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1 Introduction

1.1 Background and summary

For each continuous location-scale family of distributions with square-integrable density

there is a probability density quantile (pdQ) which is an absolutely continuous distribu-

tion on the unit interval. Members of the class of such pdQs differ only in shape, and

the asymmetry of their shapes can be partially ordered by their Hellinger distances or

Kullback-Leibler divergences from the class of symmetric distributions on this interval. In

addition, the tail behaviour of the original family can be described in terms of the boundary

derivatives of its pdQ. Empirical estimators of the pdQs enable one to carry out inference,

such as fitting shape parameter families to data; details are in Staudte (2017).

The Kullback-Leibler directed divergence and symmetrized divergence (KLD) of a pdQ

with respect to the uniform distribution on [0,1] is investigated in Section 1.2, with re-

markably simple numerical results, and a map of these divergences for some standard

location-scale families is constructed. The ‘shapeless’ uniform distribution is the center

of the pdQ universe, as is explained in Section 2, where it is found to be a fixed point.

We then investigate the convergence to uniformity of repeated applications of the pdQ

transformation, by means of fixed point theorems for a semi-metric. In Section 3 power

functions of hypothesis tests of uniformity against specified alternative shapes are shown to

be dependent on the symmetrized Kullback-Leibler divergence. Further ideas are discussed

in Section 4.

1.2 Definitions and divergence map

Let F denote the class of cumulative distribution functions (cdf s) on the real line and for

each F ∈ F define the associated quantile function of F by Q(u) = inf{x : F (x) ≥ u},

for 0 < u < 1. When the random variable X has cdf F , we write X ∼ F . When the

density function f = F ′ exists, we also write X ∼ f or f ∼ F . We only discuss F

absolutely continuous with respect to Lebesgue measure, but the results can be extended

to the discrete and mixture cases using suitable dominating measures.

Definition 1.1 Let F ′ = {F ∈ F : f = F ′ exists and is positive}. For each F ∈ F ′ we

follow Parzen (1979) and define the quantile density function q(u) = Q′(u) = 1/f(Q(u)).

He called its reciprocal fQ(u) = f(Q(u)) the density quantile function. For F ∈ F ′, and

U uniformly distributed on [0,1], assume κ = E[fQ(U)] =
∫
f2(x) dx is finite; that is, f
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is square integrable. Then we can define the continuous pdQ of F by f∗(u) = fQ(u)/κ,

0 < u < 1. Let F ′∗ ⊂ F ′ denote the class of all such F .

Not all f are square-integrable, and this requirement for the mapping f → f∗ means

that F ′∗ is a proper subset of F ′. The advantages of working with f∗s over fs are that they

are free of location and scale parameters, they ignore flat spots in F and have a common

bounded support. Moreover, f∗ often has a simpler formula than f ; see Table 1.

Next we evaluate and plot the Kullback & Leibler (1951) divergences from uniformity.

The Kullback & Leibler (1951) divergence of density f1 from density f2, when both have do-

main [0,1], is defined as I(f1 : f2) :=
∫ 1
0 ln(f1(u)/f2(u))f1(u) du = E[ln(f1(U)/f2(U))f1(U)],

where U denotes a random variable with the uniform distribution U on [0,1]. The diver-

gences from uniformity are easily computed through I(U : f∗) = −
∫ 1
0 ln(f∗(u)) du =

−E[ln(f∗(U))] and I(f∗ : U) =
∫ 1
0 ln(f∗(u)) f∗(u) du = E[ln(f∗(U)) f∗(U)]. (Kullback,

1968, p. 6) interprets I(f∗ : U) as the mean evidence in one observation V ∼ f∗ for

f∗ over U ; it is also known as the relative entropy of f∗ with respect to U . In Ta-

ble 1 are shown the quantile functions of some standard distributions, along with their

pdQs, associated divergences I(U : f∗), I(f∗ : U) and symmetrized divergence (KLD)

J(U , f∗) := I(U : f∗) + I(f∗ : U).

Definition 1.2 Given pdQs f∗1 , f∗2 , let d(f∗1 , f
∗
2 ) :=

√
I(f∗1 : f∗2 ) + I(f∗2 : f∗1 ). Then d is

a semi-metric on the space of pdQs; i.e., d satisfies all requirements of a metric except

the triangle inequality. Introducing the coordinates (s1, s2) = (
√
I(f∗ : U) ,

√
I(U : f∗)),

we can define the distance from uniformity of any f∗ by the Euclidean distance of (s1, s2)

from the origin (0, 0), namely d(U , f∗).

Remark This d does not satisfy the triangle inequality: for example, if U , N and C

denote the uniform, normal and Cauchy pdQs, then d(U ,N ) = 0.5, d(N , C) = 0.4681 but

d(U , C) = 1. However, d can provide an informative measure of distance from uniformity.

In Figure 1 are shown the loci of points (s1, s2) for some continuous shape families. The

light dotted arcs with radii 1/2, 1 and 2 are a guide to these distances from uniformity.

The large discs in purple, red and black correspond to U , N and C. The blue cross at

distance 1/
√

2 from the origin corresponds to the exponential distribution. Nearby is the

standard lognormal point marked by a red cross. The upper red curve is nearly straight

and is the locus of points corresponding to the lognormal shape family.

The Chi-squared(ν), ν > 1, family also appears as a red curve; it passes through the blue

cross when ν = 2, as expected, and heads toward the normal disc as ν →∞. The Gamma
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Figure 1: Divergence from uniformity. The loci of points (s1, s2) = (
√
I∗(U : f) ,

√
I∗(f : U) ) is shown for

various standard families. The large disks correspond respectively to the symmetric families: uniform (purple),

normal (red) and Cauchy (black). The crosses correspond to the asymmetric distributions: exponential (blue)

and standard lognormal (red). More details are given in Section 1.2.

family has the same locus of points as the Chi-squared family. The curve for the Weibull(β)

family, for 0.5 < β < 3, is shown in blue; it crosses the exponential blue cross when β = 1.

The Pareto(a) curve is shown in black. As a increases from 0, this line crosses the arcs

distant 2 and 1 from the origin for a = (2
√

2 + 1)/7 ≈ 0.547 and a = (
√

5 − 1)/2 ≈ 1.618,

respectively, and approaches the exponential blue cross as a→∞.

The Power(b) or Beta(b, 1) for b > 1/2 family is represented by the magenta curve of

points moving toward the origin as b increases from 1/2 to 1, and then moving out towards

the exponential blue cross as b→∞. For each choice of α > 0.5, β > 0.5 the locus of the

Beta(α, β) pdQ divergences lies below the chi-squared upper red curve and mostly above

the power(b) magenta curve; however, the U-shaped Beta distributions have loci below it.

The upper green line near the Pareto black curve gives the loci of root-divergences from

uniformity of the Tukey(λ) with λ < 1, while the lower green curve corresponds to λ ≥ 1.

It is known that the Tukey(λ) distributions, with λ < 1/7, are good approximations to

Student’s t distributions for ν > 0 provided λ is chosen properly. The same is true for their
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corresponding pdQs (Staudte, 2017, Sec.3.2). For example, the pdQ of tν with ν = 0.24

degrees of freedom is well approximated by the choice λ = −4.063. Its location is marked

by the small black disk in Figure 1; it is distant 2 from uniformity. The generalized Tukey

distributions of Freimer et al. (1988) with two shape parameters also fill a large funnel

shaped region (not marked on the map) emanating from the origin and just including the

region bounded by the green curves of the Tukey symmetric distributions.

2 Convergence of density shapes to uniformity via

fixed point theorems

The transformation f → f∗ of Definition 1.1 is quite powerful, removing location and

scale and moving the distribution from the support of f to the unit interval. Examples

suggest that another application of the transformation f2∗ := (f∗)∗ leaves less information

about f in f2∗ and hence it is closer to the uniform density. Further, with n iterations

f (n+1)∗ := (fn∗)∗ for n ≥ 2, we would expect that fn∗ converges to the uniform density

as n → ∞. An R script Team (2008) for finding repeated ∗-iterates of a given pdQ is

available as Supplementary Online Material.

2.1 Conditions for convergence to uniformity

Definition 2.1 Given f ∈ F ′, we say that f is of ∗-order n if f∗, f2∗, . . . , fn∗ exist but

f (n+1)∗ does not. When the infinite sequence {fn∗}n≥1 exists, it is said to be of infinite

∗-order.

For example, the Power(3/4) family is of ∗-order 2, while the Power(2) family is of infinite

∗-order. The χ2
ν distribution is of finite ∗-order for 1 < ν < 2 and infinite ∗-order for ν ≥ 2.

The normal distribution is of infinite ∗-order.

We write µn :=
∫∞
−∞{f(y)}n dy, κn =

∫ 1
0 {f

n∗(x)}2 dx, n ≥ 1, and κ0 =
∫∞
−∞{f(x)}2 dx.

The next proposition characterises the property of infinite ∗-order.

Proposition 2.2 For f ∈ F ′ and m ≥ 1, the following statements are equivalent:

(i) µm+2 <∞;

(ii) µj <∞ for all 1 ≤ j ≤ m+ 2;

(iii) κj <∞ and κj =
µjµj+2

µ2j+1
for all 1 ≤ j ≤ m.
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In particular, f is of infinite ∗-order if and only if µn <∞, n ≥ 1.

Proof of Proposition 2.2: For each i, n ≥ 1, provided all terms below are finite, we

have the following recursive formula

νn,i :=

∫
{fn∗(x)}i dx =

1

κin−1
νn−1,i+1, (1)

giving

κn =
1∏n−1

j=0 κ
n+1−j
j

µn+2. (2)

(i) ⇒ (ii) For 1 ≤ j ≤ m+ 2,

µj =

∫ ∞
−∞
{f(x)}j1{f(x)>1}dx+

∫ ∞
−∞
{f(x)}j1{f(x)≤1}dx

≤
∫ ∞
−∞
{f(x)}m+2dx+

∫ ∞
−∞

f(x)dx = µm+2 + 1 <∞.

(ii) ⇒ (iii) Use (2) and proceed with induction for 1 ≤ n ≤ m.

(iii) ⇒ (i) By Definition 1.1, κ1 < ∞ means that κ0 < ∞. Hence (i) follows from (2)

with n = m.

Next we investigate the involutionary nature of the ∗-transformation.

Proposition 2.3 Let f∗ be a pdQ and assume f2∗ exists. Then f∗ ∼ U if and only if

f2∗ ∼ U .

Proof of Proposition 2.3: For r > 0, we have∫ 1

0
|f2∗(u)− 1|r du =

1

κr1

∫ 1

0
|f∗(x)− κ1|rf∗(x) dx. (3)

If f∗(u) ∼ U , then κ1 = 1 and (3) ensures
∫ 1
0 |f

2∗(u)− 1|rdu = 0, so f2∗(u) ∼ U .

Conversely, if f2∗(u) ∼ U , then using (3) again gives
∫ 1
0 |f

∗(x)−κ1|rf∗(x) dx = 0. Since

f∗(x) > 0 a.s., we have f∗(x) = κ1 a.s. and this can only happen when κ1 = 1. Thus

f∗ ∼ U , as required. .

Proposition 2.3 shows that the uniform distribution is a fixed point in the Banach space

of integrable functions on [0,1] with the Lr norm for any r > 0. It remains to show fn∗ has

a limit and that the limit is the uniform distribution. It was hoped the classical machinery

for convergence in Banach spaces (Luenberger, 1969, Ch.10) would prove useful in this

regard, but the *-mapping is not a contraction. For this reason, although there are many

studies of fixed point theory in metric and semi-metric spaces (see, e.g., Bessenyei & Páles
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(2017) and references therein), the fixed point Theorems 2.4, 2.5 and 2.6 shown below do

not seem to be covered in these general studies. For simplicity, we use
Lr−→ to stand for the

convergence in Lr norm and
P−→ for convergence in probability as n→∞.

Theorem 2.4 For f ∈ F ′ with infinite ∗-order, the following statements are equivalent:

(i) fn∗
L2−→ 1;

(ii) For all r > 0, fn∗
Lr−→ 1;

(iii) µnµn+2

µ2n+1
→ 1 as n→∞.

Remark Notice that µn = E
{
f∗(U)n−1

}
, n ≥ 1, are the moments of the random vari-

able f∗(U) with U ∼ U , Theorem 2.4 says that the convergence of {fn∗ : n ≥ 1} is

purely determined by the moments of f∗(U). This is rather puzzling because it is well

known that the moments do not uniquely determine the distribution (Feller, 1971, p. 227),

meaning that different distributions with the same moments have the same converging

behaviour. However, if f is bounded, then f∗(U) is a bounded random variable so its

moments uniquely specify its distribution (Feller, 1971, pp. 225–226), leading to stronger

results in Theorem 2.5.

Proof of Theorem 2.4: It is obvious that (ii) implies (i).

(i) ⇒ (iii): By Proposition 2.2, κn = µnµn+2

µ2n+1
. Now

∫ 1

0
{fn∗(x)− 1}2 dx = κn − 1, (4)

so (iii) follows immediately.

(iii) ⇒ (ii): It suffices to show that fn∗
Lr−→ 1 for any integer r ≥ 4. To this end, since

for a, b ≥ 0, |a− b|r−2 ≤ ar−2 + br−2, we have from (4) that∫ 1

0
|fn∗(x)− 1|rdx ≤

∫ 1

0
(fn∗(x)− 1)2(fn∗(x)r−2 + 1)dx = νn,r− 2νn,r−1 + νn,r−2 +κn− 1,

(5)

where, as before, νn,r =
∫ 1
0 {f

n∗(x)}rdx. However, applying (1) gives

νn,r =
µn+r

κrn−1κ
r+1
n−2 . . . κ

n+r−1
0

and (2) ensures

µn+r = κn+r−2κ
2
n+r−3 . . . κ

n+r−1
0 ,

which imply

νn,r = κn+r−2κ
2
n+r−3 . . . κ

r−1
n → 1
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as n → ∞. Hence, it follows from (5) that
∫ 1
0 |f

n∗(x) − 1|rdx → 0 as n → ∞, completing

the proof.

We write ‖g‖ = supx |g(x)| for each bounded function g.

Theorem 2.5 If f is bounded, then

(i) for all n ≥ 0, ‖f (n+1)∗‖ ≤ ‖fn∗‖ and the inequality becomes equality if and only if

fn∗ ∼ U ;

(ii) fn∗
Lr−→ 1 for all r > 0.

Proof of Theorem 2.5: It follows from (4) that κn ≥ 1 and the inequality becomes

equality if and only if fn∗ ∼ U .

(i) LetQn∗ be the inverse of the cumulative distribution function of fn∗, then f (n+1)∗(u) =

fn∗(Qn∗(u))
κn

≤ ‖fn∗‖
κn

, giving ‖f (n+1)∗‖ ≤ ‖fn∗‖
κn
≤ ‖fn∗‖. If fn∗ ∼ U , then Proposition 2.3

ensures that f (n+1)∗ ∼ U , so ‖f (n+1)∗‖ = ‖fn∗‖. Conversely, if ‖f (n+1)∗‖ = ‖fn∗‖, then

κn = 1, so fn∗ ∼ U .

(ii) It remains to show that κn → 1 as n → ∞. In fact, if κn 6→ 1, since κn ≥ 1, there

exist a δ > 0 and a subsequence {nk} such that κnk
≥ 1 + δ, which implies

µnk+2

µnk+1
=

nk∏
i=0

κi ≥ (1 + δ)k →∞ as k →∞. (6)

However,
µnk+2

µnk+1
≤ ‖f‖ <∞, which contradicts (6).

Theorem 2.6 For f ∈ F ′ with infinite ∗-order such that {µnµn+2µ
−2
n+1 : n ≥ 1} is a

bounded sequence, then the following statements are equivalent:

(i*) fn∗
P−→ 1;

(ii) For all r > 0, fn∗
Lr−→ 1;

(iii) µnµn+2µ
−2
n+1 → 1 as n→∞.

Proof of Theorem 2.6: It suffices to show that (i*) implies (iii). Recall that κn =

µnµn+2µ
−2
n+1, for each subsequence {κnk

}, there exists a converging sub-subsequence {κnki
}

such that κnki
→ b as i → ∞. It remains to show that b = 1. To this end, for δ > 1, we

have ∫ 1

0

∣∣∣f (nki
+1)∗(x)− 1

∣∣∣1{∣∣∣f (nki
+1)∗

(x)−1
∣∣∣≤δ}dx

=
1

κnki

∫ 1

0

∣∣∣f (nki
)∗(x)− κnki

∣∣∣ f (nki
)∗(x)1{∣∣∣fnki

∗
(x)−κnki

∣∣∣≤δκnki

}dx. (7)
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(i*) ensures that∣∣∣f (nki
+1)∗ − 1

∣∣∣ P−→ 0, fnki
∗
∣∣∣fnki

∗ − κnki

∣∣∣ P−→ |1− b|, 1{∣∣∣fnki
∗
(x)−κnki

∣∣∣≤δκnki

} P−→ 1

as i → ∞, so applying the bounded convergence theorem to both sides of (7) to get

0 = |1/b− 1|, i.e., b = 1.

2.2 Examples of convergence to uniformity

The main results in section 2.1 cover all the standard distributions with infinite ∗-order in

Johnson et al. (1994), Johnson et al. (1995). In fact, as observed in the Remark after

Theorem 2.4 that the convergence to uniformity is purely determined by the moments of

f∗(U) with U ∼ U , we have failed to construct a density such that {fn∗ : n ≥ 1} does not

converge to the uniform distribution. Here we give a few examples to show that the main

results in section 2.1 are indeed very convenient to use.

Example 1: Power function family.

From Table 1 the Power(b) family has density fb(x) = bxb−1, 0 < x < 1, so it is of infinite

∗-order if and only if b ≥ 1. As fb is bounded for b ≥ 1, Theorem 2.5 ensures that fn∗b

converges to the uniform in Lr for any r > 0.

Example 2: Exponential distribution.

Suppose f(x) = ex, x < 0. f is bounded, so Theorem 2.5 says that fn∗ converges to the

uniform distribution as n→∞. By symmetry, the same result holds for f(x) = e−x, x > 0.

Example 3: Pareto distribution.

The Pareto(a) family, with a > 0, has fa(x) = ax−a−1 for x > 1, which is bounded, so

an application of Theorem 2.5 yields that the sequence {fn∗a }n≥1 converges to the uniform

distribution as n→∞.

Example 4: Cauchy distribution.

The pdQ of the Cauchy density is given by f∗(u) = 2 sin2(πu), 0 < u < 1, see Table 1; it

retains the bell shape of f as shown in Figure 1. It follows that F ∗(t) = t− sin(2πt)/(2π),

for 0 < t < 1. It seems impossible to obtain an analytical form of fn∗ for n ≥ 2. However,

as f is bounded, using Theorem 2.5, we can conclude that fn∗ converges to the uniform

distribution as n→∞.
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Example 5: Normal distribution.

Although it is possible to obtain {fn∗} by induction and then derive directly that fn∗

converges to the uniform distribution as n→∞, one can easily see that the pdf is bounded

and so Theorem 2.5 can be employed to get the same conclusion.

Example 6:

Let f(x) = − lnx, x ∈ (0, 1), then µn = n! and κn = n+2
n+1 → 1 as n→∞, so we have from

Theorem 2.4 that for any r > 0, fn∗ converges in Lr norm to constant 1 as n→∞.

3 Testing for uniformity

The larger the value of d(U , f∗), the easier it should be to discriminate between U and f∗.

This is indeed the case, as we now demonstrate.

3.1 Power of tests for detecting non-uniform shapes

The connection between Kullback-Leibler divergences and the Neyman-Pearson Lemma is

well-known, see text and references in Eguchia & Copas (2006). The following material on

power functions for tests for uniformity, while contextual to comparing shapes, may prove

useful in other situations.

Given a random sample of m independent, identically distributed (i.i.d.) variables,

each from a distribution with density f , it is feasible to carry out a nonparametric test

of uniformity by estimating the pdQ with a kernel density estimator f̂∗m and comparing

it with the uniform density on [0,1] using any one of a number of metrics. Consistent

estimators f̂∗m for f∗ based on normalized reciprocals of the quantile density estimators

derived in Prendergast & Staudte (2016) are available and described in Staudte (2017,

Section 2). However an investigation into such omnibus nonparametric testing procedures,

and comparison with other kernel density based techniques in Bowman (1992); Fan (1994)

and Pavia (2015), is beyond the scope of this work.

Given the large number of tests for uniformity that are available, see text and references

in Stephens (2006), one may well ask why introduce new ones? The doyen of goodness-of-fit

testing Stephens (2006) provides the answer:

Since transformations are often used to produce a set of uniforms, it might be

appropriate to conclude with some cautionary remarks on when uniformity is
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not to be expected. This will be so, for example, when the U set is derived from

the PIT and when some parameters, unknown in the distribution, are replaced

by estimates. In this situation, even when the estimates are efficient, the U set

will be superuniform, giving much lower values of, say, EDF statistics, than if

the set were uniform; this remains so even as the sample size grows bigger.

In practice this means that if a test for uniformity is preceded by a probability integral

transformation (PIT) including parameter estimates, then the actual levels of such tests

will not be those nominated unless (often complicated and model specific) adjustments are

made. Examples are in Lockhart et al. (1986) and Schader & Schmid (1997).

In this section we study the simpler problem of testing the null hypothesis of uniformity

H0 : f∗(u) = 1 for all 0 < u < 1 (denoted U) against a specified alternative H1 : f∗ = f∗1 .

This test will give us a standard by which to judge the power of any future nonpara-

metric test when the specific alternative holds. Given a vector of X = (X1, . . . , Xm) of

i.i.d. variables from f∗, and realized values x = (x1, . . . , xm) the Neyman-Pearson (NP)

test rejects H0 in favor of H1 when the product
∏m

1 f
∗
1 (xi) is large, or equivalently, when

lx =
m∑
1

ln(f∗1 (xi)) ≥ cm,α , (8)

where cm,α is chosen to achieve level α. In general this critical point will be difficult

to determine, but for the normal pdQ alternative f∗1 (u) = 2
√
π ϕ(zu) we have: lx =

m ln(
√

2) − 1
2

∑m
1 {Φ−1(xi)}2, where ϕ is the density of the standard normal. Under the

null hypothesis
∑m

1 {Φ−1(Ui)}2 ∼ χ2
m, so an equivalent test to (8) would reject the null

hypothesis of uniformity in favor of normality when
∑m

1 {Φ−1(xi)}2 ≤ χ2
m(α). This is the

most powerful level-α test of these simple hypotheses based on m observations.

Returning to a general alternative pdQ we can find asymptotically most powerful level-

α tests based on the fact that lX is a sum of i.i.d. random variables with common mean

µ0 = E0[ln(f∗1 (U))] and variance σ20 = Var0[ln(f∗1 (U))], which we assume are finite. By

virtue of a CLT, the large-sample NP test rejects H0 at asymptotic level α when

(lx/
√
m−

√
mµ0)/σ0 ≥ z1−α . (9)

To obtain an expression for the large sample power of this test, let µ1 = E1[ln(f∗1 (X))] and

σ21 = Var1[ln(f∗1 (X))], again assumed to be finite; then the asymptotic power of the test

(9) against f∗ based on m observations is readily found to be:

Πm(f∗1 ) = Φ

(√
m

(µ1 − µ0)
σ1

+ zα
σ0
σ1

)
. (10)
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Table 1: Quantiles of some distributions, their pdQs and quantities relevant to the

asymptotic power function (10). In general, we denote xu = Q(u) = F−1(u), but for the

normal F = Φ with density ϕ, we use zu = Φ−1(u). The logistic quantile function is only defined

for u ≤ 0.5 but it is symmetric about u = 0.5. LN represents the standard lognormal distribution.

The quantile function for the Pareto is for the Type II distribution with shape a = 1, and the

pdQ is the same for Type I and Type II Pareto models.

Q(u) f∗(u) −µ0 µ1 σ0 σ1 µ1 − µ0 µ1−µ0
σ1

σ0
σ1

Normal zu 2
√
π ϕ(zu) 0.153 0.097 0.707 0.354 0.250 0.707 2.000

Logistic ln(u/(1− u)) 6u(1− u) 0.208 0.125 0.843 0.393 0.333 0.848 2.143

Laplace ln(2u), u ≤ 0.5 2 min{u, 1− u} 0.307 0.193 1.000 0.500 0.500 1.000 2.000

t2
2u−1

{2u(1−u)}1/2
27{u(1−u)}3/2

3π 0.391 0.200 1.264 0.463 0.591 1.276 2.728

Cauchy tan{π(u− 0.5)} 2 sin2(πu) 0.693 0.307 1.814 0.538 1.000 1.857 3.369

Exp. − ln(1− u) 2(1− u) 0.307 0.193 1.000 0.500 0.500 1.000 2.000

Gumbel − ln(− ln(u)) −4u ln(u) 0.191 0.116 0.803 0.381 0.307 0.806 2.109

LN ezu 2
√
π

e1/4
ϕ(zu) e−zu 0.403 0.222 1.225 0.500 0.625 1.250 2.449

Pareto (1− u)−1 3 (1− u)2 0.901 0.432 2.000 0.667 1.333 2.000 3.000

We need α, m, lx, µ0, σ
2
0 to carry out the test (9); and we also need µ1, σ

2
1 to compute the

asymptotic power (10). Notice that the distances from the origin in Figure 1 of Section 1.2

are based on the directed divergences I(U : f∗1 ) = −E0[ln(f∗1 (X))] = −µ0 and I(f∗1 : U) =

E1[ln(f∗1 (X))] = µ1, so the symmetrized divergence KLD is J(U , f∗1 ) = µ1 − µ0. Thus the

power function (10) is non-decreasing in the KLD or its square root, the distance d(U , f∗1 )

between null and alternative.

Some examples of µ0, µ1, µ1−µ0, (µ1−µ0)/σ1 and σ0/σ1 are given in Table 1. Note the

particularly simple values for the symmetrized divergence J(U , f∗1 ) = µ1−µ0. Distributions

with shapes ‘visually far’ from uniformity have large values in the two right-most columns,

so that the test will more easily detect them. For the normal alternative, the asymptotic

power (10) at level α is Πm(f∗1 ) = Φ(
√
m/2 + 2 zα), which exceeds α when m > 2z21−α.

There are other situations where the asymptotic power functions are monotone increas-

ing functions of the KLD with many one-sample examples in Kulinskaya et al. (2008, 2010,

2014), one-parameter exponential families Morgenthaler & Staudte (2012), two-sample bi-
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Figure 2: The top left plot shows the asymptotic power function for level 0.05 tests of uniformity

against alternative the Beta(b,1) pdQ when m = 25 (solid line) and m = 100 (dashed line). The plots

for the symmetric Beta distribution are on its right, with the same sample sizes; these power functions

show that it is harder to detect the symmetric ones for all b 6= 1. In the bottom two plots, the sample

sizes are much smaller, m = 9 solid lines and m = 16 dashed lines.

nomial tests Prendergast & Staudte (2014) and non-central chi-squared and non-central

F families arising in tests for equivalence Morgenthaler & Staudte (2016). This reveals a

general phenomenon but no meta-theorem containing these results is yet available.

3.2 Examples of power functions for shape families

The power functions of testing uniformity against the pdQs of four shape families, are shown

in Figure 2. The first two models, power function model Beta(b, 1) and the symmetric

Beta(b, b) model for b > 0.5 contain the null hypothesis. Their respective power functions

(10) for a level 0.05 test of uniformity based on m = 25 and 100 observations are shown in

the top two plots. Similar plots for alternatives Lognormal(σ) and Pareto(a) families are

also shown for much smaller sample sizes 9 and 16 indicating that small samples will likely

detect these alternative shapes.
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The plots in Figure 2 require the null and alternative means and variances of the test

statistic, and were obtained by numerical integration. In the case of the Beta(b,1) model

exact results are derived as follows. the quantile function is Q(b) = u1/b and for b > 1/2 its

density is square integrable, leading to the pdQ f∗1 (u) = (2 − 1
b )u

1− 1
b . The log-likelihood

for one observation X = x required in (9) is lx(b) = ln(2 − 1/b) + (1 − 1/b) ln(x). Thus

µ0(b) = E0[lX(b)] = ln(2− 1/b) + 1/b− 1 and µ1(b)−µ0(b) = (1− 1/b)2/(2− 1/b). Further

σ0(b) = {Var0[lX(b)]}1/2 = |1 − 1/b| and σ1(b) = {Var1[lX(b)]}1/2 = |1 − 1/b|/(2 − 1/b).

Hence (µ1(b)−µ0(b))/σ1(b) = |1−1/b| and σ0(b)/σ1(b) = 2−1/b. The power function (10)

is therefore Πm(f∗1 (b)) = Φ(
√
m|1− 1/b|+ (2− 1/b) zα) for b > 1/2.

4 Summary and Discussion

The pdQ transformation from a density function f to f∗ extracts the important information

of f such as its asymmetry and tail behaviour and ignores the less critical information such

as gaps, location and scale and thus provides a powerful tool in studying the distributional

shapes of density functions.

We found the directed divergences from uniformity of the pdQs of many standard

location-scale families and used them to make a map locating each shape family relative to

others and giving its distance from uniformity. We also found the most powerful tests of

uniformity against alternative shapes and showed that their power functions are monotone

increasing in the distances on the map.

In terms of the limiting behaviour of repeated applications of the pdQ mapping, when

the density function f is bounded, we showed that each application lowers its modal height

and hence the resulting density function f∗ is closer to the uniform density than f . Fur-

thermore, we established a necessary and sufficient condition for fn∗ converging in L2 norm

to the uniform density, giving a positive answer to a conjecture raised in Staudte (2017).

In particular, if f is bounded, we proved that fn∗ converges in Lr norm to the uniform

density for any r > 0. The fixed point theorems can be interpreted as follows. As we

repeatedly apply the pdQ transformation, we keep losing information about the shape of

the original f and will eventually exhaust the information, leaving nothing in the limit, as

represented by the uniform density, which means no points carry more information than

other points. Thus the pdQ transformation plays a similar role to the difference operator in

time series analysis where repeated applications of the difference operator to a time series

with polynomial component lead to a white noise with a constant power spectral density
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(Brockwell & Davis, 2009, p. 19).

We conjecture that every almost surely positive density g on [0, 1] is a pdQ of a density

function, hence uniquely represents a location-scale family. This is equivalent to saying

that there exists a density function f such that g = f∗. When g satisfies
∫ 1
0

1
g(t)dt <

∞, one can show that the cdfF of f can be uniquely (up to location-scale parameters)

represented as F (x) = H−1(H(1)x), where H(x) =
∫ x
0

1
g(t)dt (Professor A.D. Barbour,

personal communication). The condition
∫ 1
0

1
g(t)dt < ∞ is equivalent to saying that f

has bounded support and it is certainly not necessary, e.g., g(x) = 2x for x ∈ [0, 1] and

f(x) = ex for x < 0 (see Example 2 in Section 2.2).

In summary, the study of shapes of probability densities is facilitated by composing

them with their own quantile functions, which puts them on the same finite support where

they are absolutely continuous with respect to Lebesgue measure, and thus amenable to

metric and semi-metric comparisons. In addition, we showed that further applications

of this transformation, which intuitively reduces information and increases the relative

entropy, is generally valid but requires a non-standard approach for proof. Similar results

are likely to be obtainable in the multivariate case.
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