi∨x
−1
i }|, that is, the number of occurrences of the generator xi (and

its inverse) in the word w. The feature vector f0 is then

f0 = 〈C(w, x1), . . . , C(w, xN)〉.

• f1 (Weighted Generator Count) - The feature vector f1 is the same as f0
above, except it is weighted by the word length |w|:

f1 =
1

|w|
〈C(w, x1), . . . , C(w, xN)〉.

• f2 through f7 (Counting Subgraphs) - Let Ul = {uj ∈ F (X) | |uj | = l},
and consider the previously defined counting functions C(w, xuljy), with
ulj ∈ Ul and x, y ∈ Y such that xuljy is a geodesic word representing
the element φ(xuljy). The features below represent counting subgraphs as
described above, and for each length there is a weighted and non-weighted
variant:

f2 = 〈C(w, xu1jy) | x, y ∈ Y ;uj ∈ U1〉
f3 = 1

|w|〈C(w, xu1jy) | x, y ∈ Y ;uj ∈ U1〉

f4 = 〈C(w, xu2jy) | x, y ∈ Y ;uj ∈ U2〉
f5 = 1

|w|〈C(w, xu2jy) | x, y ∈ Y ;uj ∈ U2〉

f6 = 〈C(w, xu3jy) | x, y ∈ Y ;uj ∈ U3〉
f7 = 1

|w|〈C(w, xu3jy) | x, y ∈ Y ;uj ∈ U3〉

4. Model Selection and Other System Components

4.1. Model Selection.

In the context of machine learning, a model or learning algorithm is the means by
which a set of training inputs can be used to predict the output on future, unseen
inputs. The choice of a learning algorithm is informed by the type and structure of
the training data, such as whether the data is discrete or continuous, or is comprised
of feature vectors like those described above. A particular learning algorithm in
turn determines the hypothesis space; the set of functions that can be learned from
the data. The class of available learning algorithms that have been developed is too
numerous to describe here. Instead, we will focus on a set of models that will be

6 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

applied to group-theoretic problems: decision trees, random forests, and N -tuple
networks.

4.1.1. Decision Trees and Random Forests.
Decision tree learning is a model that utilizes a tree structure to encode the learned

function. Trees can be used for either classification or regression analysis; we will
focus on those used for classification, and in particular binary classification trees,
where each node can have a maximum of two children. Every node in the deci-
sion tree corresponds to a unique partition of the measurement space. Leaf nodes
correspond to the assignment of a particular class, while at internal nodes a test
is performed to distinguish between data points. This distinction is encoded in
the node’s children and further partitions the measurement space. Trees can dis-
tinguish by feature, by combining features via a discriminant function (such as a
linear discriminant), or by other means.

There are a number of tests available that can be used to partition the space at
each internal node. Gini impurity measures the frequency at which the remaining
data points would be misclassified, with the best split being that which minimizes
this impurity. With information gain, the entropy of the parent node and the re-
maining data are calculated, and a partition is chosen that reduces the entropy the
most, i.e., that which maximizes the information that can be obtained from the
partition. The probability of misclassification can also be used.

As with many learning algorithms, decision trees are prone to overfitting. As
decision trees do not have a fixed size representation (i.e., they are considered a
non-parametric model), the tree-making algorithm can create large trees or ones
with complex branching that do not generalize well. This can be combatted by
pruning, whereby a subtree of the learned decision tree is replaced with a leaf node
whose class is the most common one of the data points contained in the pruned
subtree. Pruning can be performed by testing a subtree’s classification performance
against a separate data set, and keeping the subtree if improves the performance of
the classifier. Pruning can also be achieved by employing a statistical significance
test such as the χ2 test that can determine if a subtree results in a meaningful split
in the data, and pruning if the subtree does not meet some threshold of significance.
Yet another technique is to limit the depth to which the tree can grow during the
training process, a form of pre-pruning.

Random forest classifiers [3] are an example of an ensemble method, in which mul-
tiple classifiers are combined into a single classifier. As the name implies, random
forests are comprised of several decision trees that are constructed from a random
sampling of the training set. Additionally, the best split at each node in a particu-
lar tree is determined not by the single best component of the feature vector, but
instead by choosing the best feature among a randomly sampled subset of the fea-
ture vector’s components. Using multiple trees trained on the sampled training set
reduces overfitting, while using subsets of the feature vector for choosing partitions
in the measurement space reduces variance. Once trained, the classification of a
new sample can be determined by either averaging the classifications of each tree
in the forest, or by having each tree vote for the sample’s class and assigning the
sample to the class with a plurality of the votes.

SOLVING THE CDP VIA MACHINE LEARNING 7

4.1.2. N -tuple Neural Networks.
Another model that we will investigate is the N -tuple neural network. N -tuple

classifiers were introduced in 1959 by Bledsoe and Browning [2] as a means of per-
forming printed character recognition using specialized table lookup hardware. In
its original implementation, the positions of a binary number s are sampled using
a total of M random patterns of size N for each class C. The number of classes is
dependent upon the application at hand. For instance, if the N -tuple classifier was
used to classify single digits (0-9), then the number of classes C would be 10. The
sampled positions produce another binary number bm. These samplings are stored
in tables Tmc (one for each class c and random sample m), and the value of the
table entry Tmc(bm) is the total number of times a sample s of class c was mapped
by m to the binary number bm. A new sample s′ is classified by choosing the class
for which the sum of Tmc(b

′
m) is maximal. If no maximum exists, the classifier does

not choose a class and is said to reserve decision.

With the advent of radial basis function networks and other forms of artificial neu-
ral networks in the late 1980s and early 1990s, N -tuple classifiers were revisited,
being recast as a type of weightless, single-layer artificial neural network (e.g., the
“single layer lookup perceptrons” of Tattersall et al. [26]). In a series of papers,
Allinson and Ko lcz extended N -tuple neural networks further, developing a binary
encoding scheme based on CMAC (cerebellar model arithmetic computer, an older
form of artificial neural network) and Gray codes [16], as well as using NTNNs for
regression analysis [17] instead of classification. In [24], Rohwer performed a series
of experiments on standard pattern recognition databases, finding that for most
data sets the best results were achieved with N -tuples of size 8 (i.e., a pattern of
length N = 8) and the total number of patterns M around 1000.

NTNNs can be generalized beyond classifying binary data by utilizing the frame-
work of relational algebra. In this rendition, each data point s is transformed into
a feature vector x of fixed length N . Let J1, . . . , JM be index sets or patterns of
uniform length P , that is, subsets of the set {0, . . . , N−1} that represent the indices
at which to sample x. For each index set Jm and class c ∈ C we form the table
Tmc. Let πmc(x) be the projection operation that samples the feature vector x of
class c at the indices given by Jm. The resultant value k = πmc(x) is computed
and the table Tmc is updated: Tmc(k)← Tmc(k) + 1.

Let us illustrate the above operations with a concrete example. Consider an NTNN
with the parameters N = 5, M = 2, and P = 3. The table below represents the
NTNN table entries for class 0 after training on the first 3 samples:

8 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

s J0 π00 T00
〈−4,−1, 5, 2, 3〉

(0, 2, 4)
(−4, 5, 3) (−4, 5, 3) 7→ 2

〈−4,−7, 5, 2, 3〉 (−4, 5, 3) (−2, 6, 1) 7→ 1
〈−2,−1, 6, 3, 1〉 (−2, 6, 1)

s J1 π10 T10
〈−4,−1, 5, 2, 3〉

(1, 2, 3)
(−1, 5, 2) (−1, 5, 2) 7→ 1

〈−4,−7, 5, 2, 3〉 (−7, 5, 2) (−7, 5, 2) 7→ 1
〈−2,−1, 6, 3, 1〉 (−1, 6, 3) (−1, 6, 3) 7→ 1

Table 1. Table Entries of a NTNN Classifier After Training on 3 Samples

The first pattern J0 will sample the first, third, and fifth component of each train-
ing sample s. The projection operation using pattern J0, denoted π00, results in the
projection (−4, 5, 3) twice and (−2, 6, 1) once. The table T00 records both projec-
tions, as well as the frequency at which these projections have been observed so far.
Table T10 records the projections and their frequency resulting from the projection
operation π10, which uses pattern J1 instead of J0. Note that π10 results in three
different projections, thus the frequency of each projection in table T10 is set to one.

Various classification criteria [11] have been devised for use with NTNNs; we in-
clude two such criteria below. Note that if there is no unique class that satisfies
the criterion, the NTNN reserves decision:

• Voting Majority – Assign s to class c′ if
∑

m∈M Tmc′(s) >
∑

m∈M Tmc(s)
for all classes c 6= c′.
• Logarithm Voting Majority – Assign s to class c′ if

∑

m∈M log Tmc′(s) >
∑

m∈M logTmc(s) for all classes c 6= c′.

Note that after all the counts are created in all the tables, each count may be
replaced by the log of the count in accordance with what classification criterion is
used in the experiment.

4.2. Data Generation.

The primary goal of a supervised machine learning system is to predict classes or
values on new, unseen members of the data domain. As a consequence, the system’s
construction requires at least two sets of data - one for training and one for evalua-
tion. When data is scarce the method of cross-validation can be employed, whereby
the data set is partitioned into separate sets that are used exclusively for training
or evaluation. Depending on the learning model chosen, a third data set may be
required for use during the optimization process that occurs between the training
and evaluation phases. Our approach is to produce three, independently generated
sets that are used in each phase of the system’s construction. The sets used for
training, optimization, and verification are respectively referred to as Si, So, and Sv.

4.3. Evaluation.

There are various means by which the performance of a machine learning system
can be evaluated. Regardless of which method is chosen, it is imperative that an
independent data set (e.g., the verification set Sv from the previous section) is used

SOLVING THE CDP VIA MACHINE LEARNING 9

to measure the system’s performance.

In classification, we are primarily concerned with the accuracy A of a modelM(f),
trained with respect to the feature vector f , over the verification set Sv:

A(M(f), Sv) =
|True Positives(Sv)|+ |True Negatives(Sv)|

|Sv|
.

5. A Machine Learning Approach to the Conjugacy Decision Problem

Recall that the conjugacy decision problem for a group G is to determine for any
u, v ∈ G if u is conjugate to v. With respect to computability, the conjugacy de-
cision problem is in fact two problems - each concerned with determining positive
or negative solutions exclusively. The positive conjugacy decision problem in any
recursively presented group is computable, as for any element in the group its con-
jugates can be recursively enumerated [20]. The negative solution is not guaranteed
to be computable for non-finite groups. There are classes of groups for which both
parts of the conjugacy decision problem are computable, including finitely gener-
ated polycyclic and metabelian groups.

Computability, however, does not imply efficiency. The efficient algorithms that do
exist are often restricted in some sense, such as answering only one part of the de-
cision problem or being solely applicable to a specific class of groups. For instance,
a polynomial algorithm exists [18] for the full conjugacy decision problem in the
Grigorchuk groups, and a linear algorithm exists [7] for word-hyperbolic groups.
In non-cyclic finitely generated groups of infinite abelianization, a linear algorithm
was found [14] that can be used to solve the negative conjugacy decision problem
generically, i.e., for “most inputs” (a rigorous formulation of which is introduced in
the same paper [14]).

Given the limitations of existing algorithms, we turn to the framework of the
previous section for a machine learning solution. In the sections below we outline
how we adapt the general framework to constructing machine learning systems for
the conjugacy decision problem. We use the aforementioned supervised learning
methods to train classifiers for several classes of finitely presented group. These
classifiers can determine whether a pair of elements from their respective groups
are conjugate or not, and do so with very high accuracy.

5.1. Feature Extraction.

Given a group G with an efficiently calculable normal form and words u, v ∈ G,
we concatenate (denoted by ‖) the unit feature vectors n0 and n1 from section 3 to
create two derived feature vectors for the conjugacy decision problem:

c0 = 〈n0(u) ‖ n0(v)〉
c1 = 〈n1(u) ‖ n1(v)〉

The default feature vector used with tree-based classifiers is c1 (weighted normal
forms), while for NTNNs it is c0 (unweighted normal forms). Additional feature
vectors and normal forms that are used for a particular group are included in that
group’s experimental results section.

5.2. Model Selection.

10 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

For the conjugacy decision problem we can utilize all three classifiers defined pre-
viously: decision trees, random forests, and NTNNs.

In constructing our decision tree and random forests classifiers we used the imple-
mentations included in Scikit-learn [22] (specifically the DecisionTreeClassifier

and RandomForestClassifier). We trained an instance of each classifier for each
group on its respective training set Si. Each leaf node was required to contain
at least one sample, and a split could only occur if there were at least two sam-
ples at that node. The accuracy of each classifier was calculated by classifying the
data in each group’s verification set Sv. Both Gini impurity and information gain
were used to determine the best split. For the depth limit, we tested not having a
limit, as well as limiting the number of levels to log2 Si − 1. For the random for-
est classifier, the number of trees in the forest was 10, and the size of the random
subset of features was

√

|c1|, i.e., the square root of the length of the feature vector.

Our version of the NTNN classifier was implemented in Python. We trained a
number of NTNN classifiers for each group with different combinations of M pat-
terns of size P . The total number of patterns M was varied, taking on values from
the set {10, 20, 30, 50, 100}. The initial size of the patterns was set to 3, and where
applicable, sizes in the range [3, 5] were tested. We used both the “Voting Major-
ity” and “Logarithm Voting Majority” criteria for classification in our tests.

For a given feature vector of dimension N , the total number of patterns of size
P ≤ N is

(

N
P

)

. When initializing a NTNN classifier that uses pattern sets of size

M (a set of M patterns of size P), the list of
(

N
P

)

patterns is generated, and a
separate permutation of each list is kept for each class C. In our case, C = 2, as
we are performing binary classification, i.e., determining if the given feature vec-
tor represent a conjugate or non-conjugate pair of elements. Before training the
NTNN on the set Si, each class is assigned the first M patterns from its pattern list.

As the accuracy of the initial random selection of patterns varies considerably,
a random restart was implemented, in which a new NTNN was initiated with a
new random permutation of all possible patterns. Each NTNN’s performance was
tested against the set So, with the NTNN proceeding to the optimization stage only
when its accuracy was greater than the starting threshold θα, which was set to 60%.

During the optimization phase, the algorithm alternates between each classes’ list
of patterns in choosing the next test pattern. Each pattern in M is swapped out
with the test pattern, and the NTNN is evaluated against the optimization set
So. The algorithm keeps track of the pattern m whose replacement with the test
pattern improves accuracy the most over all m ∈M , and makes that pattern swap
permanent if a new best accuracy is achieved. The algorithm will continue this
process until all patterns have been exhausted or the goal threshold θω is reached,
which was set to 97%. The NTNN classifier and the current location in the pattern
list are then saved, so that optimization can be continued at a later time if desired.

5.3. Data Generation.

In solving the CDP, one instance of each of the three data sets was generated for
each group. Each data set consists of 20,000 geodesic word pairs, 10,000 of which

SOLVING THE CDP VIA MACHINE LEARNING 11

represent a pair of conjugate elements, while the other 10,000 represent pairs of non-
conjugate elements. These data sets are generated via the following procedures:

(1) Random Non-Conjugate Word Pairs in Normal Form - For each n ∈ [5, 1004]
we generate two words u, v representing elements x, y ∈ G respectively, with
|u| = |v| = n. A word w is generated uniformly and randomly by starting
with the identity element w = 1G, then selecting a generator (or inverse)
g from X ∪ X1 and performing the product w = w · g. The element is
then converted into its normal form w′, and the length |w′| is computed.
Additional products are computed until |w′| = n.

After generating each u, v pair, an additional step is required to verify
that u is not conjugate v. Using the method from [14], we construct the de-
rived (or commutator) subgroup of G, denoted [G,G], and an epimorphism
ψ : G→ G/[G,G]. If we let φ be the canonical epimorphism, we then look
at the images ψ(φ(u)) and ψ(φ(v)) and reject the pair if they map to the
same representative in the quotient G/[G,G] or if either maps to 1G/[G,G].

For ψ(φ(u)) = ψ(φ(v)) if and only if xḠ = yḠ for some coset Ḡ, and this
is the case when y = gxg−1 for φ(u) = x, φ(v) = y, and some g ∈ G.

This two-step process is repeated until 10 non-conjugate pairs are gener-
ated for each n.

(2) Random Conjugate Word Pairs in Normal Form - For n ∈ [5, 1004] we
generate a pair of words u, t representing elements x, z ∈ G respectively,
with |u| = |t| = n. Each word u, t is generated uniformly and randomly
as above. After u and t are generated, the word v = ut is formed, and
the tuple (u, v) is added to the dataset (z is discarded). This process is
repeated 10 times for each n.

. The above procedures were implemented in the computer algebra system
GAP [1].

. To summarize, the data generation process above for each group G produces a
collection of data sets D0(G) = {Si, So, Sv}, each with 20,000 pairs of words, with
the following properties for each class (conjugate pairs vs. non-conjugate pairs):

• 10,000 pairs of conjugate words (u, v), with |u| = l for l ∈ [5, 1004] and |v|
varying;
• 10,000 pairs of non-conjugate words (u, v), with |u| = |v| = l.

These data collections D0(G) were used to evaluate the parameters of each machine
learning model for each group G. However, the very positive experimental results
reported in section 5.5 may be due to the particular characteristics of the lengths of
the words within each class. Therefore, we generated additional dataset collections
of increasing generality in order to allay these concerns.

. We first generated large sets of words in normal form for each group by randomly
and uniformly selecting lengths in the range [5, 1004] and using the word genera-
tion procedure described in (1) above (without testing for non-conjugacy). This
process was continued until we generate a dataset P (G) containing a minimum
of 250,000 unique words in normal form for each group G, which was a sufficient

12 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

number of unique words to produce the additional data collections described below.

. The data collectionD1(G) keeps the same subset of conjugate word pairs as D0(G)
for each data set Sk, but replaced the non-conjugate word pairs by drawing two
words u, v uniformly without replacement from P (G), and adding the pair (u, v) to
the dataset if their non-conjugacy was confirmed using procedure described in (2)
above. Each data set Sk ∈ D1(G) contains 10,000 conjugate word pairs (u, v = ut)
with |u| = |t| = l for l ∈ [5, 1004], and |v| varied; and 10,000 non-conjugate pairs
(u, v) with |u| = m,|v| = n for m,n ∈ [5, 1004].

. The data collection D2(G) keeps the same subset of non-conjugate word pairs
as D1(G) for each data set Sk, but replaced the conjugate pairs by drawing two
words u, t uniformly without replacement from P (G), creating the word v = ut, and
adding the pair (u, v) to the dataset. Each data set Sk ∈ D2(G) contains 10,000
conjugate word pairs (u, v = ut) with |u| = l,|t| = p for l, p ∈ [5, 1004], and |v| var-
ied; and 10,000 non-conjugate pairs (u, v) with |u| = m,|v| = n for m,n ∈ [5, 1004].

. In the data collections D2(G) we have ensured that each word regardless of class
can vary in length. However, it is still the case that non-conjugate words have
lengths strictly within the range [5, 1004], while the length of conjugate words have
a much larger range. To remove this restriction we created a third data collection
D3(G) for each group. D3(G) contains the same subset of conjugate pairs as D2(G).
For the non-conjugate pairs, we first determined for each dataset SK ∈ D2(G) the
minimum and maximum lengths of conjugate words, and produced non-conjugate
word pairs (u, v) with |u| ∈ [5, 1004] as before, but the length of v was allowed to
vary within the minimum and maximum lengths of conjugate words. This ensures
that length alone can not be used to determine if a pair is conjugate or not.

. For convenience and clarity we have summarized the differences in these data col-
lections in table below. Let minik (maxik) correspond to the minimum (maximum)
word length in a conjugate pair for the data set Sk ∈ Di(G):

Collection Conjugate Pair (u, v = ut) Non-Conjugate Pair (u, v)
D0 |u| = |t| = l; l ∈ [5, 1004] |u| = |v| = m; m ∈ [5, 1004]
D1 |u| = |t| = l; l ∈ [5, 1004] |u| = m, |v| = n; m,n ∈ [5, 1004]
D2 |u| = l,|t| = p; l, p ∈ [5, 1004] |u| = m, |v| = n; m,n ∈ [5, 1004]

D3 |u| = l,|t| = p; l, p ∈ [5, 1004]
|u| = m, |v| = n; m ∈ [5, 1004]

n ∈ [min2k,max2k]
Table 2. Word Length Differences in Each Data Collection and Class

5.4. Test Groups.

Having specified how we will apply our machine learning system to the conjugacy
decision problem, we now turn our attention to the groups in which we will evaluate
the system’s performance. We tested six groups with various algebraic properties:

• three non-virtually nilpotent groups: the groups O ⋊ UH ;
• two non-polycyclic metabelian groups: BS(1,2) and GMBS(2,3);
• and SL(2,Z), a non-solvable linear group.

SOLVING THE CDP VIA MACHINE LEARNING 13

The specific representations and feature vectors used for each group are outlined
below.

5.4.1. The Baumslag-Solitar Group BS(1,2). The Baumslag-Solitar groups are a
well-known class of one-relator groups. We will consider the Baumslag-Solitar group
BS(1, 2), given by the following presentation:

BS(1, 2) = 〈a, b, | bab−1a−2〉.

Note that the conjugacy decision problem over BS(1,2) resides in the complexity
class TC0 [27], where TC0 is the class of constant-depth arithmetic circuits using
AND, OR, NOT, and majority gates.

Elements in BS(1,2) can be uniquely written in the following normal form:

n0 = b−e1ae2be3 ,

with e1, e3 ≥ 0, and if e1, e3 > 0, then e2 is not divisible by 2. Collection from the
left can transform any element of BS(1,2) into this normal form. The dimension of
feature vectors c0 and c1 is 6.

In our initial tests of the NTNN classifier for BS(1,2), the classifier did not perform
well using the feature vector c0. It may be that the relatively low dimension of the
feature vector (N = 6) provides insufficient information to the classifier. Therefore,
we also tested features vectors c2 and c4, defined as the concatenation of unit vectors
f2 and f4 respectively. For BS(1,2), the feature vector c2 is of dimension 48, while
c4 has dimension 96.

5.4.2. Non-Virtually Nilpotent Polycyclic Groups.
Polycyclic groups are natural generalizations of cyclic groups. A group G is said

to be polycyclic if it has a subnormal series

G = G1 ⊲ · · · ⊲ Gn+1 = {1}

such that the quotient groups Gi/Gi+1 are cyclic. This series is called a polycyclic
series. The Hirsch length of a polycyclic group G is the number of infinite groups
in its polycyclic series.

A sequence of elements X = [x1, . . . , xn] such that 〈xiGi + 1〉 = Gi/Gi+1 is called
a polycyclic sequence for G. In a polycyclic group G with polycyclic sequence X ,
any element g can be represented uniquely in normal form as a product of powers
of the generators of G:

g = xe11 · · ·x
en
n ,

with ei ∈ Z. The sequence (e1, . . . , en) is called the exponent vector of g with re-
spect to X .

Polycyclic groups that are non-virtually nilpotent have exponential growth ([28],[19])
and remain promising candidates for use as platform groups in non-commutative
cryptography [9]. One method of constructing such groups is through the use of
algebraic number fields, as outlined in [13, §8.2.2].

14 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

Given an algebraic number field F with degree [F : Q] > 1, one can define two
substructures, the maximal order O(F) and the unit group U(F). The maximal
order is the largest ring of integers of F , and consists of those elements in F that
are a root of some monic polynomial over F with integral coefficients. The multi-
plicative group U(F) consists wholly of the non-zero elements of O(F) that have a
multiplicative inverse, i.e., are units. Given these two structures and the aforemen-
tioned degree criterion, the semidirect product O(F) ⋊ U(F) results in an infinite,
non-virtually nilpotent polycyclic group.

Below are three specific instances of the O(F)⋊U(F) family of polycyclic groups.
The conjugacy search problem over the first two groups was studied in [8], in the
context of the length-based attack against the AAG key exchange protocol. The
groups can be constructed by using the MaximalOrderByUnitsPcpGroup function of
the GAP Polycyclic package [6]. The function takes a polynomial that is irreducible
over Q (thereby defining a field extension of Q) and returns a group of the form
O(F) ⋊ U(F):

• O ⋊ U14 - Given the polynomial f = x9 − 7x3 − 1,
MaximalOrderByUnitsPcpGroup returns a group of the form O(F)⋊U(F)
with a Hirsch length of 14.
• O ⋊ U16 - Given the polynomial f = x11 − x3 − 1,
MaximalOrderByUnitsPcpGroup returns a group of the form O(F)⋊U(F)
with a Hirsch length of 16.
• O ⋊ U34 - Given the polynomial f = x23 − x3 − 1,
MaximalOrderByUnitsPcpGroup returns a group of the form O(F)⋊U(F)
with a Hirsch length of 34.

Recall that every polycyclic group has a normal form in terms of the generators
in its polycyclic sequence. The feature vector n0 for a polycyclic group element g
simply corresponds to the exponent vector of g in normal form. Thus the feature
vectors c0 and c1 are readily computable for polycyclic group elements. The di-
mension of these feature vectors for groups of the form O(F) ⋊ U(F) is 2(H + 1),
where H is the Hirsch length of the group.

5.4.3. Generalized Metabelian Baumslag-Solitar Groups.
In [10], Gryak et al. introduced a family of polycyclic and metabelian groups

for which the time complexity of the conjugacy search problem is exponentially
bounded. Generalized metabelian Baumslag-Solitar groups are a subfamily of these
groups, with the group GMBS(2,3) being one such member whose presentation is
given below:

GMBS(2, 3) = 〈q1, q2, b | b
q1 = b2, bq2 = b3, [q1, q2] = 1〉.

Elements in GMBS(2,3) can be uniquely written in the following normal form:

n0 = q−e1
1 q−e2

2 be3qe41 q
e5
2 ,

with e1, e2, e4, e5 ≥ 0, 2 ∤ e3 if e1, e4 > 0, and 3 ∤ e3 if e2, e5 > 0. Collection
from the left can transform any element of GMBS(2,3) into this normal form. The
dimension of feature vectors c0 and c1 is 10.

5.4.4. SL(2,Z). Recall that SL(2,Z) is the set of 2 × 2 integral matrices with de-
terminant 1. This set forms a group under matrix multiplication, and is a discrete

SOLVING THE CDP VIA MACHINE LEARNING 15

subgroup of SL(2,R). The group was implemented in GAP with a dual representa-
tion: for each element x ∈ SL(2,Z) we have a pair (m,w) of the form

m =

[

a b
c d

]

, w = w1 · · ·wn, wi ∈ {S
±1, R±1},

with a, b, c, d ∈ Z such that ad − bc = 1, and S and R corresponding to the
matrices below that generate SL(2,Z):

S =

[

0 −1
1 0

]

, R =

[

0 −1
1 1

]

.

In this formulation, SL(2,Z) is an amalgamated free product given by the presen-
tation

SL(2,Z) ∼= 〈S,R | S4 = 1, S2 = R3〉.

These generators and attendant presentation were chosen so that a confluent
rewriting system could be constructed in GAP via the Knuth-Bendix algorithm.
This rewriting system enables us to reduce any word to shortlex normal form effi-
ciently.

In generating the data sets, the length of an element x was taken to be the length
of the word representation of the element, i.e., |x| = |w|, as suggested in [25]. When
the matrix form m of the element x is needed, the norm of the matrix, ‖m‖, can
be used as a length measure. We utilized the Frobenius norm, which is calculated
as

‖m‖=
√

a2 + b2 + c2 + d2.

Given that there are two representations for each element, there are multiple nor-
mal forms that can be considered. Let x = (m,w) ∈ SL(2,Z). The matrix normal
form is simply the “flattened” matrix, i.e., a vector in Z4 :

fm = 〈a, b, c, d〉.

For the tree-based classifiers we used the normalized matrix normal form as the
feature vector, i.e., for a word u = (mu, wu) we have

fm =
1

‖mu‖
〈a, b, c, d〉,

and for a pair of words u, v with respective matrix representations mu,mv, we
concatenate the two unit feature vectors together to form a feature vector for the
conjugacy decision problem:

cm = 〈fm(mu) ‖ fm(mv)〉

For the NTNN classifier we are looking to train on discretely valued data, thus the
previous feature vector of normalized matrix entries is not applicable. Attempting
to use the unnormalized matrix normal form would be a poor choice, as the fre-
quency distribution of the integral values that comprise the matrix entries is highly
skewed. Thus in lieu of the matrix representation for an element we will use its
word representation. However, the shortlex normal form for SL(2,Z) does not have
a fixed length. Consequently, we will use the counting subgraph features to trans-
form each reduced word in our formulation of SL(2,Z) (as an amalgamated free
product) to a fixed length feature vector. In particular, we will utilize the feature

16 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

vector c2 that was used for BS(1,2). Note however that for SL(2,Z) the dimension
of c2 is 40.

5.5. Experimental Results.

In this section we present the results of the performance of our three classification
models on the above test groups. While we tested the all three models over all
combinations of their respective parameters, the accuracy results in the tables be-
low represent the single best performing classifier for each group and model. Unless
otherwise noted, the feature vector c1 (weighted normal forms) was used for the
tree-based classifiers, while c0 (unweighted normal forms) was used for the NTNN
classifier.

The overall accuracy of a classifier for a particular group masks differences in how
that classifier performs over different samples in the verification set. To elucidate
these differences, we present two more granular analyses of accuracy: that with
respect to word length and another with respect to class.

5.5.1. Decision Tree and Random Forests.
Tables 3 and 4 below respectively display the accuracy of the best performing

decision tree and random forest classifiers for each group. For all classifiers in
this section the feature vector c1 was used, with the exception of the classifiers for
SL(2,Z), which used the matrix-based vector cm.

Group Method, Split Criterion, Depth Accuracy

BS(1,2) Decision Tree, Entropy, Depth Limit 92.00%
O ⋊ U14 Decision Tree, Entropy, Depth Limit 98.49%
O ⋊ U16 Decision Tree, Entropy, No Depth Limit 97.23%
O ⋊ U34 Decision Tree, Entropy, Depth Limit 98.47%

GMBS(2,3) Decision Tree, Gini Impurity, Depth Limit 95.43%
SL(2,Z) Decision Tree, Entropy, No Depth Limit 96.26%
Table 3. Best Performing Decision Tree Classifiers for All Groups

In optimizing the performance of the decision tree-based classifiers, different
combinations of tree depth limits and splitting criteria were considered. For nearly
all test groups, using information gain (equivalently, greatest reduction in entropy)
resulted in the most accurate classifier. Only for GMBS(2,3) did using Gini impu-
rity result in a higher accuracy, and only by .1%.

Group Method, Split Criterion, Depth Accuracy

BS(1,2) Random Forest, Entropy, No Depth Limit 93.64%
O ⋊ U14 Random Forest, Entropy, No Depth Limit 98.69%
O ⋊ U16 Random Forest, Entropy, Depth Limit 98.19%
O ⋊ U34 Random Forest, Entropy, No Depth Limit 98.89%

GMBS(2,3) Random Forest, Entropy, No Depth Limit 96.49%
SL(2,Z) Random Forest, Entropy, No Depth Limit 97.47%

Table 4. Best Performing Random Forest Classifiers for All Groups

SOLVING THE CDP VIA MACHINE LEARNING 17

For all groups tested, the random forest classifier performed better than a single
decision tree, and again information gain resulted in the most accurate classifica-
tion. Limiting the depth of the tree (or trees in the case of random forests) to
log2N − 1, where N is the total number of samples, slightly improved the results
when using Gini impurity as the splitting criterion, but did not do so when using
information gain.

The generalization error for random forests approaches zero as additional trees are
included in the forest. For example, the table below lists the classification accuracy
for random forest classifiers on the group O ⋊ U34 with different numbers of trees.
Note the diminishing marginal increases in accuracy as the number of trees increases
(as this is a stochastic process, increases in accuracy are not strictly monotonic):

Trees Accuracy

10 98.89%
15 99.17%
20 99.07%
30 99.20%
50 99.31%
100 99.39%
200 99.41%

Table 5. Accuracy of Random Forest Classifiers for O ⋊ U34 with
Increasingly Large Forests

5.5.2. NTNNs.
Table 6 below displays the accuracy of the best performing NTNN classifiers for

each group. The table indicates the total number of patterns M and pattern size P
used with each classifier. The decision criterion used for each classifier is recorded
in parentheses to the right of the accuracy entry, with (Σ) indicating that voting
majority was used, while (log) indicating that logarithm voting majority was used
instead.

Group M P Accuracy

BS(1,2) 30 4 92.41% (log)
O ⋊ U14 20 3 98.77% (log)
O ⋊ U16 20 5 98.46% (Σ)
O ⋊ U34 100 3 99.50% (log)

GMBS(2,3) 30 4 96.13% (Σ)
SL(2,Z) 50 4 99.81% (log)

Table 6. Best Performing NTNN Classifiers for All Groups

For the group BS(1,2), the use of the feature vector c2 produced a marked im-
provement in accuracy as compared to c0. The accuracy of the NTNN classifier
depicted in Table 6 above uses c2. We ran the full array of tests over all (M,P)
pairs for c2, but ran only three additional tests using the c4 feature vector, as in
these initial tests we did not see any improvement in the performance of the NTNN

18 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

classifier as compared to using c2.

The NTNN classifier for SL(2,Z) depicted in Table 6 was not only the best per-
forming NTNN classifier but the best performing classifier for any model and group
tested. The feature vector used for this classifier was also c2, which is of dimension
40 as compared to 48 for BS(1,2).

The classifiers for the remaining groups utilized the feature vector c0. All NTNN
classifiers for the O ⋊ UH groups had accuracies above 98%. The classifier for
GMBS(2,3), with an accuracy above 96%, performed better than that for BS(1,2)
but worse than those for the other test groups.

5.5.3. Accuracy with Respect to Word Length.
The length of a word with respect to a generating set is a crucial measurement

throughout group theory. Word length, rather than bit length, is the standard input
size parameter for group-theoretic algorithms. The growth rate of a group, which
depends on word length, can determine algebraic properties such as nilpotency. Re-
call that in non-commutatively cryptography, the word length corresponds to key
size. Thus, it is important to consider how well our system performs with respect
to the word length.

In analyzing the performance of our classifiers, we looked for a length threshold
L that would provide the greatest difference in accuracy between words below and
above this demarcation. To calculate L for each group, we first calculated the
accuracy of the best performing NTNN classifier for each length and class over the
verification dataset Sv. We then determined the inflection points in this data via
second order finite differences. The threshold L was then set to the length that
resulted in the greatest difference in accuracy. The results for each class and group
are listed in the table below:

Accuracy
Group Class L |w| < L |w| ≥ L

BS(1,2)
Conjugate 16 30.00% 88.82%

Non-Conjugate 14 84.44% 96.75%

O ⋊ U14
Conjugate 10 94.00% 99.98%

Non-Conjugate 11 80.00% 97.69%

O ⋊ U16
Conjugate 7 95.00% 99.51%

Non-Conjugate 21 86.25% 97.59%

O ⋊ U34
Conjugate 7 55.00% 99.23%

Non-Conjugate 36 97.74% 99.93%

GMBS(2,3)
Conjugate 17 88.33% 97.48%

Non-Conjugate 9 100% 94.86%

SL(2,Z)
Conjugate 17 90.83% 99.98%

Non-Conjugate 7 90.00% 99.77%
Table 7. Accuracy with Respect to Word Length and Class for
Tested Groups

SOLVING THE CDP VIA MACHINE LEARNING 19

From the above table one can readily observe that classification is more accurate
on longer words than shorter ones, with the only exception being the non-conjugate
elements of GMBS(2,3). For BS(1,2) the classifier performed very poorly on short
conjugate pairs. For the non-virtually nilpotent polycyclic groups, conjugate pair
accuracy was over 99% for words of length greater than 10, while for non-conjugate
pairs the length threshold required to achieve this performance level increased along
with Hirsch length. The SL(2,Z) classifier performed very well in both classes with
words greater than 17 in length.

5.5.4. Accuracy with Respect to Class.
By examining the confusion matrices for the best classifier for each group, we can

observe the accuracy for each class of elements in our data set. The accuracies
depicted in the table below are for the best performing NTNN classifier for each
group, which, with the exception of BS(1,2), is the best performing classifier for all
groups. All classifiers achieved higher accuracy on the class of conjugate elements
than the class of non-conjugate elements, with the exception of BS(1,2), which in
addition had the lowest accuracy results of all groups tested.

Accuracy by Class
Group Conjugate Non-Conjugate
BS(1,2) 88.17% 96.64%
O ⋊ U14 99.95% 97.58%
O ⋊ U16 99.50% 97.41%
O ⋊ U34 99.14% 99.86%

GMBS(2,3) 97.37% 94.88%
SL(2,Z) 99.87% 99.75%

Table 8. Accuracy by Class for Tested Groups

5.5.5. Accuracy on Different Data Collections. All of the previous experimental re-
sults and analysis were performed on models trained and optimized for each group
G over the original data collection D0(G). Recall from section 5.3 that we gener-
ated additional data sets D1(G), D2(G), and D3(G) with increasingly varied word
lengths to verify that our experimental results were not due to the particular word
lengths we chose to use in our original experiments.

. For each data collection new models were trained and optimized for each group.
For the new NTNN models we used the number of patterns M and pattern size P
of the best performing NTNN model for each group as indicated in Table 6. The
table below depicts the results of testing the various models on the different data
collections (see Table 2 on page 12 for the composition of each data collection). For
brevity, we include the accuracy and type of the single best performing model for
each group and data collection. Despite the changes in word lengths within each
data collection classification accuracy was maintained.

20 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

Data Collection

Group D0 D1 D2 D3

BS(1,2) 93.64% (Fe) 93.20% (Fg) 95.30% (Fe) 98.86% (Fe)
O ⋊ U14 98.77% (Nl) 98.67% (Fed) 98.38% (Fed) 99.75% (Nl)
O ⋊ U16 98.46% (Ns) 97.24% (Fed) 96.65% (Fed) 99.11% (Fg)
O ⋊ U34 99.50% (Nl) 98.72% (Fed) 98.28% (Fed) 99.29% (Nl)

GMBS(2,3) 96.49% (Fe) 95.22% (Fe) 96.45% (Ns) 99.13% (Fgd)
SL(2,Z) 99.81% (Nl) 99.91% (Fg) 93.89% (Fe) 97.38% (Fg)
Table 9. Best Performing Classifiers By Data Collection - The
model for each group and data collection is denoted in parentheses
next to its accuracy as follows: Random (F)orest using (e)ntropy
or (g)ini coefficient, with (d) indicating a tree depth limit; (N)TNN
using voting majority (s) or log voting majority (l).

6. Conclusion

In conclusion, we have shown how the pattern recognition techniques for free groups
developed in [12] can be extended to non-free groups. We demonstrated that the
conjugacy decision problem in a variety of groups can be solved with very high accu-
racy using random forests and N -tuple neural networks. For the group BS(1,2) the
random forest classifier performed the best, while for all other groups the NTNN
classifiers were the most accurate. The NTNN classifier for SL(2,Z) was the best
performing one for any model and group, with an overall accuracy of over 99.8%.

As suggested in [12], the successful application of pattern recognition techniques to
group-theoretic problems can provide experimental evidence for new conjectures in
group theory. The decisions made by the decision trees and n-tuple neural network
models used in this paper are readily interpretable, thus enabling a computational
group theorist to link the results in the model back to their corresponding algebraic
inputs.

We have in fact such a potential conjecture at hand. From the high accuracy of
the classifiers across the tested groups it is apparent that there is some underlying
mathematical relationship with respect to conjugacy that is responsible for the
classifiers’ performance. We will perform further analysis on the best performing
classifiers to tease out what exactly this mathematical relationship is; a forthcoming
paper will bring these additional results to light.

Acknowledgements

We would like to thank Benjamin Fine and Vladimir Shpilrain for their helpful
suggestions throughout the development of this work. We would also like to thank
the reviewers for their constructive questions, comments, and corrections. Delaram
Kahrobaei is partially supported by a PSC-CUNY grant from the CUNY Research
Foundation, the City Tech Foundation, and ONR (Office of Naval Research) grants
N000141210758 and N00014-15-1-2164.

SOLVING THE CDP VIA MACHINE LEARNING 21

References

[1] GAP – Groups, Algorithms, and Programming, Version 4.8.5. http://www.gap-system.org,
2016.

[2] Woodrow W. Bledsoe and Iben Browning. Pattern recognition and reading by machine. In
Papers presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer con-

ference, pages 225–232. ACM, 1959.
[3] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[4] Keith Conrad. SL(2,Z). http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/SL(2,Z).pdf .

[5] Max Dehn. Über unendliche diskontinuierliche gruppen. Mathematische Annalen, 71(1):116–
144, 1911.

[6] Bettina Eick, Werner Nickel, and Max Horn. Polycyclic, computation with polycyclic groups,
Version 2.11. http://www.icm.tu-bs.de/ag_algebra/software/polycyclic/, Mar 2013. Ref-
ereed GAP package.

[7] David Epstein and Derek Holt. The linearity of the conjugacy problem in word-hyperbolic
groups. International Journal of Algebra and Computation, 16(02):287–305, 2006.

[8] David Garber, Delaram Kahrobaei, and Ha T. Lam. Length-based attack for polycyclic
groups. Journal of Mathematical Cryptology, De Gruyter, pages 33–44, 2015.

[9] Jonathan Gryak and Delaram Kahrobaei. The status of polycyclic group-based cryptography:
A survey and open problems. Groups Complexity Cryptology, 8(2):171–186, 2016.

[10] Jonathan Gryak, Delaram Kahrobaei, and Conchita Martinez-Perez. On the conjugacy prob-
lem in certain metabelian groups. arXiv preprint arXiv:1610.06503, 2016.

[11] Robert Haralick. N-tuple method. University Lecture, 2015.
[12] Robert Haralick, Alex D. Miasnikov, and Alexei G. Myasnikov. Pattern recognition ap-

proaches to solving combinatorial problems in free groups. Computational and Experimental

Group Theory: AMS-ASL Joint Special Session, Interactions Between Logic, Group Theory,

and Computer Science, January 15-16, 2003, Baltimore, Maryland, 349:197–213, 2004.
[13] Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational group

theory. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC,
Boca Raton, FL, 2005.

[14] Ilya Kapovich, Alexei G. Myasnikov, Paul Schupp, and Vladimir Shpilrain. Generic-case com-
plexity, decision problems in group theory, and random walks. Journal of Algebra, 264(2):665–
694, 2003.

[15] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. Compu-

tational Problems in Abstract Algebra, pages 263–297, 1970.
[16] Aleksander Ko lcz and Nigel M. Allinson. Application of the CMAC input encoding scheme

in the N-tuple approximation network. IEE Proceedings-Computers and Digital Techniques,
141(3):177–183, 1994.

[17] Aleksander Ko lcz and Nigel M. Allinson. N-tuple regression network. Neural networks,
9(5):855–869, 1996.

[18] Igor Lysenok, Alexei G. Myasnikov, and Alexander Ushakov. The conjugacy problem in the
Grigorchuk group is polynomial time decidable. Groups, Geometry, and Dynamics, 4(4):813–
833, 2010.

[19] John Milnor. Growth of finitely generated solvable groups. J. Differential Geom., 2(4):447–
449, 1968.

[20] Alexei G. Myasnikov, Vladimir Shpilrain, Alexander Ushakov, and Natalia Mosina. Non-

commutative cryptography and complexity of group-theoretic problems, volume 177. American
Mathematical Society Providence, RI, USA, 2011.

[21] Petr Sergeevich Novikov. On the algorithmic unsolvability of the word problem in group
theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, 44:3–143, 1955.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12:2825–2830, 2011.
[23] Emil L Post. Recursive unsolvability of a problem of thue. The Journal of Symbolic Logic,

12(1):1–11, 1947.
[24] Richard Rohwer and Michal Morciniec. The theoretical and experimental status of the n-tuple

classifier. Neural Networks, 11(1):1–14, 1998.

http://www.gap-system.org
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/SL(2,Z).pdf
http://www.icm.tu-bs.de/ag_algebra/software/polycyclic/
http://arxiv.org/abs/1610.06503

22 J. GRYAK, R. HARALICK, AND D. KAHROBAEI

[25] Vladimir Shpilrain. Randomness and complexity in matrix groups.
http://www.sci.ccny.cuny.edu/~shpil/matrix_complex.pdf, 2017.

[26] Graham D. Tattersall, S. Foster, and Robert D. Johnston. Single-layer lookup perceptrons.
In IEE Proceedings F-Radar and Signal Processing, volume 138, pages 46–54. IET, 1991.

[27] Armin Weiß. A logspace solution to the word and conjugacy problem of generalized baumslag-
solitar groups. Algebra and Computer Science, 677:185, 2016.

[28] Joseph A. Wolf. Growth of finitely generated solvable groups and curvature of Riemannian
manifolds. Journal of Differential Geometry, pages 421–446, 1968.

Jonathan Gryak, CUNY Graduate Center, PhD Program in Computer Science, City

University of New York

E-mail address: jgryak@gradcenter.cuny.edu

Robert M. Haralick, CUNY Graduate Center, PhD Program in Computer Science,

City University of New York

E-mail address: rharalick@gc.cuny.edu

Delaram Kahrobaei, CUNY Graduate Center, PhD Program in Computer Science

and NYCCT, Mathematics Department, City University of New York

E-mail address: dkahrobaei@gc.cuny.edu

http://www.sci.ccny.cuny.edu/~shpil/matrix_complex.pdf

	1. Introduction
	2. Related Work
	3. Feature Extraction in Non-Free Groups
	4. Model Selection and Other System Components
	4.1. Model Selection
	4.2. Data Generation
	4.3. Evaluation

	5. A Machine Learning Approach to the Conjugacy Decision Problem
	5.1. Feature Extraction
	5.2. Model Selection
	5.3. Data Generation
	5.4. Test Groups
	5.5. Experimental Results

	6. Conclusion
	Acknowledgements
	References

