
ar
X

iv
:1

71
0.

10
24

4v
3

 [
cs

.S
Y

]
 2

0
Fe

b
20

18
1

Minimal Reachability is Hard To Approximate
A. Jadbabaie, A. Olshevsky, G. J. Pappas, V. Tzoumas

Abstract—In this note, we consider the problem of choosing
which nodes of a linear dynamical system should be actuated
so that the state transfer from the system’s initial condition to
a given final state is possible. Assuming a standard complexity
hypothesis, we show that this problem cannot be efficiently solved
or approximated in polynomial, or even quasi-polynomial, time.

I. INTRODUCTION

During the last decade, researchers in systems, optimization,

and control have focused on questions such as:

• (Actuator Selection) How many nodes do we need to ac-

tuate in a gene regulatory network to control it? [1], [2]

• (Input Selection) How many inputs are needed to drive the

nodes of a power system to fully control its dynamics? [3]

• (Leader Selection) Which UAVs do we need to choose in

a multi-UAV system as leaders for the system to complete

a surveillance task despite communication noise? [4], [5]

The effort to answer such questions has resulted in numerous

papers on topics such as actuator placement for controllabil-

ity [6], [7]; actuator selection and scheduling for bounded

control effort [8]–[11]; resilient actuator placement against

failures and attacks [12], [13]; and sensor selection for target

tracking and optimal Kalman filtering [14]–[17]. In all these

papers the underlying optimization problems have been proven

(i) either polynomially-time solvable [1]–[3] (ii) or NP-hard,

in which case polynomial-time algorithms have been proposed

for their approximate solution [4]–[17].

But in systems, optimization, and control, such as in power

systems [18], [19], transportation networks [20], and neural

circuits [21], [22], the following problem also arises:

Minimal Reachability Problem. Given times t0 and t1 such

that t1 > t0, vectors x0 and x1, and a linear dynamical

system with state vector x(t) such that x(t0) = x0, find the

minimal number of system nodes we need to actuate so that

the state transfer from x(t0) = x0 to x(t1) = x1 is feasible.

For example, the stability of power systems is ensured by

placing a few generators such that the state transfers from a set

of possible initial conditions to the zero state are feasible [19].

The minimal reachability problem relaxes the objectives of

the applications in [1]–[17]. For example, in comparison to the

actuator placement problem for controllability [6], the minimal

A. Jadbabaie is with the Institute for Data, Systems, and Soci-
ety, Massachusetts Institute of Technology, Cambridge, MA 02139 USA,
jadbabai@mit.edu.

A. Olshevsky is with the Department of Electrical and Computer Engineer-
ing and the Division of Systems Engineering, Boston University, Boston, MA
02215 USA, alexols@bu.edu.

G. J. Pappas and V. Tzoumas are with the Department of Electrical and
Computer Engineering, University of Pennsylvania, Philadelphia, PA 19104
USA, pappasg@seas.upenn.edu, vtzoumas@seas.upenn.edu.

x2(t) x3(t) x4(t) · · · xn(t)

x1(t)

Fig. 1. Graphical representation of the linear system ẋ1(t) =∑n
j=2

xj(t), ẋi(t) = 0, i = 2, . . . , n; each node represents an entry

of the system’s state (x1(t), x2(t), . . . , xn(t)), where t represents time; the
edges denote that the evolution in time of x1 depends on (x2, x3, . . . , xn).

reachability problem aims to place a few actuators only to

make a single transfer between two states feasible, whereas the

minimal controllability problem aims to place a few actuators

to make the transfer among any two states feasible [6], [7].

The fact that the minimal reachability problem relaxes the

objectives of the papers [1]–[17] is an important distinction

whenever we are interested in the feasibility of only a few

state transfers by a small number of placed actuators. The

reason is that under the objective of minimal reachability the

number of placed actuators can be much smaller in comparison

to the number of placed actuators under the objective of

controllability. For example, in the system of Fig. 1 the number

of placed actuators under the objective of minimal reachability

from (0, . . . , 0) to (1, . . . , 0) is one, whereas the number of

placed actuators under the objective of controllability grows

linearly with the system’s size.

The minimal reachability problem was introduced in [23],

where it was found to be NP-hard. Similar versions of the

reachability problem were studied in the context of power

systems in [19] and [24]. For the polynomial-time solution of

the reachability problems in [19], [23], [24], greedy approxi-

mation algorithms were proposed therein. The approximation

performance of these algorithms was claimed by relying on

the modularity result [25, Lemma 8.1], which states that the

distance from a point to a subspace created by the span of a

set of vectors is supermodular in the choice of the vectors.

In this note, we first show that the modularity result [25,

Lemma 8.1] is incorrect. In particular, we show this via a

counterexample to [25, Lemma 8.1], and as a result, we prove

that the distance from a point to a subspace created by the span

of a set of vectors is non-supermodular in the choice of the

vectors. Then, we also prove the following strong intractability

result for the minimal reachability problem, which is our main

contribution in this paper:

Contribution 1. Assuming NP /∈ BPTIME(npoly log n), we

show that for each δ > 0, there is no polynomial-time

http://arxiv.org/abs/1710.10244v3

2

algorithm that can distinguish1 between the two cases where:

– the reachability problem has a solution with cardinality k;

– the reachability problem has no solution with cardinality

k2Ω(log
1−δ n), where n is the dimension of the system.

We note that the complexity hypothesis NP /∈
BPTIME(npoly log n) means there is no randomized algorithm

which, after running for O(n(log n)c) time for some constant c,
outputs correct solutions to problems in NP with probability

2/3; see [26] for more details.

Notably, Contribution 1 remains true even if we allow the

algorithm to search for an approximate solution that is relaxed

as follows: instead of choosing the actuators to make the

state transfer from the initial state x0 to a given final state x1

possible, some other state x̂1 that satisfies ‖x1 − x̂1‖22 ≤ ǫ
should be reachable from x0. This is a substantial relaxation

of the reachability problem’s objective, and yet, we show that

the intractability result of Contribution 1 still holds.

The rest of this note is organized as follows. In Sec-

tion II, we introduce formally the minimal reachability prob-

lem. In Section III, we provide a counterexample to [25,

Lemma 8.1]. In Section IV, we present Contribution 1; in Sec-

tion V, we prove it. Section VI concludes the paper.

II. MINIMAL REACHABILITY PROBLEM

In this section we formalize the minimal reachability prob-

lem. We start by introducing the systems considered in this

paper and the notions of system node and of actuated node set.

System. We consider linear systems of the form

ẋ(t) = Ax(t) +Bu(t), t ≥ t0, (1)

where t0 is a given starting time, x(t)∈ Rn is the system’s

state at time t, and u(t)∈ Rm is the system’s input vector. ◭

In this paper, we want to actuate the minimal number of

the nodes of the system in eq. (1) to make a desired state-

transfer feasible (not achieving necessarily controllability). We

formalize this objective using the following two definitions.

Definition 1 (System node). Given a system as in eq. (1),

where x(t) ∈ Rn, we let x1(t), x2(t), . . . , xn(t) ∈ R be the

components of x(t), i.e., x(t) = (x1(t), x2(t), . . . , xn(t)).
We refer to each xi(t) as a system node. ◭

Definition 2 (Actuated node set). Given a system as in eq. (1),

we say that the set S ⊆ {1, 2, . . . , n} is an actuated node set

if the system dynamics can be written as

ẋ(t) = Ax(t) + I(S)Bu(t), t ≥ t0, (2)

where I(S) is a diagonal matrix such that if i ∈ S, the i-th
entry of I(S)’s diagonal is 1, otherwise it is 0. ◭

The definition of I(S) in eq. (2) implies that the input u(t)
affects only the system nodes xi(t) where i ∈ S.

1We say that an algorithm can distinguish between two (disjoint) cases
A and B if, when fed with an input that is guaranteed to be in either A
or B, the algorithm is able to determine which of the two is the case (e.g.,
by outputing 1 if the input belongs A, and 0 if it belongs to B).

Problem 1 (Minimal Reachability). Given

• times t0 and t1 such that t1 > t0,

• vectors x0, x1 ∈ Rn, and

• a system ẋ(t) = Ax(t) + Bu(t), t ≥ t0, as in eq. (1),

with initial condition x(t0) = x0,

find an actuated node set with minimal cardinality such that

there exists an input u(t) defined over the time interval (t0, t1)
that achieves x(t1) = x1. Formally, using the notation |S| to

denote the cardinality of a set S:

minimize
S⊆{1,2,...,n}

|S|

such that there exist u : (t0, t1) 7→ Rm, x : (t0, t1) 7→ Rn with

ẋ(t) = Ax(t) + I(S)Bu(t), t ≥ t0,

x(t0) = x0, x(t1) = x1.

A special case of interest is when B is the identity matrix.

Then minimal reachability asks for the fewest system nodes to

be actuated directly so that at time t1 the state x1 is reachable

from the system’s initial condition x(t0) = x0.

III. NON-SUPERMODULARITY OF DISTANCE FROM POINT

TO SUBSPACE

In this section, we provide a counterexample to the su-

permodularity result [25, Lemma 8.1]. We begin with some

notation. In particular, given a matrix M ∈ Rn×n, a vector

v ∈ Rn, and a set S ⊂ {1, . . . , n}, let M(S) denote the

matrix obtained by throwing away columns of M not in S.

In addition, for any set S ⊂ {1, . . . , n}, we define the set

function

f(S) = dist2(v,Range(M(S))),
where dist(y,X) is the distance from a point to a subspace:

dist(y,X) = min
x∈X

||y − x||2.

We show there exist a vector v and a matrix M such that

the function f : {1, 2, . . . , n} 7→ dist2(v,Range(M(S))) is

non-supermodular. We start by defining the monotonicity and

supermodularity of set functions.

Definition 3 (Monotonicity). Consider any finite set V . The

set function f : 2V 7→ R is non-decreasing if and only if for

any A ⊆ A′ ⊆ V , we have f(A) ≤ f(A′). ◭

In words, a set function f : 2V 7→ R is non-decreasing if

and only if by adding elements in any set A ⊆ V we cannot

decrease the value of f(A).

Definition 4 (Supermodularity [27, Proposition 2.1]). Con-

sider any finite set V . The set function f : 2V 7→ R is

supermodular if and only if for any A ⊆ A′ ⊆ V and x ∈ V ,

f(A)− f(A∪ {x}) ≥ f(A′)− f(A′ ∪ {x}). ◭

In words, a set function f : 2V 7→ R is supermodular if and

only if it satisfies the following diminishing returns property:

for any element x ∈ V , the marginal decrease f(A)− f(A ∪
{x}) diminishes as the set A grows; equivalently, for any A ⊆
V and x ∈ V , f(A)− f(A∪ {x}) is non-increasing.

3

Example 1. We show that for

v =




−1
1
1


 , M =




1 0 1
1 1 0
0 0 1


 ,

the set function f : 2{1,2,3} 7→ dist2(v,Range(M(S))) is

non-supermodular. In particular, since the vector v is orthog-

onal to the first and third columns of M ,

f({1}) = dist2(v,M({1})) = ||v||22
f({1, 3}) = dist2(v,M({1, 3})) = ||v||22

Therefore,

f({1})− f({1, 3}) = 0.

At the same time, the span of the first two columns of M is

the subspace {x ∈ R3 : x3 = 0}. Thus,

f({1, 2}) = dist2(v,M({1, 2})) = 1.

Also, since the three columns of M are linearly independent,

f({1, 2, 3}) = dist2(v,M({1, 2, 3})) = 0,

and as a result,

f({1, 2})− f({1, 2, 3}) = 1.

In sum,

f({1, 2})− f({1, 2, 3}) > f({1})− f({1, 3});
hence, for the vector v and matrix M in this example, f :
2{1,2,3} 7→ dist2(v,Range(M(S))) is non-supermodular. ◭

We remark that the same argument as in Example 1 shows

that the set function g : {1, 2, . . . , n} 7→ R such that g(S) =
[dist(v,Range(M(S))]c is not supermodular for any c > 0.

IV. INAPPROXIMABILITY OF MINIMAL REACHABILITY

PROBLEM

We show that, subject to a widely believed conjecture in

complexity theory, there is no efficient algorithm that solves,

even approximately, Problem 1. Towards the statement of this

result, we next introduce a definition of approximability and

the definition of quasi-polynomial running time.

Definition 5 (Approximability). Consider the minimal reach-

ability Problem 1, and let the set S⋆ to denote one of its

optimal solutions. We say that an algorithm renders Problem 1

(∆1(n),∆2(n))-approximable if it returns a set S such that:

• there is a state x̂1 such that there is an input u(t) such that

at time t1 we have x(t1) = x̂1 and ||x̂1−x1‖2 ≤ ∆1(n);

• the cardinality of the set S is at most ∆2(n)|S⋆|. ◭

Hence, the definition of (∆1(n),∆2(n))-approximability

allows some slack both in the quality of the reachability

requirement (first point in the itemization in Definition 5), and

in the number of actuators utilized to achieve it (second point

in the itemization in Definition 5).

We introduce next the definition of quasi-polynomial algo-

rithms, using the following big O notation.

Definition 6 (Big O notation). Let N be the set of natural

numbers, and consider two functions h : N 7→ R and g : N 7→
R that take only non-negative values. The big O notation in

the equality h(n) = O(g(n)) means there exists some constant

c > 0 such that for all large enough n, it is h(n) ≤ cg(n). ◭

Definition 6, given a non-negative function g, implies that

O(g(n)) denotes the collection of non-negative functions h
that are bounded asymptotically by g, up to a constant factor.

Definition 7 (Quasi-polynomial running time). An algorithm

is quasi-polynomial if it runs in 2O[(logn)c] time, where c is a

constant. ◭

We note that any polynomial-time algorithm is a quasi-

polynomial time algorithm since nk = 2k logn. At the same

time, a quasi-polynomial algorithm is asymptotically faster

than an exponential-time algorithm, since exponential-time

algorithms run in O(2n
ǫ

) time, for some ǫ > 0.

Definition 8 (Big Omega notation). Let N be the set of natural

numbers, and consider the functions h : N 7→ R and g :
N 7→ R that take only non-negative values. The big Omega

notation in the equality h(n) = Ω(g(n)) means that there

exists some constant c > 0 such that for all large enough n,

it is h(n) ≥ cg(n). ◭

Definition 8, given a non-negative g, implies that Ω(g(n))
denotes the collection of non-negative functions h that are

lower bounded asymptotically by g, up to a constant factor.

We present next our main result in this paper.

Theorem 1 (Inapproximability). For each δ ∈ (0, 1), there is

a collection of instances of Problem 1 where:

• the initial condition is x(t0) = 0;

• the final state x1 is of the form [1, 1, . . . , 1, 0, 0, . . . , 0]⊤;

• the input matrix is B = I , where I is the identity matrix,

along with a polynomial ∆1(n) and a function ∆2(n) =

2Ω(log1−δ n), such that unless NP∈ BPTIME(npoly log n),
there is no quasi-polynomial algorithm rendering Problem 1

(∆1(n),∆2(n))-approximable.

Theorem 1 says that if NP /∈ BPTIME(npoly log n) there

is no polynomial time algorithm (or quasi-polynomial time

algorithm) that can choose which entries of the system’s x
state to actuate so that x(t1) is even approximately close to a

desired state x1 = [1, 1, . . . , 1, 0, 0, . . . , 0]⊤ at time t1.

To make sense of Theorem 1, first observe that we can

always actuate every entry of the system’s state, i.e., we can

choose S = {1, 2, . . . , n}. This means every system is (0, n)-
approximable; let us rephrase this by saying that every system

is (0, 2logn) approximate. Theorem 1 tells us that we cannot

achieve (0, 2O(log1−δ n))-approximability for any δ > 0. In

other words, improving the guarantee of the strategy that

actuates every state by just a little bit, in the sense of replacing

δ = 0 with some δ > 0, is not possible —subject to the

complexity-theoretic hypothesis NP /∈ BPTIME(npoly log n).
Furthermore, the theorem tells us it remains impossible even

if we allow ourselves some error ∆(n) in the target state, i.e.,

even (∆(n), 2O(log1−δ n))–approximability is ruled out.

4

Remark 1. In [23, Theorem 3] it is claimed that for any

ǫ > 0 the minimal reachability Problem 1 is
(
ǫ, O

(
log n

ǫ

))
-

approximable, which contradicts Theorem 1. However, the

proof of this claim was based on [25, Lemma 8.1], which

we proved incorrect in Section III. ◭

Remark 2. The minimal controllability problem [6] seeks

to place the fewest number of actuators to make the system

controllable. Theorem 1 is arguably surprising, as it was shown

in [6] that the sparsest set of actuators for controllability

can be approximated to a multiplicative factor of O(log n)
in polynomial time. By contrast, we showed in this note that

an almost exponentially worse approximation ratio cannot be

achieved for minimum reachability. ◭

V. PROOF OF INAPPROXIMABILITY OF MINIMAL

REACHABILITY

We next provide a proof of our main result, namely Theo-

rem 1. We use some standard notation throughout: 1k is the

all-ones vector in Rk, 0k is the zero vector in Rk, and ek is

the k’th standard basis vector. We begin with some standard

definitions related to the reachability space of a linear system.

A. Reachability Space for continuous-time linear systems

Definition 9 (Reachability space). Consider a system ẋ(t) =
Ax(t) + Bu(t) as in eq. (1) whose size is n. The

Range([B, AB, A2B, . . . , An−1B]) is called the reacha-

bility space of ẋ(t) = Ax(t) +Bu(t). ◭

The reason why Definition 9 is called the reachability space

is explained in the following proposition.

Proposition 1 ([28, Proof of Theorem 6.1]). Consider a system

as in eq. (1), with initial condition x0. There exists a real

input u(t) defined over the time interval (t0, t1) such that the

solution of ẋ = Ax+Bu, x(t0) = x0 satisfies x(t1) = x1 if

and only if

x1 − eA(t1−t0)x0 ∈ Range([B, AB, A2B, . . . , An−1B]).

The notion of reachability space allows us to redefine the

minimal reachability Problem 1 as follows.

Corollary 1. Problem 1 is equivalent to

minimize
S⊆{1,2,...,n}

|S|

such that x1 − eA(t1−t0)x0 ∈
Range([I(S)B, AI(S)B, . . . , An−1

I(S)B]).

Overall, Problem 1 is equivalent to picking

the fewest rows of the input matrix B such that

x1 − eA(t1−t0)x0 is in the linear span of the columns

of [I(S)B, AI(S)B, A2
I(S)B, . . . , An−1

I(S)B].

B. Variable Selection Problem

We show the intractability of the minimum reachability by

reducing it to the variable selection problem, defined next.

Problem 2 (Variable Selection). Let U ∈ Rm×l, z ∈ Rm, and

let ∆ be a positive number. The variable selection problem is

to pick y ∈ Rl that is an optimal solution to the following

optimization problem.

minimize
y∈Rl

‖y‖0

such that ‖Uy − z‖2 ≤ ∆,

where ||y||0 refers to the number of non-zero entries of y.

The variable selection Problem 2 is found in [29] to be

inapproximable, even in quasi-polynomial time:

Theorem 2 ([29, Proposition 6]). Unless it is NP∈
BPTIME(npoly log n), for each δ ∈ (0, 1) there exist:

• a function q1(l) which is in 2Ω(log1−δ l);

• a polynomial p1(l) which is in O(l);2

• a polynomial ∆(l);

• a polynomial m(l),

and a zero-one m(l) × l matrix U such that no quasi-

polynomial time algorithm can distinguish between the fol-

lowing two cases for large l:

1) There exists a vector y ∈ Rl such that Uy = 1m(l) and

||y||0 ≤ p1(l).

2) For any vector y ∈ R
l such that ||Uy− 1m(l)||22 ≤ ∆(l),

we have ||y||0 ≥ p1(l)q1(l).

Informally, unless NP∈BPTIME(npoly log n), Theorem 2

says that Problem 2 is inapproximable even in quasi-

polynomial time, in the sense that for large l there is no quasi-

polynomial algorithm that can distinguish between the two

mutually exclusive cases 1) and 2). To see that these cases are

indeed mutually exclusive for large l, observe that q1(l) > 1

when l is large, because q1(l) = 2Ω(log
1−δ l).

C. Sketch of Proof of Theorem 1

We begin by sketching the intuition behind the proof of

Theorem 1. Our general approach is to find instances of

Problem 1 that are as hard as inapproximable instances of

the variable selection Problem 2. We begin by discussing a

construction that does not work, and then explain how to fix it.

Given the matrix U coming from a variable selection

Problem 2, we first attempt to construct an instance of the

minimal reachability Problem 1 where:

• the system’s initial condition is x(t0) = 0;

• the destination state x1 at time t1 is of the form [1,0]⊤

(the exact dimensions of 1 and 0 are to be determined);

• the input matrix is B = I;

• the system matrix A is

A =

(
0 U
0 0

)
, (3)

where the number of zeros is large so that A2 = 0.

Whereas the variable selection problem involves finding the

smallest set of columns of U so that a certain vector is in

their span, for the minimum reachability problem, every time

we add the k-th state to the set of actuated variables S, the

2In this context, a function with a fractional exponent is considered to be
a polynomial, e.g., l1/5 is considered to be a polynomial in l.

5

reachability span expands by adding the span of the set of

columns of the controllability matrix that correspond to the

vector ek being added in I(S). In particular, for the above

construction, because A2 = 0, when the k-th state is added to

the set of actuated variables, the span of the two columns ek
and Uek is added to the reachability space.

In other words, with the above construction we are basically

constrained to make “moves” which add columns in pairs,

and we are looking for the smallest number of such “moves”

making a certain vector lie in the span of the columns.

It should be clear that there is a strong parallel between this

and variable selection (where the columns are added one at a

time). However, because the columns are being added in pairs,

this attempt to connect minimum reachability with variable

selection does not quite work. To fix this idea, we want only

the columns of U to contribute meaningfully to the addition

of the span, with any vectors ek we add along the way being

redundant; this would reduce minimal reachability to exactly

variable selection. We accomplish this by further defining:

U ′ =




U
U
...

U


 ,

where we stack U some large number of times (to be de-

termined in the main proof of Theorem 1 at Section V-D).

We then set:

A =

(
0 U ′

0 0

)
. (4)

The idea is because U is stacked many times, adding a column

of U to a set of vectors expands the span much more than

adding any vector ek, so there is never an incentive to consider

the contributions of any ek to the reachability space.

We make the aforementioned construction of the system ma-

trix A precise: given a matrix M ∈ Rm×l, for n ≥ max{m, l}d
we define φn,d(M) to be the n× n matrix which stacksM in

the top-right hand corner d times. For example,

M =

(
1 2
3 4

)
, φ5,2(M) =




0 0 0 1 2
0 0 0 3 4
0 0 0 1 2
0 0 0 3 4
0 0 0 0 0




,

i.e., φ5,2(M) stacks M twice, and then pads it with enough

zeros to make the resulting matrix 5 × 5. Observe that

φn,d(M)2 = 0 for n ≥ max{m, l}(d + 1). Overall, in the

next section, we set A = φn,d(U) for large enough d, and

n = max{m, l}(d+ 1), and we prove Theorem 1.

D. Proof of Theorem 1

Adopting the notation in Theorem 2, we focus on problem

instances where for large enough l it is q1(l) > 1, per the

proof of Theorem 2, i.e., of [29, Theorem 2]. In addition, we

let d = ⌈p1(l)q1(l)⌉, and n = max{m(l), l}(d+1). Moreover,

for simplicity, we use henceforth m and m(l) interchangeably.

Finally, we consider the instances of Problem 1 where:

• the initial condition is x(t0) = 0n;

• the destination state x1 at time t1 is [1⊤
md,0

⊤
n−md]

⊤;

• the input matrix is B = I , where I is the identity matrix;

• the system matrix is A = φn,d(U).

Given the above, to prove Theorem 1 we first define the

following four statements:

S1) There exists a vector y ∈ Rl such that Uy = 1m and

||y||0 ≤ p1(l).

S2) For any vector y ∈ Rl such that ||Uy − 1m||22 ≤ ∆(l),
we have ||y||0 ≥ p1(l)q1(l).

S1′) There exists a set S ⊆ {1, 2, . . . , n} with |S| ≤ p1(l)
such that the state x1 = [1⊤

md,0
⊤
n−md]

⊤ is reachable.

S2′) There is no set S ⊆ {1, 2, . . . , n} with cardinality strictly

less than p1(l)q1(l) that makes reachable some x̂1 with

||x̂1 − [1⊤
md,0

⊤
n−md]

⊤||22 ≤ ∆(l).

Recall that in Section V-B we stated that the statements S1-

S2 are mutually exclusive for q1(l) > 1 (which is the case for

the instances we consider in this proof), and that Theorem 2

implies there is no quasi-polynomial algorithm (unless NP∈
BPTIME(npoly log n)) that can distinguish between S1 and S2.

Given the above, we next proceed with the proof of Theo-

rem 1 by proving first that statement S1 implies statement S1′,

and then that also statement S2 implies statement S2′.

Proof that statement S1 implies statement S1′: We prove

that if statement S1 is true, then statement S1′ also is. In

particular, suppose there exists a vector y ∈ Rl with Uy =
1m and ||y||0 ≤ p1(l) (statement S1). In this case, we claim

there exists a set S ⊆ {1, 2, . . . , n} with |S| ≤ p1(l) such that

x1 =[1⊤
md,0

⊤
n−md]

⊤ is reachable (statement S1′). Indeed, let

S be a set of columns of U that have 1m in their span, and

set S = {k + n− l | k ∈ S}. Then |S| ≤ p1(l), and

1m =
∑

k∈S

ykUk, (5)

where yk denotes the k-th element of the vector y, and Uk

denotes the k-th column of the matrix U . Due to eq. (5), we

can rewrite the vector x1 =[1⊤
md,0

⊤
n−md]

⊤ as follows:

(
1md

0n−md

)
=




1m

1m

...

1m

0n−md




=
∑

k∈S




ykUk

ykUk

...

ykUk

0n−md




=
∑

k∈S

ykAk+n−l, (6)

where the vector 1m in the second term from the left is

repeated ⌈p1(l)q1(l)⌉ times, since d = ⌈p1(l)q1(l)⌉, and

where the final step (eq. (6)) follows by definitions of A as

A = φn,d(U), and where Ak+n−l denotes the (k + n− l)-th
column of A. Now, each of the vectors Ak+n−l in the last

term is a column of AI(S), so [1⊤
md,0

⊤
n−md]

⊤ indeed lies in

the range of the controllability matrix and, as a result, the state

x1 = [1⊤
md,0

⊤
n−md]

⊤ is reachable by actuating S.

Proof that statement S2 implies statement S2′: We prove

that if the statement S2 is true, then the statement S2′ also is.

In particular, per statement S2 suppose that any vector y with

||Uy−1m||22 ≤ ∆(l) has the property that ||y||0 ≥ p1(l)q1(l).

6

We claim that in this case there is no set S ⊆ {1, 2, . . . , n}
with cardinality strictly less than p1(l)q1(l) that makes reach-

able some x̂1 with ||x̂1− [1⊤
md,0

⊤
n−md]

⊤||22 ≤ ∆(l) (statement

S2′). To prove this, assume the contrary, i.e., assume there

exists S with cardinality strictly less than p1(l)q1(l) that makes

reachable some x̂1 with ||x̂1−[1⊤
md,0

⊤
n−md]

⊤||22 ≤ ∆(l) —we

call this assumption A1. We obtain a contradiction as follows:

the pigeonhole principle implies that in the set {1, 2, . . . ,md}
there is some interval E = {κm+ 1, κm+ 2, . . . , κm+m},

where κ is a non-negative integer, such that S∩E = ∅, because

|S| < p1(l)q1(l) and md ≥ m⌈p1(l)q1(l)⌉. Define the vector

x̂E ∈ Rm by taking the rows of x̂1 corresponding to indexes

in E. Then,

||[x̂E − 1m||22 ≤ ∆(l),

since x̂1 with ||x̂1 − [1⊤
md,0

⊤
n−md]

⊤||22 ≤ ∆(l). Moreover,

we next prove that x̂E is in the span of |S| columns of U .

To this end, we make the following observations: since x̂1 is

reachable, it is:

x̂1 ∈ Range[I(S), AI(S), A2
I(S), . . . , An−1

I(S)] =

Range[I(S), AI(S)], (7)

where the equality in eq, (7) holds since A2 = 0. Now, eq. (7)

implies there exists a vector z such that:

[I(S), AI(S)]z = x̂1. (8)

If we break up the set S into two sets, (i) the set of indexes

corresponding to A’s first n − l columns, which we denote

henceforth by S1:n−l, and (ii) the set of indexes correspond-

ing to A’s last l columns, which we denote henceforth by

Sn−l+1:n, such that S = S1:n−l ∪ Sn−l+1:n, and recall A’s

definition, we can write the term AI(S) in eq. (8) as follows:

AI(S) =

(
0 U ′

0 0

)(
I(S1:n−l) 0

0 I(Sn−l+1:n)

)

=

(
0 U ′I(Sn−l+1:n)
0 0

)
, (9)

where U ′ is, per the definition of A, the matrix that is created

by stacking d copies of U the one on top of the other.

Therefore, using this definition of U ′, the term U ′I(Sn−l+1:n)
in eq. (9) is re-written as follows:

U ′
I(Sn−l+1:n) =




UI(Sn−l+1:n)
UI(Sn−l+1:n)

...

UI(Sn−l+1:n)


 , (10)

where the term UI(Sn−l+1:n) is repeated d times. Let now z1
be the vector that is constructed by z by keeping all the

elements of z that in eq. (8) multiply the matrix I(S), and

let z2 be the vector that is constructed by z by keeping all the

elements of z that in eq. (8) multiply the non-zero part of the

matrix AI(S), which is stated in eq. (10). Then, due to eq. (9)

and eq. (10), the eq. (8) gives:

I(S)z1 +




UI(Sn−l+1:n)z2
UI(Sn−l+1:n)z2

...

UI(Sn−l+1:n)z2
0




= x̂1, (11)

Moreover, x̂E, due to its definition, is in the span of the vectors

obtained by taking the rows κm + 1, . . . , κm + m of the

columns of the reachability matrix [I(S), AI(S)]; in particular,

since it is S ∩ E = ∅, from eq. (11) we get:

UI(Sn−l+1:n)z2 = x̂E, (12)

and indeed we have shown that the vector x̂E is in the span of

at most |S| columns of U (eq. (12)). The contradiction is now

obtained because assumption A1 tells us that |S| < p1(l)q1(l)
while the statement S2 (which we have assumed initially to

hold) tells us the opposite. As a result, the truth of statement

S2 implies the truth of statement S2′.

In sum, we proved that the statement S1 implies the

statement S1′, as well as, that the statement S2 implies the

statement S2′ and, as a result, we showed how Problem 1 can

be reduced to the (inapproximable in quasi-polynomial time)

Problem 2. Moreover, the reduction is made in polynomial

time, since all involved matrices are of polynomial size in l.
We complete Theorem 1’s proof with the steps below:

• Recall that Theorem 2 shows that, unless

NP∈BPTIME(npoly log n), no quasi-polynomial time

algorithm can distinguish between the statements S1 and

S2; this implies that, under the same assumption, no

quasi-polynomial time algorithm can distinguish between

the statement S1′ and the statement S2′.

• Since for any δ ∈ (0, 1) we can take q1(l) = 2Ω(log1−δ l)

in Theorem 2, this implies that the smallest number

of inputs rendering [1⊤
md,0

⊤
n−dm] reachable cannot be

approximated within a multiplicative factor of q1(l).
Indeed, any algorithm which gives an approximation of

the smallest number of inputs with a multiplicative factor

smaller than q1(l) would make it possible to distinguish

between case S1′ and case S2′. By Theorem 2, the

inapproximability factor q1(l) grows as 2Ω(log1−δ l), and

since l can be upper and lower bounded by a polynomial

in n (since n ≥ l, and n is at most polynomial in l), we

set ∆2(n) = 2Ω(log1−δ n) in the statement of Theorem 1.

• Since ∆(l) is a polynomial in l, as well as, l ≤ n, we

may replace ∆(l) by some polynomial ∆1(n), as in the

statement of Theorem 1.

VI. CONCLUDING REMARKS

We focused on the minimal reachability Problem 1, which

is a fundamental question in optimization and control with

applications such as power systems and neural circuits. By ex-

ploiting the connection to the variable selection Problem 2,

we proved that Problem 1 is hard to approximate. Future

work will focus on properties for the system matrix A so that

Problem 1 is approximable in polynomial time.

We conclude with an open problem. As we have dis-

cussed, the minimum reachability problem is (0, 2logn)-
approximable by the algorithm which actuates every variable;

but (0, 2O(log1−δ n)) is impossible for any positive δ. We

wonder, therefore, whether the minimum number of actuators

can be approximated to within a multiplicative factor of say,√
n in polynomial time, or, more generally, nc for some

c ∈ (0, 1). Indeed, observe that since
√
n = 2(1/2) logn, the

7

function
√
n does not belong to 2O(log1−δ n) for any δ > 0.

Thus, the present paper does not rule out the possibility of

approximating the minimum reachability problem up to a

factor of
√
n, or more broadly, nc for c ∈ (0, 1). We remark

that such an approximation guarantee would have considerable

repercussions in the context of effective control, as at the

moment the best polynomial-time protocol for actuation to

meet a reachability goal (in terms of worst-case approximation

guarantee) is to actuate every variable.

REFERENCES

[1] Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex
networks,” Nature, vol. 473, no. 7346, p. 167, 2011.

[2] F. Muller and A. Schuppert, “Few inputs can reprogram biological
networks,” Nature, vol. 478, no. 7369, pp. E4–E4, 2011.

[3] T. Zhou, “Minimal inputs/outputs for a networked system,” IEEE
Control Systems Letters, vol. 1, no. 2, pp. 298–303, 2017.

[4] A. Clark, B. Alomair, L. Bushnell, and R. Poovendran, “Minimizing
convergence error in multi-agent systems via leader selection: A su-
permodular optimization approach,” IEEE Transactions on Automatic
Control, vol. 59, no. 6, pp. 1480–1494, 2014.

[5] A. Clark, L. Bushnell, and R. Poovendran, “A supermodular optimization
framework for leader selection under link noise in multi-agent systems,”
IEEE Trans. on Automatic Control, vol. 59, no. 2, pp. 283–296, 2014.

[6] A. Olshevsky, “Minimal controllability problems,” IEEE Transactions

on Control of Network Systems, vol. 1, no. 3, pp. 249–258, 2014.
[7] S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural

input/output and control configuration selection in large-scale systems,”
IEEE Trans. on Automatic Control, vol. 61, no. 2, pp. 303–318, 2016.

[8] F. Pasqualetti, S. Zampieri, and F. Bullo, “Controllability metrics,
limitations and algorithms for complex networks,” IEEE Transactions

on Control of Network Systems, vol. 1, no. 1, pp. 40–52, 2014.
[9] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and

controllability in complex dynamical networks,” IEEE Transactions on
Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2016.

[10] V. Tzoumas, M. A. Rahimian, G. J. Pappas, and A. Jadbabaie, “Minimal
actuator placement with bounds on control effort,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 67–78, 2016.

[11] Y. Zhao, F. Pasqualetti, and J. Cortés, “Scheduling of control nodes
for improved network controllability,” in Proceedings of the IEEE 55th

Conference on Decision and Control, 2016, pp. 1859–1864.
[12] S. Pequito, G. Ramos, S. Kar, A. Aguiar, and J. Ramos, “Robust minimal

controllability problem,” Automatica, vol. 82, pp. 261–268, 2017.
[13] V. Tzoumas, K. Gatsis, A. Jadbabaie, and G. J. Pappas, “Resilient

monotone submodular function maximization,” in Proceedings of the
IEEE 56th Annual Conference on Decision and Control, 2017, to appear.

[14] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Sensor placement for
optimal kalman filtering,” in Proceedings of the American Control
Conference, 2016, pp. 191–196.

[15] ——, “Near-optimal sensor scheduling for batch state estimation,” in
Proceedings of the IEEE 55th Conference on Decision and Control,
2016, pp. 2695–2702.

[16] H. Zhang, R. Ayoub, and S. Sundaram, “Sensor selection for kalman
filtering of linear dynamical systems: Complexity, limitations and greedy
algorithms,” Automatica, vol. 78, pp. 202–210, 2017.

[17] L. Carlone and S. Karaman, “Attention and anticipation in fast visual-
inertial navigation,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation, 2017, pp. 3886–3893.
[18] M. Amin and J. Stringer, “The electric power grid: Today and tomorrow,”

MRS bulletin, vol. 33, no. 04, pp. 399–407, 2008.
[19] Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran,

“MinGen: Minimal generator set selection for small signal stability in
power systems: A submodular framework,” in Proceedings of the IEEE

55th Conference on Decision and Control, 2016, pp. 4122–4129.
[20] California Partners for Advanced Transit and Highways, 2006. [Online].

Available: http://www.path.berkeley.edu/
[21] S. Gu et al., “Controllability of structural brain networks,” Nature

communications, vol. 6, p. 8414, 2015.
[22] C. Tu, R. P. Rocha, M. Corbetta, S. Zampieri, M. Zorzi, and S. Suweis,

“Warnings and Caveats in Brain Controllability,” ArXiv e-prints, 2017.
[23] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Minimal reachability

problems,” in Proceedings of the IEEE 54th Annual Conference on

Decision and Control, 2015, pp. 4220–4225.

[24] Z. Liu, A. Clark, P. Lee, L. Bushnell, D. Kirschen, and R. Poovendran,
“Towards scalable voltage control in smart grid: A submodular opti-
mization approach,” in Proceedings of the 7th International Conference

on Cyber-Physical Systems, 2016, p. 20.
[25] M. Sviridenko, J. Vondrák, and J. Ward, “Optimal approximation for

submodular and supermodular optimization with bounded curvature,”
in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on

Discrete Algorithms. SIAM, 2014, pp. 1134–1148.
[26] S. Arora and B. Barak, Computational complexity: a modern approach.

Cambridge University Press, 2009.
[27] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations

for maximizing submodular set functions – I,” Mathematical Program-

ming, vol. 14, no. 1, pp. 265–294, 1978.
[28] C.-T. Chen, Linear System Theory and Design, 3rd ed. New York, NY,

USA: Oxford University Press, Inc., 1998.
[29] D. Foster, H. Karloff, and J. Thaler, “Variable selection is hard,” in

Proceedings of the Conference on Learning Theory, 2015, pp. 696–709.

http://www.path.berkeley.edu/

	I Introduction
	II Minimal Reachability Problem
	III Non-supermodularity of distance from point to subspace
	IV Inapproximability of Minimal Reachability Problem
	V Proof of Inapproximability of Minimal Reachability
	V-A Reachability Space for continuous-time linear systems
	V-B Variable Selection Problem
	V-C Sketch of Proof of Theorem 1
	V-D Proof of Theorem 1

	VI Concluding Remarks
	References

