
ar
X

iv
:1

80
2.

02
75

1v
1 

 [
cs

.G
T

] 
 8

 F
eb

 2
01

8

Monopoly pricing with buyer search

Nick Gravin

Shanghai University of Finance and Economics

nikolai@mail.shufe.edu.cn

Zhihao Gavin Tang

University of Hong Kong

zhtang@cs.hku.hk

Abstract

In many shopping scenarios, e.g., in online shopping, customers have a large menu of options to choose
from. However, most of the buyers do not browse all the options and make decision after considering only
a small part of the menu. To study such buyer’s behavior we consider the standard Bayesian monopoly
problem for a unit-demand buyer, where the monopolist displays the menu dynamically page after a page
to the buyer. The seller aims to maximize the expected revenue over buyer’s values which we assume
are distributed i.i.d. The buyer incurs a fixed cost for browsing through one menu page and would stop
if that cost exceeds the increase in her utility. We observe that the optimal posted price mechanism in
our dynamic setting may have quite different structure than in the classic static scenario. We find a
(relatively) simple and approximately optimal mechanism, that uses part of the items as a “bait” to keep
the buyer interested for multiple rounds with low prices, while at the same time showing many other
expensive items.

1 Introduction

The monopolist problem of selling multiple goods to a single buyer is a fundamental problem in mechanism
design. In this situation any incentive compatible interaction between the monopolist seller and a single
buyer can be described as a menu of possible allocations and payments that the seller offers to the buyer
to choose from. Despite extensive studies, this multidimensional mechanism design problem is not very well
understood in contrast to the Myerson’s optimal auction for the single item case [27]. In special cases when
the optimal mechanisms are known, these mechanisms often exhibit irregular and complex behavior. For
example, the revenue of the optimal auction may be non-monotone [22]1, or the optimal auction must offer
a menu of randomized outcomes [21, 13], i.e., lotteries. Another problem observed in that line of work was
that the optimal auction may have a menu of arbitrary large (or even infinite) size even in a simple setting
with a unit-demand buyer with independent values.

These critiques have motivated [21] to propose the menu size as a measure of auction complexity and
study its impact on the revenue in the classic monopoly problem. Since [21] there has been more recent
work giving various upper and lower bounds on the menu complexity of optimal or approximately optimal
auctions in different scenarios [14, 34, 18]. However, this work gives bounds on the menu sizes as a restriction
on the seller, which actually does not make much sense from the seller’s point of view. Indeed, most of the
imaginable sellers would not hesitate to use a complex mechanism provided that it will generate more
revenue than a simple one. Moreover, many sellers are capable and willing to do sufficient research and do
find many ways to maximize their revenue. Hence, a more accurate explanation of the prevalence of simple
mechanisms would be that simplicity is a property desired by the buyer, but not the seller. This line of
thought unavoidably implies that one has to make certain behavioral assumptions on the buyer’s interaction
with the seller. In this work we propose a new simple theoretical model that combines and rationalizes the
buyer’s desire for simplicity and the seller’s desire to maximize his revenue.

Let us first illustrate with a few examples the importance of simple mechanisms, i.e., short menus, from
the buyer’s point of view. We begin with a personal story that happened to one of the authors of this paper.
This author had once a visitor who is a foodie, partial to Szechuan food. They went for dinner to a high
end Chinese restaurant, which is famous for its variety of dishes and provides very detailed menu. In that

1Optimal auction may have higher expected revenue for the values with stochastically dominated prior distribution.
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case the menu contained a list of more than 100 items each supplemented with a note describing ingredients
and a cooking method. Everything on the menu was in Chinese, since many ingredients don’t have proper
translation into English. The visitor could not understand any Chinese and asked a waiter to help him out to
choose a dish. The waiter began reading through the menu, item by item, starting with some exotic dishes,
which did not seem appealing to the visitor. He had to ask the waiter to stop and after some argument
forced the waiter to simply suggest three best dishes of the waiter’s choice. Both of us followed the waiter’s
advice and ordered one out of three recommended dishes. Eventually, everyone greatly enjoyed the dinner,
but during most of the meal the discussion was turning around the issues of complex menus and the necessity
for the restaurants to give a short recommendation list on the front page of their menu.

Our next example is related to the online shopping scenario that should be familiar to most of our readers.
Imagine, for example, that a buyer wants to buy a computer mouse on one of the online shopping platforms
(e.g., on Amazon). The buyer starts her search by seeing a single web page, say, with 18 different entries
out of more than 1000 available items on the platform. She may browse a few more pages, but she is likely
to choose a mouse from among the first three pages, even though there might be over 50 pages that she did
not check with potentially better or cheaper products than the best one she has found.

These examples lead us to study the interaction between the buyer and the seller as a dynamic procedure
in which items on the menu are shown sequentially page-after-a-page, rather than as a static single-list menu.
It is natural to assume that the buyer’s decision to continue browsing depends on the buyer’s impression of
the previous pages. For example, the buyer may see a good item at the very first page and decide to stop and
buy this item after seeing another menu page with less attractive offers than the first one. The impatient
behavior of the buyer actually has a rational explanation. Indeed, people incur non-negligible costs for their
search efforts. Thus it is not surprising that our buyer would not want to spend an hour fruitlessly browsing
990 out of 1000 items before she makes a purchase.

In this paper we study how dynamic impatient behavior of the buyer can affect the design of pricing
mechanisms. To this end we consider a simple monopoly problem, where the monopolist gradually displays a
menu to a single unit-demand buyer. Naturally, we restrict our attention only to item-pricing mechanisms2.

Model for Impatient Buyer. We consider, a typical Bayesian mechanism design setting, where the seller
has an inventory of m items and tries to sell them to a unit-demand buyer. The seller has a prior knowledge
of the buyer’s value distribution for the goods which are assumed to be i.i.d. The seller’s objective is to
maximize the revenue. The interaction between the seller and the buyer goes in consecutive stages. At each
stage t ∈ N, the buyer looks at a menu page M(t) of a certain size k, then she decides whether to continue,
i.e., to see the next menu page, or to stop browsing the menu and take the best offer from the seller she has
seen so far. In general, the decision of the buyer whether to stop STOPt = 1, or to continue STOPt = 0 at
stage t depends on the parts of the menu shown to the buyer and the buyer’s valuations ~v for the relevant
items on the menu and it may be a random variable. Similar to the model of [4] we assume that consumer
incurs a certain fixed cost ∆ when performing her search. This cost is paid per menu page rather than
per item unlike in [4]3. We further assume that the decision of the buyer STOPt ∈ {0, 1} depends on the
buyer’s utility increment compared to the previous stages. Namely, we assume that the buyer stops when
the increase of her utility after seeing page M(t) is not larger than her cost ∆.

These modeling choices4 allow us to capture large uncertainty and exploration nature of the buyer’s
behavior in the relevant settings. In this sense the size k of a menu page can be viewed as a tolerance
parameter for the buyer’s willingness to explore. On the other hand, our model choice is motivated by the
behavioral economics model of rational inattention [32]. In this theory, agent is assumed to be rational, but
having limited and rather scarce amount of attention that she can spend to access information to her benefit.

2Indeed, a lottery is incomparably harder to evaluate for the buyer than an item price: (i) every item in the support of the
lottery’s distribution requires separate consideration; (ii) humans are usually risk-averse and not very good at reasoning about
probabilistic outcomes; (iii) there is a big issue of trust in the randomness of the lottery.

3It is easy to adapt our model for the case where search costs are paid per item rather than per page by splitting the menu
page cost between k menu items.

4We would like to mention that without identical assumption on the prior distribution the revenue maximization problem
becomes quite non trivial already in the static setting, i.e., where the seller has to select up to k out of m different items to
put on a single menu page. We chose not to study the case of non identical distributions more traditionally considered in the
literature, because it would have been distracting for the interesting structural insights and simplicity of the model that could
be seen more clearly in the i.i.d. case.
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Then the rationale of the buyer is that she would want to see more of the menu only if the improvement
to her utility is worth her time, effort, or attention. Conversely, she does not want to continue if her
previous experience of browsing the menu M(t) did not improve her utility by a certain threshold amount
∆. We believe that this very simple and reasonable rule, on the one hand, captures some real features of
the consumer’s behavior, and, on the other hand, offers an easy-to-state and interesting mechanism design
problem.

1.1 Example

To illustrate the problem let us consider the following simple scenario, in which the buyer’s values are
distributed i.i.d. according to F : Prv∼F [v = 10] = 0.9,Prv∼F [v = 100] = 0.1; the menu size k = 2; search
cost ∆ = 1; and item supply is unlimited, i.e., m = ∞. Let us first consider a mechanism that posts uniform
prices on the items on each menu page M(t), where t ∈ N. Indeed, it seems reasonable to use uniform prices
because of the symmetry between all items in the supply. It is not very difficult to calculate the optimal
menu (see table 1a), which has only 2 pages.

M(1) M(2)
9$ 98.9$
9$ 98.9$

(a) Optimal menu sequence with uniform prices
per page. Expected revenue 22.8$.

M(1) M(2) M(3) M(10)
9$ 8$ 7$

· · ·
0$

97.9$ 96.9$ 95.9$ 88.9$

(b) Mechanism with non-uniform prices per menu page. The
expected revenue is 38.3133$.

Table 1: Examples of mechanisms with menu pages dynamically revealed to the buyer. All prices on the
tables are given for different items.

The revenue of the mechanism 1a is a guaranteed 9$ plus the extra surplus the seller gets, if the buyer
likes one of the expensive items on the 2nd page. In total, the revenue of mechanism 1a is 9 + Pr[∀i ∈
M(1) : vi = 10] · Pr[∃i ∈ M(2) : vi = 100] · (98.9− 9) = 9 + 0.81 · 0.19 · 89.9 = 22.8. Now consider another
mechanism with a sequence of non-uniform price menus with 20 different items described in the Table 1b.
In turns out that computing the expected revenue of mechanism 1b is not an easy numerical exercise that
involves calculations of state distributions after up to 10 steps in a certain Markov chain. Instead of doing
that, we provide much simpler approximate estimate of mechanism 1b revenue. Consider the event that out
of 20 items shown on all 10 pages there is at least one item of high value 100. Then, the buyer continues
browsing menu pages until she gets to see her first high-value item. With slightly less than 0.5 probability,
this item has a high price and the remaining item on the current page and both of the items on the next
menu page have low values, in which case the buyer stops and buys this expensive item. This estimate gives
us an approximate value of the mechanism 1b revenue of (1− 0.920) · 0.5 · 100 = 44.

We note that the revenue of the mechanism 1b (we know that mechanism 1b is not optimal) is significantly
larger than the revenue of the best uniform price mechanism 1a, and that it is not hard to modify our example
to make the gap between the non-uniform and uniform price mechanisms to be arbitrarily large. On the
other note, the above example already highlights the importance of approximate (versus exact) analysis in
our setting. Indeed, it is unlikely that we can find a mechanism with the optimal revenue, when it is already
difficult to compute the revenue of a given mechanism in such a small example.

1.2 Related Work

Inherent complexity of optimal auctions led to the study of approximately optimal simple auctions under the
name of “simple versus optimal mechanisms” [23]. The most related to our setting is a series of papers with
nearly optimal sequential posted pricing mechanism for unit-demand buyer [9, 10, 11]. The approximation
factor is 8 against optimal randomized mechanism and 2 against optimal item pricing. For the same unit-
demand pricing problem [8] designs a PTAS and quasi-PTAS for some special classes of distribution families,
although these solutions are not as simple as Sequential Pricing Mechanism (SPM) in [9, 10, 11]. Papers [10,
11] also extend single buyer results to BIC mechanisms for many buyers. However, even the multi-buyer
case of SPM is closely related to an important primitive mechanism Greedy in our work, as we show in
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Appendix A. Similar to our setting [8, 9, 10, 11] consider Bayesian setting with independent values5. The
difference with our work is that in our model the menu complexity affects utility of the buyer. On the other
note, there is a large body of literature on Bayesian mechanism design, which is too big to describe here.
For an extensive survey on the topic see [12].

The main technique in [9, 10, 11] is based on the prophet inequality, which first appeared in [31] for a
simple gambler’s problem and was first adopted to mechanism design literature in [9, 20]. For more recent
results on prophet inequality see [1, 5]. Other application of prophet inequalities include, e.g., optimization
on matroids [26], and Bayesian combinatorial auctions [16]. Closer to our problem, [15] explicitly study the
revenue gap between discriminatory and anonymous sequential posted pricing. It was shown in [9, 10, 15]
that the revenue gap between optimal Sequential Pricing Mechanism (SPM) and optimal uniform-SPM is 2.
Some of these techniques and general philosophy of approximation with simple pricing schemes is adopted
in our work.

We assume certain simple and reasonable impatient behavior of the buyer that fits into the behavioral
economics model of rational inattention [32]. Another line of work on behavioral economics models [24, 33,
2, 19, 25] in algorithmic game theory literature concerns time-inconsistent planing.

Our model for the buyer search behavior in some ways is similar to [4]. This paper belongs to a rather
rich literature in economics studying how consumer search, i.e., situations where consumers incur certain
costs to acquire information about products. We refer interested readers to [29] for a survey. Those models
usually study market outcomes and therefore have to assume simpler consumer behavior than in our case.
In contrast, we assume that the buyer has perfect knowledge about her private valuation and focus on the
dynamic interaction with the mechanism designer.

Finally, our model is closely related to dynamic mechanism design, as the buyer in our setting decides
dynamically when to leave. Computer science literature on dynamic mechanism design, e.g., [28, 3, 6],
usually consider multi-round interaction scenario with certain ex-post IC, or IR constraints. In economics
the literature on dynamic mechanism design is rather large, see [7] for a detailed survey. The closest to our
paper are the papers [17], [30]. In [17] heterogeneous durable goods are dynamically allocated to randomly
arriving impatient buyers, whereas [30] examines the allocation of a sequence of indivisible and perishable
goods to a dynamic population of patient unit-demand buyers with i.i.d. private valuations. Our setting is
simpler than [17] and [30] with only one buyer and fixed arrival time. On the other hand, we consider more
complex dynamic model for the buyer that interpolates between patient and myopic behaviors and captures
the explore-or-exploit tradeoff faced by her.

1.3 Our Results and Techniques

As we already observed in Section 1.1 some approximation analysis may be necessary in our setting. As it
turns out the problem of finding approximately optimal mechanism is tractable and we can find a relatively
simple mechanism that achieves a constant approximation to the optimal revenue (see Theorem 1). The
high-level principles behind our solution are similar to those used in mechanism 1b from Section 1.1. The
mechanism 1b and more generally a family of simple-to-analyze mechanisms with approximately optimal
revenue can be described as follows.

Definition (Bait Mechanisms B). All items on the menu can be divided into the two categories.

Bait items. Normally, these are the cheap items with a high probability to be liked by the buyer. Bait items
encourage the buyer to continue browsing the menu for multiple rounds. For each menu page M(t), at
most 2 different prices are used for the bait items.

Expensive items. These items generate revenue. Normally, the buyer would not like any of the expensive
items over the bait items at any given menu page. However, in a long run the buyer still might find
an expensive item more preferable over all previous items. For each menu page M(t), expensive items
have the same or similar price6.

5This work considers not necessarily identical distributions.
6If the distribution F satisfies certain reasonable condition (formally specified later) we can use uniform price for the expensive

items. For arbitrary distributions the seller may need to use variable prices. Still, all the prices on the expensive items will be
within a constant factor from each other and can be computed efficiently.
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Intuitively, bait items play a role of attracting the buyer to browse through many items until she sees an
expensive item that she likes. After that, with certain probability, she stops at the next page and takes that
expensive item. We are only interested in the revenue extracted when this event occurs, i.e., an expensive
item is sold. We also note that a single menu of size k also belongs to the family B, as it uses only expensive
items to extract revenue in a single round.

Techniques. At a high level, our proof proceeds by iteratively simplifying a given mechanism to the
desired format so that the seller suffers only a constant factor loss to the revenue. We start with the optimal
pricing scheme and separate prices on every menu page into bait and expensive parts. The analysis and
simplification of the expensive items is relatively easy, as we can use standard techniques to approximate
the revenue with uniform pricing. The analysis of the bait part, however, is much trickier, since we need to
care about concentration of the buyer’s utility at every time step and find a balance between the bracket
of the utility increment and our confidence estimate of the utility (as a random variable) to fit into this
bracket. One of the key ingredients in our proof is Lemma 1 that allows us to separate the analysis of the
bait items to individual menu pages. In mathematical terms, Lemma 1 states that one can find an almost
disjoint partition of confidence intervals for independent random variables provided that the sequence of these
variables is monotonically increasing. Another important step in our proof is Lemma 2 that shows that two
different prices suffice to do approximate bi-criteria optimization for (i) the buyer’s utility increment, and
(ii) the confidence bound for the utility bracket. With the help of these two lemmas, we show that a bait
mechanism can achieve similar level of control over the buyer’s utility as the optimal mechanism. Quite
surprisingly, it is not that simple to add the expensive items back to the simplified bait menu pages. The
reason is that the expensive items may interfere with the effect of bait items in such a way that the buyer
would stop because of an expensive item, but eventually she still prefers to buy a cheap bait item. Because
of this reason we have to tune the prices of the expensive items (although, only within a constant factor) to
avoid the latter problem.

2 Preliminaries

The monopolist sells m items to the impatient unit-demand buyer, i.e., the buyer is only interested in buying
at most one item. The buyer’s values for the items are drawn i.i.d. from a given distribution F , which is
known to the seller. For computational reasons we assume that F has a finite support7 on [0,∞). We write
buyer’s aggregate valuation profile as ~v ∈ R

m
≥0.

A mechanism M is defined as the sequence of menus {M(t)}∞t=1, where each M(t) is a list of at most k
item prices. For each item price (i, pi) on the menu, the buyer derives utility of ui = vi − pi, if she takes
this offer. At each stage t of the mechanism M, the buyer is shown the menu page M(t), and her utility

u(t)
def
= max(i,pi)∈M(t) ui. To simplify notations, we define u(0)

def
= 0 at stage 0. In this work we study posted

price mechanisms, i.e., we assume that the price of any item, once it is posted cannot be changed at a later
stage. Equivalently, the seller is allowed to show every item to the buyer only once. Therefore, as all items
are symmetric, we shall omit the items’ identities when describing a menu page, i.e., each menu page M(t)
will be given as a set of prices. The buyer’s decision at time t of whether to stop, or to continue to the next
page depends on her utility increment compared to the previous stage. She continues when her utility u(t)
at stage t increases at least by a given parameter ∆ compared to the previous stage, i.e., u(t) ≥ u(t−1)+∆.
Otherwise, the buyer stops and takes the best offer from the menu

⋃t
s=1 M(s). In other words, if s∗ is

the stopping time, then the buyer takes the offer (i∗, p∗) ∈
⋃s∗

t=1 M(t) : ui∗ = maxt≤s∗ u(t) and pays p∗8.

We denote by Rev(M)
def
= E~v∼Fm [Rev(M(~v))] the total expected revenue of a given mechanism M and by

Opt
def
= maxM Rev(M) the revenue of the optimal mechanism.

Greedy Buyer. To facilitate the analysis, we consider a very simple greedy price taking behavior of the
buyer, which will allow us to give a simple upper bound on the revenue of any mechanism. To obtain this
bound, we order the prices in a finite menu M = {pt}

n
t=1 in a decreasing order and show them one by

7All our non computational results extend to the case when F is arbitrary distribution with a bounded support on [0,∞).
8In case of a tie we assume that the buyer takes the highest price offer.
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one to the buyer. The buyer takes the first item that gives her non-negative utility. Then the revenue of
Greedy (~v) = max {p |pi ∈ M : vi ≥ pi }.

Definition 1 (Greedy). Greedy (M)
def
= E~v[Greedy (~v) ] for a given menu M .

We slightly abuse the previous notation and denote by Greedy (n) the maximum revenue of a menu of

size n that can be extracted from a greedy buyer, i.e., Greedy (n)
def
= max|M|≤n Greedy (M).

Uniform Pricing. We define Uprice(ℓ, p) to be the expected revenue of offering a uniform item price p in
the menu of size ℓ. Specifically, Uprice(ℓ, p) = (1 − F (p)ℓ) · p. We again slightly abuse this notation and use
Uprice(ℓ) to denote the optimal revenue achieved by posting the optimal uniform price in the menu of size ℓ.

Definition 2 (U-Pricing). Uprice(ℓ)
def
= maxp Uprice(ℓ, p).

We establish the following simple property of the uniform pricing mechanism.

Claim 1. Uprice(c · ℓ) ≤ c · Uprice(ℓ) for all c, ℓ ∈ N.

Proof. Let p be the optimal price of Uprice(c ·ℓ). Consider posting any given price p over ℓ items, Uprice(ℓ) ≥
Uprice(ℓ, p) = (1− F (p)ℓ) · p ≥ 1

c (1 − F (p)cℓ) · p = 1
c · Uprice(c · ℓ).

3 Bait Mechanisms

The main result in this section is to show that some bait mechanism from the family B gives a constant
approximation to the optimal revenue. We further show that a bait mechanism with constant approximation
to the optimum can be computed in polynomial time.

Theorem 1. Opt ≤ O(1) ·maxM∈B Rev(M). Approximately optimal M ∈ B can be computed in polynomial
time.

Proof. Let M0 be the optimal mechanism, i.e. Rev(M0) = Opt. Our proof strategy will be to simplify the
optimal mechanism such that it has a simple structure and at the same time it extracts a constant fraction
of the optimal revenue. First, we truncate the optimal menu so that the buyer goes until the end of the
menu with constant probability. Let T be the largest page number so that the probability of surviving
until time T is least 11

12 , i.e. the buyer sees menu page M0(T ) with probability at least 11
12 and sees menu

page M0(T + 1) with probability smaller than 11
12 . Let MT be the mechanism whose corresponding menus

{MT (t)}
T
t=1 contain only the first T pages of M0 (the buyer is shown an empty menu at stage T + 1). The

next claim states that the revenue achieved by MT approximates Opt within a constant factor.

Claim 2. Opt = Rev(M0) ≤ 12 · Rev(MT ).

Proof. Let τ be a random variable that indicates the menu page M0(τ) from which the buyer bought her
item (τ = 0 if nothing was bought). In the case when τ ≤ T , the revenue of MT is at least as large as the
revenue of M0 for each valuation profile with τ ≤ T .

On the other hand, if τ > T then the buyer must have seen all the first T + 1 menu pages, which
happens with probability at most 11

12 . Let us analyze a relaxed version of the optimal mechanism that is
allowed to adjust its menu pages at every stage t > T after observing the utility u(T ). Without loss of
generality, we assume that all items in ∪T

t=1M(t) get discarded and the relaxed optimum optimizes revenue
with a smaller supply of the remaining items and worse initial conditions (u(T ) ≥ u(0)). Therefore, for
each utility level u(T ) the relaxed optimal mechanism cannot extract more revenue than M0. This implies
that the revenue of the optimal mechanism obtained for {~v : τ > T } is not larger than 11

12 · Rev(M0). Thus
Opt ≤ Rev(MT ) +

11
12 · Opt, which concludes the proof.

We collect all the item prices in MT , i.e.,
⋃T

t=1 M(t), and sort them in a decreasing order. Furthermore,

we greedily pick the highest prices from
⋃T

t=1 M(t) into a set TOP while the probability that the buyer would
like any i ∈ TOP (∃i ∈ TOP : ui ≥ 0) is at most 1

12 . Here we slight abuse the notation of TOP, to denote

6



the corresponding set of items. This convention is also applied later to a menu of prices. We put TOP

expensive items into a collection Mexp of menus {Mexp(t)}
T
t=1, where Mexp(t)

def
= M(t)∩TOP. In addition, the

remaining items are placed into the collection Mbait of menus {Mbait(t)}
T
t=1, where Mbait(t)

def
= M(t) \ TOP.

The item prices in Mexp and Mbait after some modification will serve as expensive and bait items in our bait

mechanism. We denote by p̄b
def
= max{p ∈ Mbait} and by ℓ

def
= | ∪tMexp(t)|. By the definition of Mexp, we have

1−
∏

p∈Mexp

F (p) ≤
1

12
< 1− F (p̄b) ·

∏

p∈Mexp

F (p). (1)

We now bound the revenue of MT by the greedy revenue bound applied to the prices Mexp.

Claim 3. Rev(MT ) ≤ Greedy (Mexp) + p̄b ≤ 50 · Uprice(ℓ).

Proof. To obtain the first inequality we consider two cases depending on whether the buyer chose item from
(i) Mexp, or from (ii) Mbait. We observe that the expected revenue obtained from items in Mexp is not more
than Greedy (Mexp) and the expected revenue obtained from the items in Mbait is not more than p̄b.

To derive the second inequality we use Equation (1) to obtain

p̄b
12

≤


1− F (p̄b) ·

∏

p∈Mexp

F (p)


 · p̄b ≤ Greedy (Mexp ∪ {p̄b}) ≤ Greedy (ℓ+ 1) ≤ 2Greedy (ℓ) .

Note that the optimal SPM (sequential posted pricing for selling one item to many bidders) and Greedy have
the same revenue (see Appendix A for more details). We conclude the proof by applying the well-known
Fact below.

Fact ([9, 15]). SPM ≤ 2 · U-SPM = 2 · Uprice.

In the following we first analyze the bait items and show that comparable control over buyer’s utilities
can be achieved with a collection of simple menus. Let u(t) be the buyer’s utility derived from the menu
page Mbait(t) and x(t) = u(t)− t∆, for all t ∈ [T ].

Claim 4. {x(t)}Tt=1 is a non-decreasing sequence with probability at least 5
6 .

Proof. If the buyer does not like any item from Mexp, she behaves exactly the same as if she was offered menus
Mbait instead of MT . Therefore, Pr[buyer sees all Mbait(t)] ≥ Pr[buyer sees all MT (t)]−Pr[∃i ∈ Mexp : ui ≥
0] ≥ 11

12 −
1
12 = 5

6 . As the buyer gets to see all menu pages of Mbait if and only if {x(t)}Tt=1 is non-decreasing,
we conclude the proof.

In fact, we can have a separation of the supports of random variables x(t)’s with only a constant factor
loss in probability. The following lemma is the central piece of our analysis which will allow us to achieve
good control over the buyer’s utility {u(t)}Tt=1.

Lemma 1. Given n independent random variables {xi}
n
i=1. If Pr[0 ≤ x1 ≤ x2 ≤ · · · ≤ xn] ≥ 1 − ε, there

exist thresholds 0 = α0 ≤ α1 ≤ · · · ≤ αn < αn+1 = ∞ such that

Pr

[
∀i ≤

⌊
n− 1

2

⌋
, x2i+1 ∈ [α2i, α2i+2]

]
≥ 1− 2ε; Pr

[
∀i ≤

⌊n
2

⌋
, x2i ∈ [α2i−1, α2i+1]

]
≥ 1− 2ε.

Proof. Let αi be the median of xi, i.e., Pr[xi ≥ αi] ≥
1
2 and Pr[xi ≤ αi] ≥

1
2 . We only give the proof to the

first statement, as the second one can be derived by the same argument. If the property does not hold, let j
be the smallest index such that x2j+1 /∈ [α2j , α2j+2]. Then either x2j+1 < α2j , or x2j+1 > α2j+2. Note that
the set of random variables {x2i} is independent of the choice of j and realization of {x2i+1}. In the first case,
x2j ≥ α2j > x2j+1 happens with probability (for a fixed x2j+1 and random x2j) at least 1

2 . In the second
case, x2j+2 ≤ α2j+2 < x2j+1 happens with probability at least 1

2 . In either case, the monotonicity of {xi}
n
i=1

is violated with probability at least 1
2 . Therefore,

1
2 Pr[∃i, x2i+1 /∈ [α2i, α2i+2]] ≤ Pr[∃i, xi > xi+1] ≤ ε.
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We apply this lemma to the above random variables {x(t)}Tt=1, and get a non-decreasing sequence {αt}
T
t=1:

Pr

[
∀t ≤

⌊
T − 1

2

⌋
, x(2t+ 1) ∈ [α2t, α2t+2]

]
≥

2

3
; Pr

[
∀t ≤

⌊
T

2

⌋
, x(2t) ∈ [α2t−1, α2t+1]

]
≥

2

3
.

Let Me
bait and Mo

bait be the even and odd pages of Mbait respectively. Recall that Mbait is obtained by removing
ℓ TOP items from MT . Hence, either M

e
bait or M

o
bait has at least

ℓ
2 empty spaces. Without loss of generality,

we assume Me
bait has more empty spaces. For technical reasons, we remove the last page of Me

bait. Then, M
e
bait

has at least ℓ
2 − k empty spaces on all menu pages. Let ut = αt−1 + t∆ and ūt = αt+1 + t∆, then

Pr

[
∀1 ≤ t ≤

⌊
T

2

⌋
, u(2t) ∈ [u2t, ū2t]

]
≥

2

3
. (2)

In the remainder of the proof of Theorem 1 we are going to focus only on the pages of Me
bait. Let Te be

the total number of pages of Me
bait. To simplify notations, we will be using u(t), ut, and ūt to refer to the

utility derived from the menu page Me
bait(t) and the corresponding lower and upper bounds. That is,

Pr [∀t ∈ [Te], u(t) ∈ [ut, ūt]] ≥
2

3
. (3)

Observe that by our construction, ut ≥ ūt−1 + ∆ for all t ≤ Te. The Claim 5 below shows that the upper
bound ūTe

can be easily recovered by the revenue of a single menu page with k uniformly priced items.

Claim 5. ūTe
+∆ ≤ 3

2 · Uprice(k).

Proof. Recall that we remove the last page of original Me
bait. Denote the page by M . We know that with

probability at least 2
3 , the buyer’s utility after seeing menu page M is more than ūTe

+∆. Consider showing
a menu with k items priced at 0. Note that the utility of seeing this menu stochastically dominates the
utility of seeing M . Thus, the buyer has utility at least ūTe

+∆ with probability at least 2
3 . Finally, consider

showing a single page with k items priced at ūTe
+∆, we have Uprice(k) ≥ 2

3 (ūTe
+∆).

The next important step in our analysis is to modify Me
bait so that on each menu page Me

bait(t), there are
at most two different prices.

Lemma 2. Suppose Pr[u(t) ∈ [ut, ūt]] = 1 − εt. There exists a menu page M̂(t) with at most two different

prices, such that |M̂(t)| = |Me
bait(t)| and Pr[û(t) ∈ [ut, ūt]] ≥ 1− 2εt, where û(t) is utility derived from M̂(t).

Proof. Let {pi}
n
i=1 be all n item prices that appear on the page Me

bait(t). We know that

Pr [u(t) ∈ [ut, ūt]] =
n∏

i=1

F (pi + ūt)−
n∏

i=1

F (pi + ut) = 1− εt.

Let a =
∏n

i=1 F (pi + ūt) and b =
∏n

i=1 F (pi + ut). Consider n points (lnF (pi + ūt), lnF (pi + ut)) in R
2.

By the definition of a, b, the center of mass of these n points is ( ln a
n , ln b

n ). Since the center of mass must lie
inside the convex hull of these points, there exists a convex combination of just 2 points that lies below and
to the right from the center. In other words, there exists x ∈ [0, n] and i1, i2 ∈ [n] such that

x · lnF (pi1 + ūt) + (n− x) · lnF (pi2 + ūt) ≥ ln a and x · lnF (pi1 + ut) + (n− x) · lnF (pi2 + ut) ≤ ln b.

Without loss of generality, let us assume pi1 ≤ pi2 . We construct a menu page M̂(t) with ⌈x⌉ items priced
at pi1 and n− ⌈x⌉ items priced at pi2 . Then we have

Pr [û(t) ∈ [ut, ūt]] = F (pi1 + ūt)
⌈x⌉F (pi2 + ūt)

n−⌈x⌉ − F (pi1 + ut)
⌈x⌉F (pi2 + ut)

n−⌈x⌉

≥ F (pi1 + ūt) · F (pi1 + ūt)
xF (pi2 + ūt)

n−x − F (pi1 + ut)
xF (pi2 + ut)

n−x

≥ (1− εt) · a− b ≥ 1− 2εt.

The first inequality follows from the fact that F (y) ≤ 1 for all y ∈ R≥0 and F (pi1 + ut) ≤ F (pi2 + ut). The
second inequality follows from the fact that F (pi1 + ūt) ≥

∏n
i=1 F (pi + ūt) ≥ 1− εt.
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Finally, we put all the pieces together and prove Theorem 1. Briefly speaking, Lemma 2 allows us to
simplify bait menus with a good control over the buyer’s utility and suffer only constant factor losses in the
success probability and the number of expensive items we could show together with the bait items.

The next natural step is to fill the gaps in the menus of {M̂(t)}Te

t=1 with expensive items and hope that
the buyer chooses one of them. Though the idea is clean, the technical details are involved. To make
the analysis simpler and highlight the structure of the bait mechanism we make a mild assumption on the
distribution F . The complete proof of the general case is deferred to Section 4. We assume F is a (∆, η)-
spreading distribution (see Definition 3 below) and prove that the revenue achieved by a bait mechanism is
O( 1η )-approximation to the optimal revenue.

Definition 3 ((∆, η)-Spreading). A distribution F is a (∆, η)-spreading distribution if Prx∼F [x ≥ p|x ≥
p−∆] ≥ η for all p in the support of F .

For example exponential and Uniform[n] distributions are (∆, η)-spreading for small enough η and any
fixed ∆. On the other hand, normal distribution is not (∆, η)-spreading for any η,∆. The problem that
such distributions pose for our analysis is that expensive items may interfere with the effect of the bait items
causing the buyer to stop her search early, but instead of choosing such expensive item the buyer would
likely take a cheap bait item.
Proof of Theorem 1. Let p∗ be the optimal price for Uprice( ℓ2 ). We first consider an easy case when
p∗ ≤ 2ūTe

. By Claim 2 and 3, it suffices to give an upper bound on Uprice(ℓ). We have

Uprice(ℓ) ≤ 2 · Uprice (ℓ/2) ≤ 2 · p∗ ≤ 4 · ūTe
≤ 6 · Uprice(k) ≤ 6 · max

M∈B
Rev(M),

where the first inequality follows from Claim 1 and the second to the last inequality follows from Claim 5.

Now we assume p∗ > 2ūTe
. Let po

def
= p∗ − ūTe

. We consider showing one menu page over k items priced
at po. If the selling probability 1− F k(po) ≥ 1

2 , we have

Uprice(k) ≥ (1− F k(po)) · po ≥
1

2
·
p∗

2
=

p∗

4
≥

1

8
· Uprice(ℓ).

We assume 1− F k(po) < 1
2 in the following. We apply Lemma 2 to all menu pages of {Me

bait(t)}
Te

t=1 and

denote the new menu as {M(t)}Te

t=1. We fill the ( ℓ2 − k) gaps in the empty slots of M with expensive items
priced at po. Then we add an extra menu page with k expensive items priced at po at the end of M. We
denote this collection of menus as MB and the corresponding mechanism as MB. Observe that MB has
(Te + 1) menu pages. The mechanism MB is a bait mechanism with M items being the bait items.

We now show that Rev(MB) ≥ η
6 ·

(
Uprice( ℓ2 )− ūTe

)
. Let ub(t) be the buyer’s utility derived from

the bait item on page t, i.e., those on the menu page M(t). Let EXP be the set of expensive items, i.e.,
not bait items, in MB. We will study the revenue of MB only obtained when the following event occurs

E1

def
= {~v : ub(t) ∈ [ut, ūt] ∀t ∈ [Te]}. By Lemma 2 and Fact 1, we know that

Pr [E1] = Pr [∀t ∈ [Te], ub(t) ∈ [ut, ūt]] ≥
∏

t∈[Te]

(1− 2εt) ≥
1

3
, (4)

since
∏

t∈[Te]
(1− εt) ≥

2
3 by Equation (3).

Fact 1.
∏

t(1 − 2εt) ≥ 2 ·
∏

t(1− εt)− 1.

Proof. Let h(~ε) =
∏T

t=1(1 − 2εt) + 1 − 2
∏T

t=1(1− εt). Then ∂h
∂εs

= −2
∏

t6=s(1− 2εt) + 2
∏

t6=s(1− εt) ≥ 0.

It follows that the minimum of h is achieved when εt = 0 for all t, in which case h(~0) = 0.

Claim. The revenue of MB conditioned on E1 is at least η
2 ·

(
Uprice( ℓ2 )− ūTe

)
.

Proof. Let EXPt be the expensive items on page page t, i.e. EXPt = MB(t) ∩ EXP. We consider the first
time s (may not exist) that EXPs−1 interfere with the effect of bait items on page s, i.e.,

max
i∈EXPs−1

(vi − po) ≥ ub(s)−∆.
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First, let us assume that such time s ∈ N exists. Note that, conditioned on E1, the buyer always continues
to the next page if the above event does not happen at stage s. Indeed, by construction us − ūs−1 ≥ ∆
and ub(s) − ub(s − 1) ≥ us − ūs−1 by the definition of E1 and if ub(s) − maxi∈EXPs−1

(vi − po) ≥ ∆ then
ub(s) ≥ u(s− 1) + ∆.

Furthermore, we only consider the case when the buyer does not like any expensive items EXPs on page
s ∈ N. This happens with probability at least 1

2 , as 1−F k(po) < 1
2 . Denote this event by E2. Consequently,

the buyer stops at stage s when E2 happens. Let r = |EXPs−1|. Then v
def
= maxi∈EXPs−1

vi is drawn according
to F r. Observe that v is independent of E1,E2. By the definition of (∆, η)-spreading distribution, we have

Pr
v∼F r

[
v ≥ ub(s) + po

∣∣∣∣∣v ≥ ub(s) + po −∆

]
=

1− F r(ub(s) + po)

1− F r(ub(s) + po −∆)

≥
1− F (ub(s) + po)

1− F (ub(s) + po −∆)
≥ η.

That is, conditioned on the buyer stopping at stage s ∈ N, i.e. v − po ≥ ub(s) − ∆, the probability that
she buys an expensive item is at least η. Then the expected revenue is at least Pr[E2] · ηp

o ≥ η
2p

o for
all s ∈ N. We are left to give a lower bound on the probability that s exists. We claim that s ∈ N when
maxi∈EXP vi ≥ p∗. Indeed, we have, ub(s) + po −∆ ≤ ūTe

+ po −∆ ≤ p∗ for all s.
We conclude that conditioned on E1, the revenue is at least

Pr

[
max
i∈EXP

vi ≥ p∗
]
·
η

2
po ≥

η

2

(
Pr

[
max
i∈EXP

vi ≥ p∗
]
· p∗ − ūTe

)
=

η

2
·

(
Uprice

(
ℓ

2

)
− ūTe

)
.

Overall, we have the following revenue guarantee of MB,

Rev(MB) ≥ Pr [E1] · Rev(MB|E1) ≥
η

6
·

(
Uprice

(
ℓ

2

)
− ūTe

)
.

Combining this with Claim 1 and 5, we have

Uprice(ℓ) ≤ 2 · Uprice

(
ℓ

2

)
= 2 ·

(
Uprice

(
ℓ

2

)
− ūTe

+ ūTe

)

≤
12

η
· Rev(MB) + 3 · Uprice(k) ≤ O

(
1

η

)
· max
M∈B

Rev(M).

Computations. Here we discuss how to compute approximately optimal M ∈ B via polynomial time
dynamic programming (DP). We recall that in the above construction and analysis of the bait mechanism
the buyer’s utility from the bait items at different menu pages have disjoint supports, i.e., with a constant
probability we can restrict all ub(t) to lie in the specified disjoint intervals. This crucial fact allows us to
separate the pricing problem of the bait items into independent problems for each individual menu page.
Indeed, we only need to care about the upper and lower bounds of the confidence interval [ut, ūt] of ub(t) on
each menu page. Another important feature of the constructed bait mechanism is very limited interaction
between the bait and expensive items. Namely, the revenue of the bait mechanism can be described by a
single parameter – the total number of the available slots left for the expensive items.

More specifically, our DP works as follows. We dynamically fill a two dimensional array D[ūt, ℓ] ∈ [0, 1],
where ūt is the upper confidence bound on ub(t) and ℓ is the total number of the slots available for the
expensive items. The value of D[ūt, ℓ] at time t represents the highest possible success probability for the
bait items to lead the buyer from stage 1 to stage t such that ub(t) ≤ ūt and the total number of expensive
items slots is ℓ ≤ t · k. For each t we can efficiently compute D[ūt, ℓ] by setting ut = ūt−1 + ∆ and using
D[·, ·] at the previous step t− 1. Note that in each iteration we only need to search over two different prices
and over k possible sizes for the bait items on the t-th menu page. When we run out of the supply m, we
choose time T ≤ m

k and the maximal ℓ such that D[ūT , ℓ] ≥
1
3 . Then using the tables D[·, ·] for all t ≤ T

we can recursively find good schedule of bait items and corresponding confidence intervals {[ut, ūt]}
T
t=1 that

allows us to show ℓ expensive items to the buyer with constant probability.
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Finally, it is easy to calculate the optimal uniform prices for ℓ expensive items and obtain the desired
guarantee for the bait mechanism in the case when value distribution F is (∆, η)-spreading. In the case,
when the distribution F is not (∆, η)-spreading we need to do a little bit more work. However, the task is
not very difficult as from DP computations we know the distribution of ub(t + 1) and interval [ut+1, ūt+1]
for each t ∈ N and can optimize the uniform price p∗t independently for each menu page t.

4 Proof of Theorem 3.1 for General Distributions

Proof. We follow the proof of Theorem 1 as before Definition 3. Let p∗ be the optimal price for Uprice( ℓ2 ).
We first consider an easy case when p∗ ≤ 6ūTe

. By Claim 2 and 3, it suffices to give an upper bound on
Uprice(ℓ). We have

Uprice(ℓ) ≤ 2 · Uprice

(
ℓ

2

)
≤ 2 · p∗ ≤ 12 · ūTe

≤ 18 · Uprice(k) ≤ 18 · max
M∈B

Rev(M),

where the first inequality follows from Claim 1 and the second to the last inequality follows from Claim 5.
Now we assume p∗ > 6ūTe

. We consider the selling probability of showing one menu page with k items

priced at p∗

3 . If 1− F k
(

p∗

3

)
≥ 1

2 , we have

Uprice(k) ≥

(
1− F k

(
p∗

3

))
·
p∗

3
≥

1

2
·
p∗

3
=

p∗

6
≥

1

12
· Uprice(ℓ).

We assume 1 − F k
(

p∗

3

)
< 1

2 in the following. Let {M(t)}Te

t=1 be the menu pages derived from Lemma 2

for {Me
bait(t)}

Te

t=1. Let ub(t) be the buyer’s utility derived from M(t). For each t, let Gt(·) be the cumulative
density function of ub(t) conditioned on that ub(t) ∈ [ut, ūt]. Let ℓt be the number of empty slots on page

M(t). We first consider the case that ∃t, such that ∀p ∈ [p
∗

3 , p∗

2 ],

∫ ūt

u
t

(
1− F ℓt−1(p+ u)

)
dGt(u) ≤

1

2
·

∫ ūt

u
t

(
1− F ℓt−1(p−∆+ u)

)
dGt(u). (5)

Let h(i) =
∫ ūt

ut

(
1− F ℓt−1(p

∗

2 − i∆+ u)
)
dGt(u). The above inequality implies that h(i) ≥ 2h(i − 1) for all

i ∈ [Te], as p
∗ ≥ 6ūTe

≥ 6Te∆. Note that F is monotonically increasing. We have

1− F ℓt−1

(
p∗

3

)
≥1− F ℓt−1

(
p∗

2
− Te∆+ ut

)

≥

∫ ūt

ut

(
1− F ℓt−1

(
p∗

2
− Te∆+ u

))
dGt(u) = h(Te) ≥ 2Te · h(0)

=2Te ·

∫ ūt

ut

(
1− F ℓt−1

(
p∗

2
+ u

))
dGt(u) ≥ 2Te ·

(
1− F ℓt−1(p∗)

)
.

Let q1 = 1− F (p∗) and q2 = 1− F
(

p∗

3

)
. Observe that q2

q1
≥

1−F ℓt−1 ( p∗

3
)

1−F ℓt−1 (p∗)
≥ 2Te . We consider a single menu

page over k items priced at p∗

3 , then

Uprice(k) ≥(1− (1 − q2)
k) ·

p∗

3
≥ (1− (1 − 2Te · q1)

k) ·
p∗

3

≥(1− (1 − q1)
2Tek) ·

p∗

3
≥ (1− (1 − q1)

ℓ/2) ·
p∗

3
=

1

3
· Uprice

(
ℓ

2

)
,

where the last inequality follows from the fact that ℓ/2 ≤ (Te+1)k ≤ 2Tek. Thus, Uprice(ℓ) ≤ 2 ·Uprice( ℓ2 ) ≤
6 · Uprice(k).
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Now, we are left with the case that for all t ∈ [Te] there exists a pt−1 ∈ [p
∗

3 , p
∗

2 ], so that

∫ ūt

u
t

(
1− F ℓt−1(pt−1 + u)

)
dGt(u) ≥

1

2
·

∫ ūt

u
t

(
1− F ℓt−1(pt−1 −∆+ u)

)
dGt(u).

Let v be the valuation of the buyer’s favorite item over ℓt−1 items. The above inequality states that

Pr
v∼F ℓt−1

ub∼Gt


v − pt−1 ≥ ub(t)

∣∣∣∣∣v − pt−1 ≥ ub(t)−∆


 ≥

1

2
. (6)

Then, for each t ∈ [Te], we fill the empty slots on M(t) with ℓt expensive items priced at pt. Observe that∑
t ℓt ≥

ℓ
2 − k. We add an extra menu page with k expensive items priced at pTe+1 = p∗

2 at the end of M.
We denote this collection of menus as MB and the corresponding mechanism as MB. Observe that MB has
(Te + 1) menu pages. The mechanism MB is a bait mechanism with M items being the bait items.

Now we establish a lower bound on the revenue extracted by MB. Let EXP be the set of expensive items,
i.e., not bait items, in MB. We will study the revenue of MB only obtained when the following event occurs

E1

def
= {~v : ub(t) ∈ [ut, ūt] ∀t ∈ [Te]}.
By Lemma 2 and Fact 1, we know that

Pr [E1] = Pr [∀t ∈ [Te], ub(t) ∈ [ut, ūt]] ≥
∏

t∈[Te]

(1− 2εt) ≥
1

3
, (7)

since
∏

t∈[Te]
(1− εt) ≥

2
3 by Equation (3).

Claim. The revenue of MB conditioned on E1 is at least 1
12Uprice(

ℓ
2 ).

Proof. Let EXPt be the expensive items on page page t, i.e. EXPt = MB(t) ∩ EXP. We consider the first
time s (might not exist) that EXPs−1 interfere with the effect of bait items on page s, i.e.,

max
i∈EXPs−1

(vi − ps−1) ≥ ub(s)−∆.

First, let us assume that such time s ∈ N exists. Note that, conditioned on E1, the buyer always continues
to the next page if the above event does not happen at stage s. Indeed, by construction us − ūs−1 ≥ ∆
and ub(s) − ub(s− 1) ≥ us − ūs−1 by the definition of E1, and if ub(s) −maxi∈EXPs−1

(vi − ps−1) ≥ ∆ then
ub(s) ≥ u(s− 1) + ∆.

Furthermore, we only consider the case when the buyer does not like any expensive items EXPs on page
s ∈ N. This happens with probability at least 1

2 , as 1 − F k(ps) ≤ 1 − F k(p
∗

3 ) < 1
2 . Denote this event by

E2. Consequently, the buyer stops at stage s when E2 happens. Recall that ℓs−1 = |EXPs−1| and that

v
def
= maxi∈EXPs−1

vi is drawn according to F ℓs−1 . Observe that v is independent of E1,E2. By Equation
(6), we have

Pr
v∼F ℓs−1

[
v − ps−1 ≥ ub(s)

∣∣∣∣∣v − ps−1 ≥ ub(s)−∆

]
≥

1

2
.

That is, conditioned on the buyer stopping at time s, i.e., v − ps−1 ≥ ub(s) − ∆, the probability that she

buys an expensive item is at least 1
2 . Thus, the expected revenue is at least ps−1

2 ≥ p∗

6 .

To sum up, we have shown that for all s ∈ N, the expected revenue is at least Pr[E2] ·
p∗

6 ≥ p∗

12 . We are
left to lower bound the probability that such s ∈ N exists. We claim that s ∈ N when maxi∈EXP vi ≥ p∗.
Indeed, we have, ub(s) + po −∆ ≤ ūTe

+ po −∆ ≤ p∗ for all s.
We conclude that conditioned on E1, the revenue is at least

Pr

[
max
i∈EXP

vi ≥ p∗
]
·
p∗

12
=

1

12
Uprice

(
ℓ

2

)
.
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Overall, we have the following revenue guarantee of MB,

Rev(MB) ≥ Pr [E1] ·
1

12
Uprice

(
ℓ

2

)
≥

1

36
Uprice

(
ℓ

2

)
.

Combining this with Claim 1 and 5, we have

Uprice(ℓ) ≤ 2 · Uprice

(
ℓ

2

)
≤ 72 · Rev(MB) ≤ 72 · max

M∈B
Rev(M).

5 Open problems

We conclude with a few remarks. First, in the choice of our model we specifically looked for as simple
mathematical formulation as possible. Specifically our i.i.d. assumption, although it might seem restrictive,
actually helps to highlight interesting features and structure of the optimal pricing for the buyer with search
costs while keeping the mechanism design problem still interesting and nontrivial. We leave as an open
question the extension to non identical prior distribution. A good starting point would be to investigate the
monopoly problem in the static regime, where the seller can select only up to k out of m items to display
to the buyer. For the dynamic setting, it would be interesting to see if the decomposition into “bait” and
“expensive” items still holds and, if it holds, which features of the distributions matter for such separation.

Second, our model is unavoidably built on a specific assumption of the buyer search behavior. There could
be many reasonable extensions of the model in the latter regard, e.g., there could be some fixed probability of
stopping no matter what the buyer’s utility increment was, or the buyer’s cost ∆ and exploration tolerance
parameter k may be random variables, or the buyer may be becoming more patient as the search successfully
progresses.

Third, the approximation guarantees obtained in our work are rather large and not optimized even within
the current analysis. Maybe we could improve the approximation constant in Theorem 1 to a number below
100 or even 50, but using the current technique it still will be a large constant and probably too far from the
true value. Thus it would be great to see a different approach and techniques with a better approximation
guarantees.

Finally, in many settings the seller actually may observe more about buyer’s preferences, than what we
described in our model. E.g., in almost every online shopping scenario the seller can observe the “cart” of
the buyer, i.e., the current most favorite item of the buyer. This observation may in principal change the
seller’s algorithm. It would be interesting to see how such extra information can affect the seller’s pricing
policy.
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A Connection with Multi-buyer SPM

There is a close relationship between Greedy and the well-known sequential posted pricing (SPM) mech-
anism. In sequential posted pricing mechanism there is 1 item for sale to n i.i.d. buyers. A SPM is
characterized by a price vector ~p ∈ R

n. The buyers come in a sequence, when the t-th comes, we offer a
take-it-or-leave-it price pt. The expected revenue of this mechanism is denoted by SPM(~p). Let SPM(n) be
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the optimal revenue one can collect by using sequential posted pricing. We use U-SPM if we restrict the
posted prices to be the same for all buyers.

It is easy to see that any mechanism for Greedy induces a mechanism for SPM, and vice versa.

Claim 6. Greedy (n) = SPM(n).

Proof. Let ~p be the optimal price vector for Greedy (n). We use the same prices in the sequential posted
pricing mechanism. For any value profile ~v ∈ R

n items, we map item j in the setting with a greedy buyer
to the j-th buyer’s value in the 1-item-n-buyer setting. It is easy to see that the greedy buyer picks item
j if and only if the j-th buyer wins in the sequential posted pricing mechanism. The same argument holds
reversely, i.e. any sequential posted pricing mechanism also induces a menu for a greedy buyer, from which
we conclude the statement.

Furthermore, the argument also applies if we restrict the posted prices to be a uniform one for both
Greedy and SPM. Observe that with uniform price, the revenue extracted from a greedy buyer is the same
as using uniform pricing mechanism. Hence, the optimal revenue of U-SPM equals to the optimal revenue
of uniform pricing mechanism.

Claim 7. Uprice(n) = U-SPM(n).
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