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Abstract—Device to device (D2D) communication underlaying
LTE can be used to distribute traffic loads of eNBs. However, a
conventional D2D link is controlled by an eNB, and it still remains
burdens to the eNB. We propose a completely distributed power
allocation method for D2D communication underlaying LTE
using deep learning. In the proposed scheme, a D2D transmitter
can decide the transmit power without any help from other nodes,
such as an eNB or another D2D device. Also, the power set, which
is delivered from each D2D node independently, can optimize the
overall cell throughput. We suggest a distirbuted deep learning
architecture in which the devices are trained as a group, but
operate independently. The deep learning can optimize total cell
throughput while keeping constraints such as interference to
eNB. The proposed scheme, which is implemented model using
Tensorflow, can provide same throughput with the conventional
method even it operates completely on distributed manner.

Index Terms—Device to device communication, Distributed
power allocation, Deep learning, Interference management.

I. INTRODUCTION

A centralized architecture is one of the limitations of the
conventional wireless communications. In the centralized

architecture, most processes of wireless communications are
supervised by a central node, which can be represented as an
evolved node B (eNB). It controls channels, transmit powers,
and schedules. For this architecture, it is required that various
control signals between devices and eNB. Besides, all of user
data should be transferred through the eNB. In the future, high-
quality real-time video streaming services and largecapacity
virtual reality services have dramatically increased mobile
data traffic [1]. It is inefficient to meet the demands of
the future mobile data traffic with this central architecture.
Therefore, it is inevitable that the wireless communication
system should evolve into a distributed architecture. Device
to device (D2D) communication on cellular system is one of
the significant techniques for the distributed wireless commu-
nication architecture [2]. D2D communication can be applied
by directly transferring data between devices or merging data
to be transmitted to an eNB. There are two types of D2D
communication on LTE [3]. D2D communication overlaying
LTE is conventionally considered. In the system, distinguished
frequency resources are allocated for D2D links. Thus, it does
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not interfere with cellular system but the throughput gain
would be marginal because of the limitation on the frequency
resources. The other type is D2D communication underlaying
LTE. It allows D2D communication to use same frequency
resource with the cellular system. They interfere with each
other, but it can be expected resource gains from frequency
reusing. Thus, minimizing the co-channel interference is very
important study topic to improve the overall performance in
cells. In order to reduce the co-channel interference, studies
have been conducted in three ways. Firstly, some studies
have suggested efficient spectral resource allocation methods
to reduce the co-channel interference [4]. Other studies have
proposed efficient transmit power allocation schemes to re-
duce interference effects such as [3], [5]. A mode selection
scheme is devised to determines devices which are in D2D
communication or cellular communication [6]. These three
approaches are very close to each other, and most studies have
been conducted in a mixture of two categories [7]–[10].

One of the difficulties of D2D communication underlaying
LTE is to be distributed architecture. Although it allows
D2D communication, most proposed schemes are required a
central supervisor, eNB. The D2D nodes suffer from lack of
information. It is difficult for D2D nodes to consider global
cell environments. For that reason, the schemes as mentioned
above cannot be conducted without involvements of eNB. If
eNB involves the D2D process too much, the benefits of in-
troducing D2D communication into the cellular system is lost.
Therefore, we focus on the distributed architecture for D2D
communication underlaying LTE. Specifically, the distributed
transmit power allocation scheme is the target in this paper.
Other considerations, such as resource allocation, would be
the next step of this paper. Each D2D node should decide
their transmit power with considering both throughput of itself
and interference to conventional cellular system. The processes
should be conducted without involvements of eNB as possible.
Thus, we propose a distributed architecture to determine
transmit powers using deep learning for each D2D devices.
In this proposed method, a D2D transmitter can determine the
transmit power without any involvement of either eNB or other
D2D devices. It uses only the location of itself to determine the
transmit power. Furthermore, the powers which determined in
each devices maximize the total D2D throughput. Each device
learns how to decide the transmit power to get the optimal
cell throughput based on locations considering the interference
to the conventional cellular infrastructure like eNB. Deep
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learning is used in the learning process. We also use Lagrange
function as a deep learning cost function to meet constraints
such as interference to eNB. According to our study, it is
the first approach to the complete distributed power allocation
decision to maximize global cell throughput, and this is also
the first methodology to apply deep learning to a distributed
decision problem to maximize global performance in wireless
communications. Additionally, the proposed scheme is not
specific for the D2D power allocation problem. It can be
applied other minimizing(or maximizing) problem, because it
is designed to cover a customized objective function while
keeping several constraints. The main contributions of this
paper are as follows:

1) According to the proposed method, a device can decide
transmit power for device to device communication
without any supporting of eNB. Simultaneously, it can
maximize the overall cell throughput.

2) It preserves the total cell throughput as previous works
but it conducts in a distributed way.

3) The proposed method focus on how to solve a very
complicated minimizing (or maximizing) problem while
keeping constraints. It can be applied to solve other
problems.

The rest of this paper is organized as follows. In section II,
we introduce backgrounds, which are related works for D2D
communications and deep learning. In section III, the proposed
method is described in three aspects: distributed architecture,
cost design for learning, and deep learning process. Section
IV is results from actual implementation of the proposed
scheme. We show various expressions of the results, including
power distribution of the cells. Finally, the significance of the
proposed method is summarized in the conclusion section.

II. RELATED WORKS

A. Power allocation schemes for D2D communication under-
laying LTE

D2D communication is standardized in LTE 12 release for
the first time [11]. After the standardization, many research
have been conducted to allocating resources or determining
transmit power in D2D-enabled underlaying LTE environ-
ments. Effective resource allocation studies are important
because they minimize co-channel interference and maximize
overall data rate in cell. The authors of [12] proposed a
framework for D2D-enabled cellular networks. This frame-
work is used to understand and analyze the influence of
D2D communication in performance of cellular networks. The
authors of [13] proposed a relaying-based D2D scheme in
fullduplex. The proposed idea is used to allocate transmitting
power of eNB and D2D transmitter. A goal of this idea
is to optimize the overall performance of D2D users while
meeting minimum performance requirements of cellular users.
The authors [14] proposed a power allocation mechanism to
maximize the energy efficient of D2D users. They used circuit
powers consumption of D2D users to maximize the energy-
efficient while meeting the minimum performance of cellular
users. In [15], they proposed a power allocation mechanism to
avoid interference while satisfying delay constraint. In those

research, D2D devices are still dependent on the eNB. The
author of [3] designed to a distributed power allocation for
D2D underlaying LTE. Nevertheless, the D2D devices should
be supported by eNB to recognize the information for others.

B. Basic concepts of deep learning

In this section, we introduce the schematic operations of
deep learning, and important research using deep learning in
wireless communication. Deep learning is one of the most
emerging technique in these days [16], and it also applied
to wireless communication [17]–[20]. Deep learning can be
regarded as a simple function, which is Y = f(X). It can
be assumed as a linear function, where Y = WX + B.
The appropriateness of output Y must be mathematically
expressible. Cost function is the mathematical expression to
determine the appropriateness of output Y . Also, an optimizer
is a mathematical scheme to adjust gradually the W and B
according to the cost function. It tries to adjust the W and B
with various X repeatedly. Consequently, the optimizer can
finalize the W which can derive the appropriate Y according
to the cost function. The deep neural network (DNN), which is
a basic model of deep learning, can be regarded as a composite
Y=WX+B. The DNN can be defined as a complex composite
linear function. It may have several layers. The basic unit of
the DNN is XW + B, and the outputs would be inputs for
the next XW + B. Finally, for the overall W and B, they
are adjusted by an optimizer such as gradient decent or Adam
optimizer [21]. The optimizer changes repeatedly W and B to
minimize the cost function. A big composite linear function,
(...((XW1+B1)W2+...)Wn+Bn, with a lot of XW+B can
approximate various functions. This derives a lot of impressive
results in other fields, and it should be considered to solve
problems on wireless communications too. There are some
key concepts of deep learning as follows.

1) Network size: DNN may have various size. It can have
several layers, A layer is depicted as XW+B. The number of
vectors in W,B is defined as width. In addition, the number
of layers can be defined as depth. Therefore, network size
for DNN means the width and depth. Network size of deep
learning can be larger as required to approximate a more
complex function. A DNN with large network size can capture
the very fine features of the input data. But this does not
always derive better results. There can be a case that too minor
features should be ignored to get optimal results. If too fine
features are selected, the features may be too specific to the
given input data. It means that the features may not represent
the overall data. In this case, DNN has good performance with
the given data, but it does not with other data. It is called an
overfitting problem [16], [22]. In other words, the overfitting
problem is caused by lack of input data. If the input data set
is large enough to represent the overall data, the overfitting
problem would be reduced. Fortunately, there are a lot of
actual data in wireless communication. Many mobile devices
are generating various data in real time. For that reason, the
overfitting problem does not need to be taken seriously in deep
learning of wireless communication.
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2) Xavier initiation: Xavier initiation is a method to initiate
weights of DNN [23]. Generally, weights should be initialized
randomly. Gaussian or uniform random distributions are con-
sidered firstly to initiate the weights. In the xavier initiation,
input size and output size are considered additionally to
reduce divergence of a neural network. A neural network tends
to induce divergence, because variation would increase with
passing each layer. To describe it, we assume a Y = WX ,
which is a basic calculation unit of a neural network as
follows:

y = w1x1 + w2x2 + w3x3 + ...+ wnxn + b (1)

Thus, the variation of each elements, wixi, can be expressed
as follows:

var(wixi) = E(xi)
2var(wi) + E(wi)

2var(xi)

+var(wi)var(xi)

= var(wi)var(xi)

where assuming the inputs are coming from a random distri-
bution with zero mean. Thus, the variation of Equation 1 can
be described as follows:

var(y) =
∑
i=1...n

var(wi)var(xi)

= n ∗ var(wi) ∗ var(xi) (2)

where the inputs and outputs are assumed to be all identically
distributed. Consequently, the variation of output, var(y) is
proportional to the number of x inputs. Note that the outputs
would be input for the next layer, in multi layer neural
networks. The variation of y can be too large, and this
situation can cause a divergence of weights, W. To reduce
this divergence of variation, the Xavier initiation consider the
input size, n, to initiate the weights. Additionally, backward
should be considered in DNN, because the optimizer uses back
propagation algorithms [16] to update the weights. Finally, the
Xavier initiation can be described as follows:

init range =
√

6.0/(input size+ output size)

θ = Rand(−init range, init range) (3)

where Rand(min,max) function is continuous uniformly ran-
dom distribution with the range parameters, [min, max].

3) Batch normalization: Batch normalization is a method
to normalize outputs of each layer in deep learning [24]. It
prevents the inputs of each layer to be divergent. Firstly the
weights are adopted to the input X, where Y=WX. Note that
conventional bias b is not added, because shifting should be
conducted later. After that, Y is normalized with mean and
variance of the Y. For the normalized Y, it would be re-scaled
and shifted, with H = S · Y + b. The S and b are initiated
with 1 and 0 respectively, and they are trained by the optimizer.
Thus, the S and b can be regarded as additional weights sets.
After normalization, the output Y is controlled for preventing
divergence, and the S and b are adjusted to produce better
results.

4) Adam Optimization: We use the adam optimization
algorithm. The adam optimizer is one of gradient descent
optimization algorithm with requiring less memory other op-
timization algorithm [21]. The process of adam optimizer is
described follows. Firstly, the method initializes a timestamp t
, 1st momentum vector (m0) and 2nd momentum vector (v0)
to zero.

t = 0

m0 = 0

v0 = 0 (4)

The goal of this algorithm is to minimize the value of
stochastic objective function f(θ) with the parameter θ. The
optimizer gets gradients from the stochastic objective function
f(θ) at time t.

Gt = ∇θft(θt−1) (5)

With the gradient Gt, the optimizer calculates the momen-
tum vectors with two decay rates,β1 and β2. β1 and β2 is set
to a decimal number between 0 and 1.

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β2) · g2t (6)

The calculated momentum vector is biased to zero at the be-
ginning of the learning since the optimizer initialized the two
momentum vectors to zero. Therefore, this optimizer adjusts
the momentum vector values to make the momentum vectors
unbiased. This process is an advantage of adam optimizer.
Equations to calculate the bias-corrected momentum vectors
is described follow.

m̂t =
mt

1− βt1
v̂t =

vt
1− βt2

(7)

With the bias-corrected momentum vectors, the optimizer
updates the θ that is a parameter of stochastic objective
function f(θ).

θt+1 = θt −
η√
v̂t + ε

m̂t (8)

5) Tensorflow: Tensorflow is one of the major platforms
for deep learning implementation [25], which is developed by
Google. It has flexible architecture to implement or customize
deep learning model. Also, it has a lot of open-source models
on the internet, and it is easy to apply them for other
applications.

III. PROPOSED SCHEME

In this section, we describe the distributed power allocation
using DNN with interference to eNB constraint (DPADIC).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

A. System model

We focus on maximizing the total D2D throughput while
keeping two constraints: maximum power of a transmitter and
interference to eNB. The maximum power constraint means
that a total transmit power per a user cannot be over a
limit. On the other hand, the interference constraint means
that interference experienced at the eNB cannot be over a
threshold. It is required because we focus on D2D underlaying
cellular system. In the underlaying system, cellular system
should be mainly supported by LTE. To guarantee perfor-
mances of cellular system, D2D should be allowed only if
the interference is under a threshold. We assume the OFDMA
interface for LTE. It has orthogonal N subcarriers, which are
non-overlapped, and the spectrum are regarded as flat. Thus,
we consider a setN = {1, ..., N} of shared OFDMA channels.
Also, we consider a set of D2D devices pair, K = {1, ...,K}.
The pair of D2D devices consists of transmitter and receiver,
and we assume that they are on perfect synchronization.
Likewise, we consider multi-cell environments with C cells.
The set of eNB is C = {1, ..., C}. The signal at receiver on
link n can be expressed as follows:

Yn,k,k = Hn,k,kSn,k,k +
∑

i∈K,i6=k

Hn,i,kSn,i,k +Wn,k,k (9)

where Hn,k,i is the complex channel gain between a trans-
mitter of k D2D pair, and a receiver of D2D pair i on
channel n. Sn,k,k is the symbol of transmission, which is
power pn,k = E{|Sn,k,k|2}. Wn,k,k is an additive zero-
mean Gaussian disturb with variance (σn,k)2. Also, we assume
that it includes additional noise, such as thermal noise, with
the interference from the cellular networks. Therefore, the
throughput Tk for a receiver of D2D pair k is expressed as
follows:

Tk(pk) =
∑
n∈N

log2(1 +
(Hn,k,k)

2pn,k∑
i∈K,i6=k(Hn,i,k)2pni + (σnk )

2
)

(10)
where pk is a set of transmit powers for D2D pair k on
each link, pk = {p1, p2, ..., pN}. The purpose of the proposed
scheme is to maximize sum of D2D throughput, while keeping
the two constraints: power constraint, and interference to eNB
constraint. Therefore, the objective function and constraints
can be derived as:

maximize
∑
k∈K

Tk(pk)

subject to
∑
n∈N

pnk ≤ Pk, k ∈ K,∑
k∈K

(Hn,k,c)
2pnk ≤ Qn, n ∈ N

(11)

where Pk is the power limitation of each D2D transmitter. Qn
is the interference to eNB constraint per channel.

B. Distributed power allocation using DNN with interference
constraints

We explain the DPADIC in three perspectives. The first fea-
ture of DPADIC is a distributed deep learning architecture. The
devices predict their transmit power by itself, and they learn
together how to maximize the overall throughput. Secondly,
the objective function of the deep learning is described. It
adopts the Shannon capacity equation for spectral efficiency.
Also, it contains the given constraints. Finally, deep learning
process of the proposed method is shown.

1) Distributed architecture: In Fig. 1, the architecture of
the proposed method is described. Each device use the DNN
to predict their power set respectively, and the overall results
are merged to update the DNN. Therefore, the DNN can be
described as follows:

pk = DNN(k, θ) (12)

where k is a D2D pair. The θ is a set of weights and bias in the
DNN, {W,b}, which are contents of the DNN. It determines
what output DNN would derive for a given input. Also, it is
shared for all k in a given D2D devices set K. Deep learning
is a process to find the optimal θ with all cases of the K.
There are various cases of the K, because the locations of
k are regarded as being determined randomly. To consider
the various K, we define a set batch, as a set of K, where
batch = {1, ..., BN}, and BN is size of batch. Therefore, the
optimal θ is θ∗ for the batch. It can be described as follows:

θ∗ = argmax
∑

K∈batch

∑
k∈K

Tk(DNN(k, θ))

= argmax
∑

k∈batch k

T ∗k (DNN(k, θ),K) (13)

where the T ∗k is same as Tk but it depends on a specific K.
The batch k is a set of all k in the set batch. The batch is
a set of K, and the K is a set of k. Hence, the batch can
be re-defined as batch k, the set of all k in the set batch,
where batch k = {1, ..., BN · K}. Generally, deep learning
process is conducted with several input data at once. The set
of input data, which is processed at once, is defined as a batch.
According to the design of the proposed method, batch should
be tweaked as batchk before learning. The process can be
described as follows:

batch = {kij |1 ≤ i ≤ K, 1 ≤ j ≤ BN} (14)
batch k = vec(batch)

= {ki |1 ≤ i ≤ K ·BN} (15)

where vec() is vectorization. It can be described as vec(A) =
[a1,1, ..., am,1, a1,2, ..., am,2, ..., a1,n, ..., am,n]

T for an m× n
matrix A. On the other hand, the k consists of the 4 values:
locations of transmitter and receiver on a pair of D2D devices,
where k = [tx xk, tx yk, rx xk, rx yk]. Also, the outputs of
deep learining are N values: transmit power set for OFDMA
with N , which is the shared OFDMA channel. After training,
every transmitter has the same trained DNN. They can get the
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Fig. 1: Distributed DNN architecture for OFDMA

optimal transmit power on the distributed way. Of course, the
results would maximize the total D2D throughput.

2) Cost function design: In the section, we describe the
cost function design, which make possible to maximize total
cell throughput while keeping the constraints. To propose a
practical mechanism, we apply two constraints to the cost
function: i) transmitting power constraints, ii) interferences
to eNB constraints. We adopt the Lagrange function to ex-
press the two constraints in the cost function. Typically, the
Lagrange function is a function that is used to minimize or
maximize the target value in constrained environment [26].
Typical cost function in deep learning of regression problem
is mean square error (MSE), which is an average of square
of difference between predictions and pre-defined answers.
It intends to give benefit or penalty to update DNN for
reducing the differences. In other words, cost function can
be customized if it can give benefit or penalty based on the
purpose of the system. Therefore, we use throughput directly
to the cost function itself in the proposed scheme, which
shown in Equation 10. Thus, the answers are not required.
Throughput is too complex function, but it is not a problem
for deep learning. Additionally in the proposed scheme, the
two constraints are adopted into the cost function. Firstly, the
power constraint, Ctp is as follows:

Ctp =
∑
k∈K

log2(1 +
ReLU(

∑
n∈N p

n
k − Pk)

Pk
) (16)

where a rectified linear unit (ReLU) function is used. ReLU(x)
function is defined as ReLU(x) = max(0, x). If the sum of
transmit power of a D2D transmitter is under the threshold,
Pk, the Ctp would be 0. Therefore, it only delivers penalty
if the transmit power of a transmitter is over the constraint.
The remaining part is designed for re-scaling. The appropriate
re-scaling is important to estimate the lagrange multipliers. In
the proposed scheme, it is difficult to determine the lagrange
multipliers, cp and cif , because the cost function is very
complex. If difference scales between the objective function,
which is throughput in the proposed scheme, and constraints is
too large, it would be difficult to find the appropriate lagrange
multipliers. Thus, the objective function and constraints are
designed to be on simliar scales by having a similar forms.
Note that the Shannon capacity is formed by log2(1+SINR),

and the SINR is a signal ratio, which has no quantitative unit.
Therefore, the constraints are also designed as the shannon
capacity as log2(1+ ratio), and the ratio has no quantitative
unit too. This design is shown to work effectively in the section
IV.

The interference to eNB constraint is also designed in
similar way to the power constraint. Before defining the
constraint formula, interference to eNB should be defined. It
can be described as follows:

eNB if(n,k,c)(p) =
∑
k∈K

(B(n,k,c)p
n
k ) (17)

According to Eq. 11, the interferences to eNB constraints are
set to each channel. Note that the additive zero-mean Gaussian
disturb is not adopted to the formula. The purpose of this
formula is to formulate the impact of each D2D transmitter
on the eNB. Thus, the random noise factor should be ignored.
Therefore, the interference to eNB constraints, Ctif , can be
formulated as follows:

Ctif =
∑
c∈C

∑
n∈N

log2(1 +
ReLU(eNB if(n,k,c) −Qn)

Qn
)

(18)
Finally, the cost function of the proposed method can be

described as follows:

Cost = −
∑
k∈K

Tk(pk) + Ctifcif + Ctpcp (19)

where cif and cp are constants to control strength of Ctif
and Ctp respectively. The constants can be adjusted in deep
learning process, which would be described in the next section.
Although the constraint formulas are designed to re-scale
the constraints, the strength constant would be help more
accurate approximation of the power prediction. Note that
there are several parameters in deep learning, such as learning
rate, network size, and batch size. They are also adjusted
in training process. The strength constants of the constraints
can be adjusted only a few trials. Furthermore, throughput is
negative, and constraints are positive because deep learning is
a process to minimize cost function. But we should maximize
throughputs, while minimizing the penalty.

Parallel operation is another key point of the proposed
method. Note that the deep learning process is conducted with
a batch, which is a set of input data. The prediction and costs
including constraints should be derived in parallel. If parallel
operation is impossible, the batch size is fixed to 1. It may slow
down overall operation too much. In the conventional deep
learning, parallel operation is not important because the cost
function has simple designs. However, it is difficult to consider
interference for each device since the distance to all devices
must be taken into the cost function in parallel. Therefore, we
describe a detail process of the parallel operation for the cost
function.

A D2D pair k has four features of locations: x,y for
transmitter and receiver respectively. It can be described as
follows:

kij = {kij(tx) x, kij(tx) y, kij(rx) x, kij(rx) y} (20)
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Firstly it should be separated to locations of transmitter and
receiver to determine the distance between each other.

kij(tx) = {kij(tx) x, kij(tx) y} (21)
kij(rx) = {kij(rx) x, kij(rx) y} (22)

These input data should be processed in a batch. Thus they
are regarded as batch sets as follows:

batchtx = {kij(tx)| 1 ≤ i ≤ K, 1 ≤ j ≤ BN} (23)
batchrx = {kij(rx)| 1 ≤ i ≤ K, 1 ≤ j ≤ BN} (24)

Transmit power and received power are also re-defined in
the batch unit as follows:

Pbatch = {pij |1 ≤ i ≤ K, 1 ≤ j ≤ BN}
(25)

Rbatch,k,k = {(Hn,k,k)2pn,k | n ∈ N , k ∈ K,K ∈ batch}
= Pbatch − PLbatch,k (26)

where the PL is path loss model [27] for describing channel
model according to changing distance as follows.

PL(kij(tx), kij(rx)) (27)

= L1 + L2 log(|(kij(tx))T kij(tx) − (kij(rx))
T kij(rx) |2)

PLbatch,k,k = {PL(kij(tx), kij(rx)) |1 ≤ i ≤ K, 1 ≤ j ≤ BN}
(28)

The path loss model considers the distance between trans-
mitter and receiver. It is adopted to interference too. The other
transmitters in same K are interferers to a receiver of D2D pair
i. The following process is to determine the interference from
the other transmitters in the same K. For that in parallel, a path
loss map is required which can describe the path loss between
all transmitters to all receivers in the same K. First, the
(batchtx)

T s, which is a transformed vector of transmitters, is
redundantly concatenated. We define this set as batchtx(T )(ex).
The number of (batchtx)

T in the batchtx(T )(ex) is K. The
batchrx(T )(ex) is also defined in the same way:

batchtx(T )(ex) =

K︷ ︸︸ ︷
(batchtx)

T _ (batchtx)
T · · · (batchtx)T

=

(batchtx)
T

(batchtx)
T

...

 =

k1j(tx) · · · kKj(tx)
k1j(tx) · · · kKj(tx)

...
...

...


(29)

batchrx(T )(ex) =

K︷ ︸︸ ︷
batchTrx _ batchTrx · · · batchTrx (30)

Now, the path loss map, PL map, is defined from the
Equation 29, 30.

PL mapij = PL((batchtx(T )(ex))ij , ((batchrx(T )(ex))
T )ij)

= PL(


k1j(tx) · · · kKj(tx)
k1j(tx) · · · kKj(tx)

...
...

...
k1j(tx) · · · kKj(tx)

 ,

k1j(rx) · · · k1j(rx)
k2j(rx) · · · k2j(rx)

...
...

...
kKj(rx) · · · kKj(rx)

)
(31)

where the number of vectors in the PL map should be K,
not the batch size. Note that GPU can process a vector
calculation at once, e.g, O(a + b) = 1 if the size of the
vector is enough to be processed in the memory of the GPU
at a time. From that, no matter how the batch size is, the cost
is designed to be derived from only K times of calculations.
After deriving the PL map, an element vector, PL mapi in
the PL map should be re-transformed as follows:

PL mapi

=


PL(k1j(tx), kij(rx))
PL(k2j(tx), kij(rx))

...
PL(kKj(tx), kij(rx))



=


PL(k11(tx), ki1(rx)) · · · PL(k1BN(tx), kiBN(rx))
PL(k21(tx), ki1(rx)) · · · PL(k2BN(tx), kiBN(rx))

...
...

...
PL(kK1(tx), ki1(rx)) · · · PL(kKBN(tx), kiBN(rx))


(32)

(PL mapi)
T

=


PL(k11(tx), ki1(rx)) · · · PL(kK1(tx), ki1(rx))
PL(k12(tx), ki2(rx)) · · · PL(kK2(tx), ki2(rx))

...
...

...
PL(k1BN(tx), kiBN(rx)) · · · PL(kKBN(tx), kiBN(rx))


(33)

The (PL mapi)
T is a table of path loss that the i th receiver

receivers from all other transmitters in the same K. The
(PL mapi)

T has BN vectors because BN is the number of
set K in a batch. Therefore, the received power Rbatch,other,i
is defined as follows:

Rbatch,other,i =
∑

(Pbatch − (PL mapi)
T −Rbatch,i,i)

Rbatch,other,i(b) =
∑

j=1,...,K

(pjb

− PL(kjb(tx), kjb(rx))−Rbatch,k,k(jb))
(34)

It describes the experienced interference at the ith receiver.
Note that the interference signals also reduced by path-loss.
The Rbatch,other,i(b) is the sum of experienced interference at
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the ith receiver in bth batch. Thus, the Tk(pk) in Equation 10
is also derived on batch from Equation 26 and 34.

Tbatch(Pbatch)

=
∑
k∈K

∑
n∈N

log2(1 +
Rbatch,k,k

Rbatch,other,k(b)+(σn
k )2

) (35)

Note that the Tbatch has BN values. Similiary, the constraint
formula 16 is re-defined. The power vectors is replaced by
batches of power, Pbatch.

Ctp,batch =
∑
k∈K

log2(1 +
ReLU(

∑
n∈N Pbatch − Pk)
Pk

)

(36)

The interference constraint in Equation 17 is also changed
on the similar way as described above. Firstly, experienced
interference of a batch is described with the path loss and
received power of a batch from Equation 26 and 28. The
constants of the path loss, L1 and L2 could be changed if
the receiver in the PL is c. Thus, the interference constraint
of a batch, Ctif,batch is also defined using the experienced
interference of a batch.

eNB ifbatch(Pbatch) =
∑
k∈K

(Pbatch − PLbatch,k,c) (37)

Ctif,batch

=
∑
c∈C

∑
n∈N

log2(1 +
ReLU(eNB ifbatch(Pbatch)−Qn)

Qn
)

(38)

In the end, Costbatch is defined from Equation 35, 36,
and 38. Final cost is defined as an averaged of the batch costs
as Costfinal. It is actually used into the optimizer to update
θ, which is the contents of the neural network.

Costbatch = −Tbatch(Pbatch) + Ctp,batchcp + Ctif,batchcif

Costfinal =
1

BN

∑
batch={1,...,BN}

Costbatch (39)

3) Deep learning process: The process is similar with a
typical deep learning excepts it can include the simulation
into the training process because labels are not required. It
may be operated with pre-processed input data. It means that
a separated simulation generates overall input data, and then
the data are trained by deep learning. However, we include the
simulation into training process because it is more intuitive.
Thus, the simulation generates input data as much as required
at every iteration. The data set for an iteration is defined as a
batch. The batch size is a number of input data set which
is processed at an iteration. The detailed training process
is described in Algorithm 1. The θ is defined separately as
(W, b,Wout, bout to adopt drop out for the out layer. We adopt
Xavier initiation [23]. The iteration means the number of
training trials. The n epoch is the number of iterations. The
simulation is designed to deliver a batch, which is a set of
input data. The size of a batch is given as batch size. Train()
function is the actual training part in 1. Get Throughput(X,P)

delivers the throughput as defined in Equation 10. Finally,
the throughput results are included in a set Throughput. The
throughput results are collected in order of iteration in the set
Throughput.

The Train() predicts the power set P with input data X and
θ. Then, the cost function is defined as c with the input data
as X and the predicted power as P . Cost function is the main
part of this train function. It is implemented with Equation 19
including batch control. The X and P may have several data
because batch data are trained at once. In the cost function, it
delivers Equation 19 of each input data respectively, and the
results are averaged. We also use Adam optimizer to adjust
θ [21]. It deals with the cost function itself, not the result of the
cost function. Adam optimizer differentiates the cost function
to trace the changes. Consequently, θ is gradually changed
by the optimizer to minimize the cost function. In Predict(),
reshape function is used to change shape of the input data.
The first shape of input data is [batch size, K, 4]. It means
that there are the number of batch size input data set, and
an input data has K number of d2d pairs. A pair of D2D
has four figures: x, y of transmitter and receiver respectively.
It should be changed to [batch size × K, 4], because each
D2D pair data should be independent to distributed learning.
Thus, there are batch size×K D2D pairs. After reshaping, it
should be actually calculated repeatedly as mentioned above.
Furthermore, we adopt batch normalization to the proposed
method. The sigmoid function is used as an activation function
for each layer. The sigmoid function is defined as 1

1+eX
. It

adjusts the output of the previous calculation of each layer to
0 between 1. After the iteration of calculating in the neural
network, it should be reshaped again to [batch size, K, 8], to
be original form. Then, it is re-scaled to between -150 to 20,
because the unit of output power is dBm.

IV. RESULTS

The results are presented in this section. We actually imple-
ment the proposed scheme in Tensorflow [25]. We consider
the same environment to [3]. We assume hexagonal cells
with radius R = 500m. The maximum distance between D2D
pairs is Dmax = 100m, while they are uniformly distributed
in [0, Dmax]. Also we consider multi-cell cases, which are
C = 3 and C = 7. The number of D2D pairs is 8 per a
cell. Thus, the number of D2D pairs is K = 8 × C. The
number of OFDMA subchannels is set to N = 8, and then
a spectral efficiency η would be derived as η =

∑
Tk

(K×N) .
The maximum transmit power constraint is set to Pk = 0.25
W. The channel attenuation is expressed by the path loss
with distance, including shadowing and fading. The path loss
exponent is α = 4, with shadowing with standard deviation
σ = 8dB on log normal distribution. The additive zero-mean
Gaussian noise to cellular network from D2D is set to -130
dBW.

Table I shows default parameters of DNN. Width and depth
are network size of DNN. Batch size is the number of data
per a training process. We use 50 data for a batch, and the
number of iterations is 100K. Thus, we use 5M cases of drops
for learning, and there are no duplicated data in the 5M cases.
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Algorithm 1: Training Phase
Input : input size=4, output size=8, width, depth,

n epoch, batch size
Output: Throughputs

1 θ = (W, b)

2 init range =
√
6.0/(input size+ output size)

3 θ = random uniform(-init range, init range)
4 for i = 1, ... , n epoch do
5 X = Simulation(batch size)
6 P , θ = Train(X , width, depth, batch size, θ)
7 T = Get Throughput(X , P)
8 Throughputs.append(T )

end
9 return Throughputs

Function Train()

Input : X , batch size, width, depth, θ
Output: P

1 P = Predict(X, width, depth, batch size, θ)
2 c = Cost(X, P)
3 θ := AdamOptimizer(c)
4 return P, θ

Function Predict()

Input : X , width, depth, batch size, θ
Output: Ypred

1 W , S, Z = θ
2 X = Reshape(X, [batch size * K, 4])
3 for j = 0, ..., depth-1 do
4 X = X ×W [j]
5 Xm = 0
6 Xm2 = 0
7 for i = 0, ..., width-1 do
8 Xm = Xm +X[i]
9 Xm2 = Xm2 +X[i]2

end
10 Xm = Xm/width
11 Xm2 = Xm2/width
12 Xvar = Xm2 − (Xm)2

13 Xh = X−Xm√
Xvar+ε

14 X = S[j] ·Xh + Z[j]
15 X = 1

1+eX

end
16 P = Reshape(X, [batch size, K, 8])
17 for p = each element of P do
18 p = p× 170− 150

end
19 return P

Learning rate for the optimizer is 0.0001. If learning rate is
increased, the DNN can attain a converged result more early
with smaller iterations. But, the final converged result may be
reduced.

Fig. 2a shows throughput η of the proposed scheme with
various QMAX where C = 3. They tend to converge to a

TABLE I: Parameters of DNN

Width 1500
Depth 7

Batch size 50
The number of iterations 100K

Learning rate 0.0001

TABLE II: Deep learning model selection

-120 -130 -140 -150
DPADIC 3.8 3.3 2.5 1.4

IADRMPIC [3] 3.6 3.4 2.4 1.5

constant value after 30K iterations. Smaller QMAX cases tend
to be converged earlier, because initial transmit power is near
to zero in Fig. 2b. We set the range of power is between -150
to 20 dBm. The initial powers are set near the middle of the
range. Because it is near to zero, the powers are growed up
to find the better throughput by the optimizer. Fig. 2c shows
that DNN gets the converged throughput while keeping the
interference to eNB constraint. We also simulate the DPADIC
on a 7-cell environment. The tendency of Fig. 3a,3b, and 3c
are similar to the case of 3-cell environment. They imply that
DPADIC can find the most appropriate outputs regardless of
the number or shape of cells.

The table II is a comparison between the proposed scheme,
DPADIC and IADRMPIC in [3]. They have similar results of
throughput on 7-cell environments. However, in the DPADIC,
the D2D node can find optimal transmit power on itself if it has
a pre-trained DNN. A D2D transmitter can determine transmit
powers without involvement of eNB or peripheral D2D nodes,
and it can approve to maximize cell throughput.

In the proposed scheme, there are two significant parameters
for adopting constraints, cif and cp. They should be deter-
mined manually, but it is not difficult. The valid range of the
parameters is wide enough. Fig. 4 and 5 show the effects of
the interference to eNB constraint factor, cif . If too small cif
is used, the interference to eNB constraints may be ignored. In
that case, it is more profitable to ignore Cifcif in minimizing
the cost, though DNN takes the penalty from Cifcif . Thus,
the spectral efficiency, η, is high but it is not valid because the
interference to eNB are over the limit, QMAX. If the cif is
high enough, DNN cannot ignore the constraint. Then, DNN
should keep the constraints with reducing transmit powers. If
it uses too high cif , the η can be reduced, but the falling is not
meaningful. Note that Cif includes ReLU function. It turns off
the constraint if it is not over the threshold. Because of this,
an effect of the high cif is limited. However, D2D transmitters
are dropped randomly, and it may be very close to the eNB.
Thus, there can be a few cases of being over QMAX though
it has very small transmit power. The cases affect the results.
Consequently, η can be reduced slightly with larger cif .

Fig. 6 describes effects of the transmit power constraint
factor, cp. The cp is less sensitive than cif , because PMAX =
0.25 W. Similar to the case of cif , DNN may ignore the power
constraint if cp is not enough. With very small cp, the η can be
increased but it cannot keep the constraint. The DNN adopts
the transmit power constraints appropriately where cp is over
10. Unlike the cif , larger cp does not has a problem. Even
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(a) Spectral efficiency for the proposed
scheme, where C = 3.

(b) Transmit power of each D2D transmitter
for the proposed scheme, where C = 3.

(c) Interference experienced at the eNB, where
C = 3.

(a) Spectral efficiency for the proposed
scheme, where C = 7.

(b) Transmit power of each D2D transmitter
for the proposed scheme, where C = 7

(c) Interference experienced at the eNB, where
C = 7

Fig. 4: Spectral efficiency with the interference to eNB con-
straint factor, where C = 3 and QMAX = -140 dBW.

when the cp is 200, the performance of spectral efficiency is
not changed. It is because there is no D2D transmitter which
is over the PMAX after enough training.

We adopt batch normalization into the implementation of
the proposed method. Fig. 7 shows comparisons with non
adopted batch normalization cases where B=7. The η is not
optimized enough where batch normalization is not adopted.
Likewise, the learning process can be regarded to unstable.
This means that applying batch normalization has a significant
impact on learning performance. The reason is variation of
the input data. We use (x,y) coordinate as input data. The
variation of inputs is too wide to adopt the sigmoid function,
which is in the range 0 to 1. In the sigmoid function, too
large or small data lose their meaning. But, the large numbers
can be regarded to close by the sigmoid function. It reduces

Fig. 5: Spectral efficiency with the interference to eNB con-
straint factor, where C = 3 and QMAX = -150 dBW.

effects of difference between large numbers. Inevitably, the
sigmoid function has information loss with large numbers. It
makes difficult to learn differences between large numbers.
On the other hand, batch normalization moves distribution
of the data, including scales. It would be more appropriate
for learning. Intuitively, batch normalization is expected to
show performance improvement in deep learning for wireless
communication when it treats wide coordinate values as input
data.

Fig. 8 show that time to derive the cost function is not
affected from the batch size, BN. The time to generate data is
implemented regardless parallelism, so it is increased lineary.
The O(Simulation()) is BN. On the other hand, the cost
function is not affected from the batch size. It means that
the O(Cost) is not related with BN. Because of the parallel
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Fig. 6: Spectral efficiency with the transmit power factor,
where C = 3 and QMAX = -110 dBW.

Fig. 7: Spectral efficiency on non batch normalization mode,
where C = 7.

operations, the batch size can be freely adjusted according to
the amount of given data or given learning time.

Fig. 9 and 10 show visualized training results for each
cell environments respectively. Because of the interference
constraints to eNB, the D2D power allocations are more
distributed in a cell edge area. With 100K iterations, it can get
the almost converged results. These results can be regarded as
that DNN divides the compartments for power allocation to
maximize throughput. It allocates fractionaly transmit power
by very slight subdividing. In particular, it is remarkable
that the transmit power increases as the edge area of the
cell. It implies that D2D links with the proposed method
can be helpful to enhance the poor performances of cell
edge users. The signals of cell edge users can be combined
or multi-hopped by D2D communication. Furthermore, The
DPADIC can be derived in a distributed way. It means that
the performance enhancements of the cell edge users can be
conducted without the involvement of the eNB.

V. FUTURE WORK

In the future, we would develop an independent deep
learning system for distributed D2D wireless communication.

Fig. 8: Comparison time to derive cost and generate data in
the actual implementation, where C = 7, QMAX = -140 dBW.
O(Cost) is not affected from the batch size.

To adopt deep learning in wireless communication, a lot of
data are essential, and it should be preserved before learning.
It implies that a new scheme is difficult to be adopted without a
conventional well-operated scheme. Thus, most deep learning
based schemes for wireless communication have dependency
on simulations. However, it is also difficult for the simulation
to fully represent the actual field. To adopt deep learning into
wireless communication more freely, it is should be operated
when a simulation cannot represent the actual field. It means
that a deep learning method which is not based on a specific
simulation. This work would be the future work of this paper.

VI. CONCLUSION

We propose perfectly distributed power allocation for D2D
link underlaying LTE. One of the major purpose of D2D com-
munication underlaying LTE is to relieve the dense burden of
eNB. Thus, it is important that the D2D nodes are operated in
distributed way. According to our study, this is the first method
that a D2D transmitter can decide the transmit power without
any helps of either eNB or other nodes to meet the global
optimum. With the deep learning module, each D2D node can
memorize the transmit power according to locations for global
optimum. Also, it maintains the performance with previous
works. As shown in Fig.9 and 10, furthermore, the results
of the proposed method show that D2D underlaying LTE is
appropriate to cover the edge users. Poor performance for edge
users is one of the major concerns to cellular networks. Multi-
hop communication using D2D link is a main candidate to
solve the cell edge user problems. Finally, the method which
we proposed can be used generally. There are two features
which can be adopted for not only wireless communication,
but also other optimization problems. First feature is that it
supports to solve general minimizing(or maximizing) problems
while keeping constraints using deep learning. Deep learning
is a best tool to solve optimize problems, and we show that it
can be operated to optimize a problem while keeping several
constraints. Another feature is the distributed architecture. We
solve the distributed power allocation problem for D2D links
with this distributed learning architecture. It can be applied to
develop a centralized system into a distributed system.
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(a) Iterations = 0 (b) Iterations = 1K (c) Iterations = 10K (d) Iterations = 100K

Fig. 9: Cell power distribution during the learning process, where QMAX=-150 dBW and B=3.

(a) Iterations = 0 (b) Iterations = 1K (c) Iterations = 10K (d) Iterations = 100K

Fig. 10: Cell power distribution during the learning process, where QMAX=-150 dBW and B=7.
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