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Patch-Based Low-Rank Minimization for Image

Denoising
Haijuan Hu, Jacques Froment, Quansheng Liu

Abstract—Patch-based sparse representation and low-rank
approximation for image processing attract much attention in
recent years. The minimization of the matrix rank coupled with
the Frobenius norm data fidelity can be solved by the hard
thresholding filter with principle component analysis (PCA) or
singular value decomposition (SVD). Based on this idea, we
propose a patch-based low-rank minimization method for image
denoising, which learns compact dictionaries from similar patches
with PCA or SVD, and applies simple hard thresholding filters to
shrink the representation coefficients. Compared to recent patch-
based sparse representation methods, experiments demonstrate
that the proposed method is not only rather rapid, but also
effective for a variety of natural images, especially for texture
parts in images.

Index Terms—Image denoising, patch-based method, low-
rank minimization, principal component analysis, singular value
decomposition, hard thresholding

I. INTRODUCTION

IMAGE denoising is a classical image processing problem,

but it still remains very active nowadays with the massive

and easy production of digital images. We mention below

some important works among the vast literature which deals

with image denoising.

One category of denoising methods concerns transform-

based methods, for example [1], [2]. The main idea is to

calculate wavelet coefficients of images, shrink the coefficients

and finally reconstruct images by inverse transform. These

methods apply fixed transform dictionaries to whole images.

However, fixed dictionaries do not generally represent whole

images very well due to the complexity of natural images.

Many image details are lost while being denoised.

Another category is related to patch-based methods first

proposed in [3], which explores the non-local self-similarity of

natural images. Inspired by this “patch-based” idea, the authors

of K-SVD [4] and BM3D [5] proposed using dictionaries to

represent small local patches instead of whole images so that

sparsity of coefficients can be increased, where the dictionaries

are fixed or adaptive, and compact or overcomplete. These

methods greatly improve the traditional methods [1], [2],

leading to very good performance. Since these works many

similar methods have been proposed to improve the denoising

process, such as LPG-PCA [6], ASVD [7], PLOW [8], SAIST
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[9], NCSR [10], GLIDE [11], and WNNM [12]. However,

many proposed methods are computationally complex. For

example, K-SVD uses overcomplete dictionaries for sparse

representation, which is time-consuming. BM3D and LPG-

PCA iterate the denoising process twice; SAIST and WNNM

iterate about 10 times. The computational cost is directly

proportional to the number of iterations.

At the same time, the low-rank matrix approximation has

been widely studied and applied to image processing [13],

[14], [15]. Many low-rank models have no explicit solution.

However, the paper [13] proves that the nuclear norm mini-

mization with the Frobenius norm data fidelity can be solved

by a soft thresholding filter. (See also the paper [12] where

an alternative proof is given.) Furthermore, with the help

of Eckart-Young theorem [16], the paper [17] demonstrates

that the solution of the exact low-rank matrix minimization

problem (l0 norm) can be obtained by a hard thresholding

filter.

Inspired by the above theories, in this paper, a patch-

based low-rank minimization (PLR) method is proposed for

image denoising. First, similar patches are stacked together

to construct similarity matrices. Then each similarity matrix

is denoised by minimizing the matrix rank coupled with the

Frobenius norm data fidelity. The minimizer can be obtained

by a hard thresholding filter with principle component analysis

(PCA) or singular value decomposion (SVD). The proposed

method is rather rapid, since we use compact dictionaries

which are more computationally efficient than over-completed

dictionaries, and we do not iterate. Moreover, experiments

show that the proposed method is as good as the state-of-

the-art methods, such as K-SVD [4], BM3D [5], LPG-PCA

[6], ASVD [7], PLOW [8], SAIST [9], and WNNM [12].

The rest of the paper is organized as follows. In Section II,

we introduce our method. The experimental results are shown

in Section III. Finally, this paper is concluded in Section IV.

II. PATCH-BASED LOW-RANK MINIMIZATION

The noise model is:

v = u+ η,

where u is the original image, v is the noisy one, and η is

the Gaussian noise with mean 0 and standard deviation σ. The

images u,v,η are with size M×N . Without loss of generality,

we suppose that M = N .

http://arxiv.org/abs/1506.08353v2
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A. Proposed Algorithm

Divide the noisy image v into overlapped patches of size

d × d. Denote the set of all these patches as S = {xi : i =
1, 2, · · · , (N − d+ 1)2}.

For each patch x ∈ S, called reference patch, consider all

the overlapped patches contained in its n× n neighborhood1

(the total number of such patches is (n − d + 1)2 patches).

Then choose the m (m ≥ d2) most similar patches (including

the reference patch itself) to the reference patch among the

(n− d+ 1)2 patches. The similarity is determined by the l2-

norm distance.

Next, for each reference patch, its similar patches are

reshaped as vectors, and stacked together to form a matrix

of size d2 ×m, called similarity matrix. The similarity matrix

is denoted as S = (s1, s2, · · · , sm), where columns of S, i.e.

si, i = 1, 2, · · · ,m, are vectored similar patches. Then all the

patches in the matrix S are denoised together using the hard

thresholding method with the principal component (PC) basis,

or equivalently, with the singular value decomposition (SVD)

basis derived from the matrix S; the detailed process will be

given afterward. For convenience, we assume that the mean

of the patches in S, denoted by sc := 1

m

∑m

l=1
sl, is 0. In

practice, we subtract sc from si to form the matrix S, and

add sc to the final estimation s̄l of each patch.

Since the patches are overlapped, every pixel is finally

estimated as the average of repeated estimates.

The process of denoising the matrix S is shown as follows.

Firstly, we derive adaptive basis using PCA. The PC basis

is the set of the eigenvectors of SST . Write the eigenvalue

decomposition2

SST = PΛP−1 (1)

with

P = (g
1
, g

2
, · · · , gd2),Λ = diag(mλ2

1
,mλ2

2
, · · · ,mλ2

d2),

where gi denotes the i-th column of P and diag(c1, c2, · · · )
denotes the diagonal matrix with (c1, c2, · · · ) on the diagonal.

The PC basis is the set of the columns of P , that is,

{g
1
, g

2
, · · · , gd2}.

The original patches si in the similarity matrix S are

estimated as follows:

s̄l =

d2

∑

k=1

ak〈sl, gk〉gk, l = 1, 2, · · · ,m (2)

where

ak =

{

1 if λ2

k > t2,

0 otherwise,
(3)

t being the threshold. Or equivalently, the matrix composed

of estimated patches (2) can be written as

S̄ := (s̄1, s̄2, · · · , s̄m) = Ph(Λ)P−1S, (4)

with

h(Λ) = diag(a1, a2, · · · , ad2). (5)

1The reference patch is located at the center of the neighborhood, if the
parities of d and n are the same; otherwise, the reference patch is located as
near as possible to the center of the neighborhood.

2We assume that the matrix SS
T has full rank, and it has no identical

eigenvalues, which are generally true in practice.

Note that

1

m

m
∑

l=1

(〈sl, gk〉)2 = λ2

k (6)

after a simple calculation. Thus λk can be interpreted as the

standard deviation of the basis coefficients.

We could also consider the singular value decomposition

(SVD) of S:

S = PΣQT , (7)

where P is chosen as the same orthogonal matrix in (1), Σ

is a diagonal matrix, and Q (of size m × d2) has orthogonal

columns such that QTQ = I with I the identity matrix. Then

the denoised matrix (4) is equal to

Ŝ := PHt
√

m(Σ)QT , (8)

where Ht
√

m(Σ) is a diagonal matrix, with the diagonal of

Ht
√

m(Σ) obtained by the hard thresholding operator

Ht
√

m(Σ)kk =

{

Σkk if Σkk > t
√
m,

0 otherwise,
k = 1, 2, · · · , d2.

(9)

In fact, the equality of (4) and (8) can be demonstrated as

follows. By the equations (1) and (7), we have Λ = Σ
2, and

P−1S = Σ QT . Furthermore, by the equations (5) and (9),

we get h(Λ)Σ = Ht
√

m(Σ). Thus it follows that S̄ = Ŝ.

B. Low-Rank Minimization

Theorem 2.1 stated below is an unconstrained version of the

Eckart-Young theorem [16], and comes from Theorem 2(ii) in

[17]. According to Theorem 2.1, it easily follows that

Ŝ = argmin
X

‖S −X‖2F +mt2Rank(X), (10)

where the minimum is taken over all the matrices X having

the same size as S, and ‖ · ‖F is the Frobenius norm. Hence

the denoised matrix Ŝ is the solution of the exact low-rank

minimization problem.

Theorem 2.1: The following low-rank minimization prob-

lem

X̂ = argmin
X

‖Y −X‖2F + µRank(X) (11)

has the solution3

X̂ = UH√
µ(Σ)V

T , (12)

where Y = UΣV T is the SVD of Y , and H√
µ is the hard

thresholding operator

H√
µ(Σ)kk =

{

Σkk if Σkk >
√
µ,

0 otherwise.

3Strictly speaking, if none of the singular values of Y equals with
√
µ, the

solution is unique, which is generally true in practice.
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C. Choice of the Threshold

The choice of the threshold t in (3) is crucial for the

proposed algorithm. We study it by minimizing the mean

squared error of estimated values of vectored patches sl, (l =
1, 2, · · · ,m) in a similarity matrix S. Denote

sl = ul + ηl,

where ul and ηl are the vectored patches of the true image

and the noise corresponding to sl respectively.

By (2) or (4), it can be easily obtained that

‖s̄l − ul‖2 =
d2

∑

k=1

(ak − 1)2(〈gk,ul〉)2 +
d2

∑

k=1

a2k(〈gk,ηl〉)2. (13)

Assume that the PC basis {g
1
, g

2
, · · · , gd2} only depends

on the true value vectors {u1,u2, · · · ,um} and hence is

independent of {η
1
,η

2
, · · · ,ηm}. Then

E(〈gk,ηl〉)2 = σ2. (14)

Let

θ2k =
1

m

m
∑

l=1

(〈gk,ul〉)2. (15)

Then by (6), we obtain

E(λ2

k) = θ2k + σ2. (16)

Thus, from (13), (14), and (15), it follows that

1

m

m
∑

l=1

‖s̄l − ul‖2 ≈
d2

∑

k=1

(ak − 1)2θ2k + σ2

d2

∑

k=1

a2k. (17)

After a simple calculation, the optimal value for ak is

âk =

{

1 if θ2k > σ2,

0 otherwise.

Since λ2

k ≈ θ2k+σ2 by (16), the optimal value of the threshold

in (3) is t2 ≈ 2σ2. In practice, we find that t = 1.5σ is a good

choice.

III. EXPERIMENTAL RESULTS

In this section, we compare the performance of our PLR

method with those of state-of-the-art methods, including the

highly competitive method WNNM [12] proposed very re-

cently. Standard gray images are utilized to test the perfor-

mance of methods. For the simulation, the level of noise is

supposed to be known, otherwise there are methods to estimate

it; see e.g. [18]. For each image and each level of noise, all

the methods are applied to the same noisy images.

For our algorithm, the patch size is set to d = 7, the

size of neighborhoods for selecting similar patches is set to

n = 35, and the number of similar patches in a similarity

matrix is chosen as m = 5d2. Image boundaries are handled

by assuming symmetric boundary conditions. For the sake of

computational efficiency, the moving step from one reference

patch to its neighbors both horizontally and vertically is

chosen as the size of patches, that is, 7. For other comparison

algorithms, we utilize the original codes released by theirs

authors.

TABLE I
PSNR VALUES FOR REMOVING NOISE FOR OUR PLR AND OTHER

METHODS. CAM IS THE CAMERAMEN IMAGE

Image Lena Barbara Peppers Boats Bridge House Cam

σ = 10

K-SVD[4] 35.50 34.82 34.23 33.62 30.91 35.96 33.74

LPGPCA[6] 35.72 35.46 34.05 33.61 30.86 36.16 33.69

ASVD[7] 35.58 35.58 33.55 33.26 27.76 36.46 31.62

PLOW[8] 35.29 34.52 33.56 32.94 29.88 36.22 33.15

PLR 35.90 35.50 34.28 33.76 30.78 36.57 33.73

BM3D[5] 35.90 35.39 34.68 33.88 31.06 36.71 34.18

SAIST[9] 35.87 35.69 34.76 33.87 31.03 36.52 34.28

WNNM[12] 36.02 35.92 34.94 34.05 31.16 36.94 34.44

σ = 20

K-SVD[4] 32.38 31.12 30.78 30.37 27.03 33.07 30.01

LPGPCA[6] 32.61 31.69 30.50 30.26 26.84 33.10 29.77

ASVD[7] 33.21 32.96 30.56 31.79 25.51 33.53 29.33

PLOW[8] 32.70 31.48 30.52 30.36 26.56 33.56 29.59

PLR 33.03 32.12 30.90 30.64 27.20 33.36 30.12

BM3D[5] 33.03 32.07 31.28 30.85 27.14 33.77 30.48

SAIST[9] 33.07 32.43 31.28 30.78 27.20 33.80 30.40

WNNM[12] 33.10 32.49 31.53 30.98 27.29 34.01 30.75

TABLE II
RUNNING TIME IN SECOND FOR OUR PLR AND OTHER METHODS TO

REMOVE NOISE WITH IMAGES OF SIZE 256 × 256

K-SVD LPG-PCA ASVD PLOW PLR SAIST WNNM

210 138 337 43 2 25 134

In Table I, we compare the PSNR (Peak Signal-to-Noise

Ratio) values of our PLR method with other methods. The

PSNR value is defined by

PSNR (v̄) = 20 log
10

255N

‖v̄ − u‖F
dB,

where u is the original image, and v̄ the restored one. As can

be seen in Table I, our method is generally better than K-SVD

[4], LPG-PCA [6] and PLOW [8], and sometimes even better

than BM3D [5]. Furthermore, for the visual comparisons, our

method is also good. For example, as can be seen in Fig.1,

our method preserves the texture parts in Lena and Barbara

the best among all the methods.

To have a clear comparison of complexities of different

methods, we compare the average CPU time to remove noise

with σ = 20 for the testing images of size 256×256: Peppers,

House and Cameraman. All the codes are written in M-files

and run in the platform of MATLAB R2011a on a 3.40GHz

Intel Core i7 CPU processor. We do not include BM3D for

comparison since the original code of BM3D contains MEX-

files. The running time is displayed in second in Table II. The

comparisons clearly show that the proposed method is much

faster than the others.

IV. CONCLUSION

In this paper, a patch-based low-rank minimization method

for image denoising is proposed, which stacks similar patches

into similarity matrices, and denoises each similarity matrix

by seeking the minimizer of the matrix rank coupled with the

Frobenius norm data fidelity. The minimizer can be obtained

by a hard threshoding filter with principle component basis or
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Original Noisy BM3D[5] WNNM [12] PLR

Fig. 1. Compare denoised images Lena and Barbara by our method and other methods for σ = 20. From left to right, the images are original images, noisy
images, images denoised by BM3D, WNNM, and our PLR method. To make the differences clearer, the second row and the bottom row display parts of
Lena images and Barbara images extracted from the first row and third row respectively.

left singular vectors. The proposed method is not only rapid,

but also effective compared to recently reported methods.
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