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Abstract

We apply linear network coding (LNC) to broadcast a block of data packets from one sender to a set of

receivers via lossy wireless channels, assuming each receiver already possesses a subset of these packets and

wants the rest. We aim to characterize the average packet decoding delay (APDD), which reflects how soon

each individual data packet can be decoded by each receiver on average, and to minimize it while achieving

optimal throughput. To this end, we first derive closed-form lower bounds on the expected APDD of all LNC

techniques under random packet erasures. We then prove that these bounds are NP-hard to achieve and, thus, that

APDD minimization is an NP-hard problem. We then study the performance of some existing LNC techniques,

including random linear network coding (RLNC) and instantly decodable network coding (IDNC). We proved that

all throughput-optimal LNC techniques can approximate the minimum expected APDD with a ratio between 4/3

and 2. In particular, the ratio of RLNC is exactly 2. We then prove that all IDNC techniques are only heuristics

in terms of throughput optimization and cannot guarantee an APDD approximation ratio for at least a subset

of the receivers. Finally, we propose hyper-graphic linear network coding (HLNC), a novel throughput-optimal

and APDD-approximating LNC technique based on a hypergraph model of receivers’ packet reception state. We

implement it under different availability of receiver feedback, and numerically compare its performance with

RLNC and a heuristic general IDNC technique. The results show that the APDD performance of HLNC is better

under all tested system settings, even if receiver feedback is only collected intermittently.
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I. INTRODUCTION

A. Background

In this paper, we consider a wireless broadcast problem where a sender wishes to broadcast a block

of K data packets to a set of N receivers using linear network coding (LNC) [1]–[5]. Each receiver is

assumed to already possess a subset of the data packets and still wants all the remaining data packets. The

sender transmits, as LNC coded packets, linear combinations of the data packets, so that the receivers

can decode their missing data packets through solving linear equations. We are interested in studying two

interrelated performance metrics, namely throughput and average packet decoding delay (APDD) across

the receivers: Throughput measures the time it takes to deliver the whole data block to all receivers.

APDD measures the average time it takes each receiver to decode each data packets in the block. For

example:

Example 1. Consider two receivers, r1 and r2, and a block of three data packets {p1,p2,p3}. r1

already has p1 and r2 already has p2. They both want the remaining two data packets. Compare two

LNC schemes:

• Scheme-1: send p1 + p2, and then p3;

• Scheme-2: send p1 + p2 + p3, and then p1 + 2p2 + 3p3.

Both schemes allow the two receivers to fully decode after two transmissions. Thus, they offer the same

throughput. However, they offer different APDD: Scheme-1 allows both receivers to decode one data

packet after both the first and second transmissions, yielding an APDD of 1+1+2+2
4

= 1.5. But Scheme-2

does not allow any packet decodings after the first transmission, yielding a larger APDD of 2+2+2+2
4

= 2.

A lower APDD implies faster and smoother data delivery to the application layer within each data

block, and is particularly important in applications where individual data packets are informative. Thus,

we are interested in the the minimization of APDD and its relation to throughput. However, as we will

review next, APDD minimization is an open problem in the literature.
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B. Some Existing LNC Classes

A well-known class of LNC techniques, which will be studied in this paper, is the class of throughput-

optimal LNC techniques, whose packets are innovative (bring new information) to every receiver who

has not yet fully decoded all the packets in the block. Throughput-optimal packets can be generated either

randomly (i.e., the classic random LNC (RLNC) technique [4], [6], [7]) or deterministically (e.g., by

solving a hitting set problem [8], or by solving a matroid graphic representation problem [9]). All these

throughput-optimal techniques could suffer from large APDD due to block decoding: each receiver is

only able to decode all data packets at once after receiving sufficient linearly independent coded packets.

In other words, there is generally no early packet decodings, which would help reduce APDD. In order

to provide early packet decodings without sacrificing throughput, Keller et al proposed in [10] a two-

step coding technique that adds extra data packets to an instantly decodable but throughput-suboptimal

coded packet for throughput optimality. But this technique was not analytically studied. Indeed, the

APDD of throughput-optimal LNC techniques has not been well studied. Only recently, Yu et al proved

in [11] that, when there is no packet erasure, RLNC is an APDD 2-approximation technique. That is,

its APDD is at most twice of the minimum possible APDD that any LNC techniques can offer.

Another well-known class of LNC techniques, which will also be studied in this paper, is instantly

decodable network coding (IDNC). This class aims at reducing APDD through early packet decodings

[12]–[16]. The approach is to send, as coded packets, binary XORs of selected data packets, so that

a subset of (or all) receivers can instantly decode one wanted data packet from each coded packet. It

is well known that IDNC techniques are generally not throughput optimal [17], [18]. Moreover, [15]

proved that it is intractable to maximize the throughput subject to IDNC constraints. This suboptimal

throughput, in turn, can hurt APDD, for it brings large delays to data packets decoded in the final stage

of the broadcast. Although a large body of heuristics have been developed as a remedy [15], [19]–[21],

it remains an open problem whether or not IDNC techniques are able to at least approximate the optimal

throughput and APDD. Only recently, Yu et al proved in [11] that the class of strict IDNC techniques

[12], [14], [16] are not APDD-approximation techniques even when there are no packet erasures.

There are also LNC techniques that strike a balance between throughput and APDD [22]–[24]: They
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partition the packet block into sub-blocks and broadcast each sub-block separately, so that data packets

from earlier sub-blocks can be decoded sooner. However, these techniques are generally heuristic. Thus,

they will not be studied in this paper.

We also note that index coding (IC) considers a more general system setting than this paper, which

assumes that every receiver has a subset of the K data packets and wants one [25]–[28] or some [29]

of the rest. While throughput optimization has been extensively studied in the IC literature, APDD

minimization has not previously been considered in the IC literature to the best of our knowledge.

Moreover, most works in the IC literature assume no packet erasures. Therefore, our study may also

provide new insights into the corresponding problem in the IC context.

C. Contributions

In summary, APDD minimization for erasure-prone LNC wireless broadcast systems is a highly

nontrivial problem. There have not been any comprehensive studies on the APDD performance of LNC

techniques, nor any optimal or approximation techniques, only heuristics. We are thus motivated to close

this knowledge gap. Specifically, in this paper we achieve the following main contributions:

1) We reveal the APDD performance limits of LNC techniques by deriving closed-form lower bounds

on the expected APDD1 of LNC techniques under random packet erasures;

2) We prove that APDD minimization is NP-hard;

3) We prove that RLNC is an APDD 2-approximate technique. We also prove that all throughput-

optimal LNC techniques can approximate the minimum expected APDD with a ratio between 4/3

and 2;

4) We prove that all IDNC techniques cannot approximate the optimal throughput, and show that they

cannot guarantee an APDD approximation ratio for at least a subset of the receivers;

5) We propose hypergraphic linear network coding (HLNC), a novel throughput-optimal and APDD-

approximation LNC technique built upon a novel hypergraph representation of receivers’ knowl-

edge space. Extensive simulations show that it outperforms RLNC and a heuristic general IDNC
1By “average” packet decoding delay, we mean the average of the decoding delay of every data packet at every receiver in a given

instance of the problem. By “expected” APDD, we mean the statistical average of the APDD of all possible instances of the problem
generated under random packet erasures.
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technique in terms of APDD under all tested system parameter settings. HLNC is implementation-

friendly, for it does not require NP-hard coding decision making nor receiver feedback after every

transmission.

The rest of this paper is organized as follows:

• Section 2 defines the system model, notations, and terminologies;

• Section 3 studies the fundamental features of APDD, including lower bounds on the expected

APDD, and the NP-hardness of the APDD minimization problem;

• Section 4 studies the performance of RLNC and IDNC techniques;

• Section 5 proposes HLNC and discusses its implementations under different availability of receiver

feedback;

• Section 6 numerically compares the APDD performance of HLNC with RLNC and a general IDNC

technique. It also numerically demonstrates the feedback reduction capability of HLNC;

• Section 7 concludes the paper.

Remark 1. We note that preliminary results of some of the above contributions have been derived in

[11] under the limited setting without packet erasures. As we will see later, their extension to settings

with packet erasures is non-trivial, and requires completely different derivation approaches.

II. SYSTEM MODEL

A. System Setting

We consider a block-based wireless broadcast scenario, in which the sender wishes to deliver a block

of K data packets, denoted by P = {pk}Kk=1, to a set of N receivers, denoted by R = {rn}Nn=1. All

data packets are vectors of the same length, with entries taken from a finite field Fq. Time is slotted,

and in each time slot the sender broadcasts a data or coded packet to all receivers. The wireless channel

between the sender and each receiver rn is independent of each other, and is subject to Bernoulli random

packet erasures with a probability of Pe,n > 0.

We assume that each receiver has already received a subset of packets in P , and still wants all the

rest. Such a packet reception state could be the consequence of previous uncoded transmissions [7],
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p1 p2 p3 p4 p5 p6

r1 1 1 1 0 0 0
r2 0 0 1 1 1 0
r3 1 0 0 0 1 1

(a) SFM A
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v6

v1

v2
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v6

e1

e2

e3

(b) Hypergraph model H

Fig. 1: An example of state feedback matrix A and its hypergraph representation H. Vertices in H are strong-colored, such

that all vertices in the same hyperedge have different colors.

and is a common assumption in network coding and index coding literature [25]–[29]. This state can

be summarized by a binary N ×K state feedback matrix (SFM) A. Here A(n, k) = 1 means rn has

missed pk and still wants it, and A(n, k) = 0 means rn already has pk. The set of data packets wanted

by rn is denoted by Wn. Its size is denoted by wn. An example of A is given in Fig. 1(a). There are 6

data packets and 3 receivers. Receivers {r1, r2, r3} all want 3 data packets.

The sender then applies an LNC technique to help receivers recover their missing data packets. In

each time slot, it broadcasts an LNC packet X , which takes the form of:

X =
∑

pk∈M

αkpk, (1)

whereM is a subset of P and is called the coding set of X , and {αk} are non-zero coding coefficients

chosen from Fq, i.e., {αk} ⊆ Fq \ {0}. Similarly, X is called a coded packet of M. Moreover, if {αk}

are chosen uniformly at random from Fq \ {0}, then X is called a random-coded packet of M. When

Fq is sufficiently large, any receiver who is missing k data packets in M can decode them from a set

of k random-coded packets of M w.h.p.

B. Definitions and Terminologies

Average packet decoding delay (APDD) measures how fast each data packet is decoded on average.

Given an instance of the broadcast, the APDD of receiver rn is the average time it takes for rn to decode
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a data packet, and is denoted by Dn:

Dn =
1

wn

∑
∀k:pk∈Wn

un,k, (2)

where un,k is the index of the packet transmission after which rn decodes pk. The APDD across all

receivers is similarly defined as

D =
1

sum(A)

∑
∀k,n:A(n,k)=1

un,k, (3)

where sum(A) is the sum of the entries of A, and is equal to the number of ones in A. The expected

APDD E[Dn] of a receiver (resp. the expected APDD E[D] across all receivers) under random packet

erasures can then be derived by averaging Dn (resp. D) over all possible packet erasure patterns.

We further denote by Un the number of transmissions after which receiver rn decodes all its wanted

data packets. Then, U , maxn∈[1,N ] Un is the block completion time (BCT). We use BCT to measure

system throughput, as throughput is inversely proportional to BCT. The expected Un and U under

random packet erasures are denoted by E[Un] and E[U ], and can be derived by averaging Un and U

over all possible packet erasure patterns.

We define an APDD β-approximation LNC technique as follows:

Definition 1. An LNC technique is an APDD β-approximation technique if for any given SFM A and

packet erasure probabilities {Pe,n}Nn=1, the expected APDD E[D] of using this technique is at most β

times of the minimum expected APDD E[Dmin] that any LNC techniques can offer.

Similarly, we define an throughput-approximation LNC techniques as follows:

Definition 2. An LNC technique is a throughput β-approximation technique if for any given SFM A

and packet erasure probabilities {Pe,n}Nn=1, the expected BCT E[U ] of using this technique is at most

β times of the minimum expected BCT E[Umin] that any LNC techniques can offer.
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III. FUNDAMENTAL APDD PERFORMNACE LIMITS

In this section, we will derive lower bounds on the expected APDD of LNC techniques. We will then

prove that such lower bounds are NP-hard to achieve, which will indicate that APDD minimization is

an NP-hard problem.

Our approach is to investigate the performance and existence of a “perfect LNC technique”:

Definition 3. A LNC technique is perfect if it allows every receiver who is still missing packet(s)

to decode one new wanted data packet whenever this receiver successfully receives a coded packet

generated using this technique.

For example, for the A in Fig. 1(a), a perfect LNC technique could send 3 coded packets when there

are no packet erasures: X1 = p1⊕p4, X2 = p2⊕p5, and X3 = p3⊕p6, where ⊕ is the binary XOR

operation. {Xu}3u=1 allow every receiver to decode one wanted data packet in every transmission. For

example, r1 can decode p1 from X1 by performing X1 ⊕ p4, as it already has p4.

A. Lower Bound on The Expected APDD

It is intuitive that the APDD of the perfect LNC technique is a lower bound on the APDD of LNC

techniques. We thus denote by Dn (resp. D) the APDD of receiver rn (resp. across all receiver) using

the perfect LNC technique. Their expectations under random packet erasures, namely, E[Dn] and E[D],

are thus the lower bounds on the corresponding expectations across all LNC techniques.

The value of E[Dn] is stated in the following theorem:

Theorem 1. When coded transmissions are subject to random packet erasures with a probability of

Pe,n, the expected APDD of a receiver rn who wants wn data packets is lower bounded as:

E[Dn|when rn wants wn data packets] =
wn + 1

2(1− Pe,n)
(4)

The proof is given in Appendix B. In the rest of the paper, we will simplify the notation for such

conditional expectations to a form of E[A|(b, c, · · · )], which stands for the expectation of random variable
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A when the values of some random variables are given as b, c, · · · . For example, the expectation in the

above equation can be simplified to E[Dn|wn].

Then, by averaging the APDD of all receivers with their wn as weights, we obtain a lower bound on

the expected APDD D of any A under any {Pe, n}:

Corollary 1. The expected APDD of a wireless broadcast instance with given A and {Pe,n} is lower

bounded as:

E[D|{wn}Nn=1] =

∑N
n=1

w2
n+wn

2(1−Pe,n)∑N
n=1wn

, (5)

where {wn} is obtained from A.

Then, by assuming that A is the result of one round of uncoded transmission of the K data packets

and that all receivers experience the same packet erasure probability Pe, we obtain a closed-form relation

between the APDD performance limit of LNC techniques and system parameters:

Theorem 2. Given system parameters K, N , and Pe, the overall APDD performance of every NC

technique is lower bounded by E[D], where

E[D] =
1

2(1− Pe)

(
1 + E

[∑N
n=1w

2
n∑N

n=1wn

])
, {wn}Nn=1 ∼ B(K,Pe) (6)

≈ KPe − Pe + 2

2− 2Pe

, when N is sufficiently large (7)

Here each wn follows a binomial distribution of B(K,Pe) because in the uncoded transmission round

rn will miss each data packet with a probability of Pe. (6) is a straightforward extension of (5). We

will prove in Appendix C that E
[∑N

n=1 w
2
n∑N

n=1 wn

]
≈ KPe − Pe + 1 when N is sufficiently large, which will

prove the approximation in (7).

Remark 2. Under the more general setting with heterogeneous {Pe,n}, we can apply the smallest (resp.

largest) Pe,n to (7) for a lower (resp. upper) bound on the expected APDD of the perfect LNC technique.

To verify the accuracy of the approximation in (7) , we simulate the perfect LNC technique as follows:

We first send each data packet uncoded once. Then in each time slot, instead of finding a perfect coded
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packet, we simply give each unfinished receiver one new wanted data packet if its channel is “on”.

The APDD of this simulated technique is thus D. We have conducted extensive simulations to obtain

the numerical average of D, and compared it with (7). The results under K = 15 and Pe = 0.2 are

presented in Fig. 2, which shows that our approximation quickly converges to the numerical average

when N is only 20. Another interesting observation from both the graph and (7) is that the APDD of

the perfect LNC technique does not increase with the number N of receivers.
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D

E[DR] sim. E[D] sim.

E[DR] approx. (15) E[D] approx. (7)

Fig. 2: The proposed closed-form approximation of E[D] and E[DR] and their comparison to the simulated values.

B. The Hardness of Minimizing the Expected APDD

In this section, we prove the NP-hardness of minimizing the expected APDD of a given A, i.e., E[D].

Our approach is through contradiction: If there exists an efficient coding algorithm that minimizes E[D],

then this algorithm can efficiently determine the achievability of E[D] as well by simply comparing

the two quantities. Moreover, such efficiency will hold for the special case where {Pe,n} = 0, which

will reduce E[D] and E[D] to D and D, respectively. Thus, the achievability of D can be efficiently

determined. Therefore, to prove that it is hard to minimize E[D], it suffices to prove that it is hard to

determine the achievability of D when {Pe,n} = 0.

To this end, we define a perfect LNC solution, denoted by Sp, as a set of ordered LNC coded packets

that allows every receiver rn to decode a new wanted data packet in every transmission, until rn has
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decoded all its wanted data packets. To avoid ambiguity, the coded packets do not contain data packets

that have already been decoded by all receivers.

It is clear that D can only be achieved by Sp. Thus, to prove that it is hard to determine the

achievability of D when {Pe,n} = 0, it suffices to prove that it is hard to determine the existence of Sp

when {Pe,n} = 0. We now prove this through a reduction to a hypergraph strong coloring problem.

A hypergraph H is defined by a pair (V , E), where V is the set of vertices, and E is the set of

hyperedges. Every hyperedge e ∈ E is a subset of V with size |e| > 1. A hypergraph is r−uniform

if every hyperedge e ∈ E has a size of r. A size-k strong coloring of H is a partition of V into k

subsets {Vi}ki=1, such that |Vi ∩ e| 6 1 for any e ∈ E . In other words, if we assign k different colors

to the vertices in {Vi}ki=1 respectively, every color appears at most once in every hyperedge. We prove

in Appendix A that the strong hypergraph coloring problem is hard:

Lemma 1. It is NP-complete to determine whether an r−uniform hypergraph is size-r strong colorable

or not, for any r > 3.

We then build a reduction from the problem of finding a size-r strong coloring for an r-uniform

hypergraph to the problem of finding a perfect solution for a given instance of SFM A. Given an r-

uniform hypergraph H(V , E) we construct an instance of our problem as follows. For each vertex vk

we introduce a data packet pk, and for each hyperedge en we introduce a receiver rn that wants the

data packets/vertices incident to en. In the resulting SFM A, every receiver wants r data packets. A

3-uniform hypergraph H and the corresponding SFM A are depicted in Fig. 1.

Bases on this construction, we can prove the hardness of finding a perfect solution:

Theorem 3. It is NP-complete to determine whether there exists a perfect solution for a given instance

A of the APDD minimization problem when there are no packet erasures.

Proof. First, we prove that a size-r strong coloring {Vi}ri=1 of H implies a perfect solution Sp for A in

our problem. Since for every hyperedge it holds that |en| = r and there are r colors, we have |Vi∩en| = 1.

Let {Mi}ri=1 be the sets of packets corresponding to {Vi}ri=1. Then, we have |Mi ∩Wn| = 1 for every

receiver rn. Hence, the sum (e.g., binary XOR) of all data packets from Mi is a coded packet, denoted



12

by Xi, that allows every receiver to decode a wanted data packet. Therefore, {Xi}ri=1 together form a

perfect solution Sp to our problem.

Next, we prove that a perfect solution Sp for the A in our problem implies a size-r strong coloring

{Vi}ri=1 of H. Since every receiver wants r data packets, Sp contains r network coded packets {Xi}ri=1.

In order to allow every receiver to decode one wanted data packet from Xi, the coding set Mi of Xi

must contain exactly one wanted data packet of every receiver, i.e., |Mi ∩Wn| = 1. Let {Vi}ri=1 be the

sets of vertices corresponding to {Mi}ri=1. Then it holds that |Vi ∩ en| = 1 for every hyperedge. Thus,

{Vi}ri=1 is a size-r strong coloring of H.

Our construction above indicates that an r-uniform hypergraph is size-r strong colorable if and only

if there exists a perfect solution of the instance A of our problem. This result, together with Lemma 1,

prove the NP-hardness of determining the existence of Sp.

Since D can only be achieved by a perfect solution, the above theorem immediately yields the

following corollary:

Corollary 2. It is NP-compete to determine whether D is achievable for a given instance A of the

APDD minimization problem when there are no packet erasures.

As we have discussed at the beginning of this section, a coding algorithm that can efficiently minimize

E[D] can also efficiently determine the achievability of D when there are no packet erasures. This

relation, together with the above corollary, yields the hardness of APDD minimization problem:

Theorem 4. It is NP-hard to minimize the expected APDD of a given A when coded transmissions are

subject to random packet erasures.

Given the NP-hardness of APDD minimization, it becomes critical to investigate whether APDD

can be approximation or not, as well as its impacts on throughput optimality. To this end, we study

two well known classes of LNC techniques that aim at throughput optimization and APDD reduction,

respectively.
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IV. EXISTING TECHNIQUES

In this section, we study the throughput and APDD performance of two classes of LNC techniques,

including RLNC, which is throughput optimal, and IDNC, which aims at APDD reduction. We will de-

rive the expected APDD of RLNC, and use the results to prove that RLNC is an APDD 2-approximation

technique. On the other hand, we will prove that IDNC techniques cannot approximate throughput, and

can not guarantee an APDD approximation ratio for at least a subset of the receivers.

A. RLNC

Since RLNC is throughput optimal and requires block decoding, a receiver who wants wn data packets

is able to decode them altogether after receiving wn coded packets, which is expected to take wn

1−Pe
coded

transmissions. Hence, the expected APDD of rn under RLNC is:

E[DR,n|wn] =
wn

1− Pe,n

(8)

where the “R” in the subscript of DR,n stands for RLNC.

Averaging E[DR,n|wn] over all receivers yields the expected APDD of a given A under RLNC:

E[DR|{wn}Nn=1] =
E[DR,1|w1]w1 + E[DR,2|w2]w2 + · · ·+ E[DR,N |wN ]

w1 + w2 + · · ·+ wN

=

∑N
n=1

w2
n

1−Pe,n∑N
n=1wn

(9)

Then, by assuming that A is the consequence of one round of uncoded transmissions of the K data

packets, we obtain the following theorem on the overall expected APDD performance of RLNC:

Theorem 5. Given system parameters K, N , and Pe, the overall APDD performance of RLNC is:

E[DR] =
1

1− Pe

E

[∑N
n=1w

2
n∑N

n=1wn

]
, {wn}Nn=1 ∼ B(K,Pe) (10)

≈ KPe − Pe + 1

1− Pe

, when N is sufficiently large (11)

The accuracy of our approximation is again confirmed by the simulation results plotted in Fig. 2.
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By comparing the above 3 expected APDD under RLNC with the corresponding lower bounds ((4),

(5), (7)), we can easily verify that the ratio between the expected APDD of using RLNC and the lower

bound converges to 2 from below with increasing wn or K. Thus, the expected APDD of using RLNC

is at most twice of the minimum expected APDD. We thus have the following theorem:

Theorem 6. RLNC is an APDD 2-approximation technique when coded transmissions are subject to

random packet erasures.

Since RLNC requires block decoding, any throughput optimal LNC techniques that can provide early

packet decodings will outperform RLNC in terms of APDD. Thus, all LNC techniques can approximation

APDD with a ratio of at most 2. Next, we will raise an example in which this ratio is 4/3. These two

results yields the following bounds on the approximation ratio of throughput-optimal LNC techniques:

Theorem 7. The APDD approximation ratio of all throughput-optimal LNC techniques is between 4
3

and 2.

Proof. Since approximation ratio is the highest ratio among all settings, to prove that β > 4
3
, it suffices

to show an instance in which the APDD of all throughput-optimal LNC techniques is 4
3

times of the

minimum.

Consider an instance A of the APDD minimization problem with 2 data packets and N receivers.

Receiver r1 only wants p1, receiver r2 only wants p2, and all the remaining N−2 receivers want both p1

and p2. Further assume that {Pe,n}Nn=1 = 0, so that E[D] = D. When N is sufficiently large, the APDD

is minimized if p1 and p2 are transmitted separately using two transmissions. This yields Dmin = 1.5.

On the other hand, if throughput-optimal techniques are applied, p1 and p2 must be combined in the

first transmission due to r1 and r2, which does not allow the remaining N − 2 receivers to decode in

the first transmission. These receivers can only decode in the second transmission. Consequently, the

APDD is 2 when N is sufficiently large, which is 4
3

times of the minimum.
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B. IDNC

A common feature of IDNC techniques, including strict IDNC (S-IDNC) [12], [16], [30] and general

IDNC (G-IDNC) [13], [15], [31], [32], is that every coded packet is the binary XOR of a subset of the

data packets. Another common feature of IDNC techniques is “memoryless decoding”: the receivers

discard the coded packets that are innovative but not instantly decodable rather than storing them for

future decodings2. These features reduce decoding complexity, and motivates the sender to send coded

packets that are instantly decodable to as many receivers as possible. Such decoding helps reduce APDD,

but at a cost of an unbounded degradation of the throughput:

Theorem 8. IDNC techniques are not throughput-approximation techniques.

Proof. If IDNC techniques are throughput-approximation techniques, then when there are not packet

erasures, the BCT UI provided by IDNC techniques should be within a constant multiple of the minimum

BCT Umin that any LNC techniques can offer. Thus, to prove the theorem, we only need a counter

example in which UI is not within a constant multiple of Umin.

Our counter example involves two types of SFMs:

• A1(K): every pair of data packets is wanted by a different receiver. Thus, there are N = K(K−1)
2

receivers in total;

• A2(K,m): every data packet is wanted by m different receivers. Every pair of data packets is

wanted by a different receiver. Thus, there are N = mK + K(K−1)
2

receivers in total.

Note that Umin = 2 for A1(K), which can be achieved by any throughput-optimal LNC techniques.

We prove the theorem by proving that UI = dlog2Ke + 1 for A1(K), where dxe denotes the smallest

integer greater than x.

Given A1(K), the transmission starts by sending as c1 the XOR of an arbitrary m1 > 1 data packets

in A1(K). The resulted SFM consists of two sub-SFMs: 1) an A1(m1), which contains the m1 data

packets and the receivers who want 2 data packets from c1 and thus discard c1; 2) an A2(K−m1,m1),

which contains the remaining K−m1 data packets and the remaining receivers, which either has decoded

2There are recent works in IDNC literature that allow the receiver to store at least one innovative but not instantly decodable packet
[19].
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one wanted data packet from c1 and still wants one data packet from K −m1, or wants 2 data packets

from K −m1.

These two sub-SFMs are independent in the sense that an IDNC coded packet of A1(m1) and an

IDNC coded packet of A2(K −m1,m1) can be XOR-ed and sent without affecting their decodability

at their targeted receivers.

Similarly, we can show that after sending the XOR of any arbitrary m3 data packets from A2(K −

m1,m1), the resulted SFM consists of two independent sub-SFMs: an A1(m3) and an A2(K −m1 −

m3,m1 +m3).

Continuing the logic, after the u-th transmission (u > 1), A1(K) is split into 2u−1 type-1 sub-SFMs

and 2u−1 type-2 sub-SFMs. Only sub-SFMs that consists of a single data packet can be completed in

one coded transmission and be removed. The evolution of A1(K) is demonstrated in a layered graph

in Fig. 3. The u-th layer corresponds to the SFM before the u-th coded transmission. The total number

of coded transmissions is thus the number of layers plus one. It is clear that the minimum number of

layers is dlog2Ke, which is achieved by XOR-ing half of the data packets from each sub-SFM. Thus,

UI = dlog2Ke+ 1.

Our theorem indicates that all IDNC techniques are only heuristics for BCT minimization and

throughput maximization. A large BCT can, in turn, hurts APDD, as there are data packets decoded

with large delays. In the example raised in the above proof, when IDNC techniques are applied, there

are receivers who decode their second wanted data packet after dlog2Ke+1 transmissions. Even if they

decode their first wanted packet after the first transmission, their APDD is still as high as dlog2Ke /2+1,

which can be unlimitedly larger than an APDD of 2 offered by RLNC. Therefore, IDNC techniques

cannot approximate the APDD of at least a subset of the receivers. However, it is still an open problem

whether IDNC techniques can approximate the APDD across all receivers.

V. AN IMPROVED APDD APPROXIMATION LNC TECHNIQUE

In this section, we propose hypergraphic LNC (HLNC), a novel low complexity throughput-optimal

and APDD-approximation technique built upon a novel hypergraph model of receivers’ packet reception
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Fig. 3: The decoding evolution of A1(K). (Note that ’*’s are arbitrary positive integers whose values depend on the coded

packets.)

state. Coded packets generated by HLNC have the following two features:

1) every coded packet is innovative to every receiver; and

2) every coded packet is able to offer at least one early packet decoding.

The first feature ensures the throughput-optimality and the APDD-approximation of HLNC. The

second feature further ensures that both the APDD and decoding complexity of HLNC are lower than

RLNC, as RLNC requires block decoding.

A. The Basic Form of HLNC

We introduce our technique by first generalizing the concept of Wants set Wn:

Definition 4. The Wants set Wn of a receiver rn is the set of data packets not yet decoded by rn.

The subtle yet important difference between this new definition and the previous one is that the new

one explicitly includes in Wn the received (from coded packets) but undecodable data packets.

We then model the packet reception state {Wn} using the following hypergraph.
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Definition 5. In the hypergraph model H(V , E) of the receivers’ packet reception state, each vertex

v ∈ V represents a data packet, i.e., vk ↔ pk. Each hyperedge e ∈ E represents the Wants set of a

receiver, i.e, en ↔Wn, by connecting the data packets/vertices in Wn.

An example of H is plotted in Fig. 1(b), where 6 data packets and 3 receivers are modelled as a

hypergraph with 6 vertices and 3 hyperedges.

We further denote by Vc a minimal vertex cover of H, and denote the corresponding packet set asMc.

Vc is a subset of V satisfying that 1) it is incident to every hyperedge, i.e., |en ∩ Vc| > 0 ∀n ∈ [1, N ],

and 2) there is a least one single incidence, i.e. ∃n : |en∩Vc| = 1. Due to these two features, a properly

generated (will be discussed soon) coded packet of Mc has the following two properties:

1) It is innovative to every receiver, because every receiver wants at least one data packet from Mc,

i.e., |Wn ∩Mc| > 0 ∀n ∈ [1, N ];

2) It allows at least one receiver to instantly decodable one wanted data packet, because there is at

least one receiver who only wants one data packet from Mc, i.e., ∃n : |Wn ∩Mc| = 1.

Therefore, the core of HLNC is to keep updating H and sending coded packets generated using Vc.

The basic HLNC technique is outlined in Algorithm 1. A complete example of the basic HLNC is given

in Example 2 at the end of this section.

Algorithm 1 HLNC Wireless Broadcast
1: Input: the initial packet reception state H;

2: while Not all receivers have decoded all wanted data packets do

3: The sender updates H;

4: The sender broadcasts a properly generated coded packet c of a minimal vertex cover Vc of H;

5: Every receiver that receives this coded packet tries to decode by solving linear equations(s).

6: end while

Coded packets must be properly generated to ensure their innovativeness to every receiver. This can

be easily accomplished either asymptotically, by random coefficients chosen from a large Fq (as RLNC),
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p1 p2 p3 p4 p5 p6

r1 1 0 0 1 0 0
r2 0 1 0 0 1 0
r3 0 0 1 0 0 1
r4 1 1 1 0 0 0

(a) SFM A
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v4v5

v6
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e3

(b) Original H
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(c) updated H′ after send-
ing α1p1 + α2p2 + α3p3

v2 v3

e4

(d) updated H′′ af-
ter sending α′

1p1 +
α′
4p4+α′

5p5+α′
6p6

Fig. 4: Hypergraph update

or deterministically, by coefficients generated using deterministic LNC techniques such as [8]3.

On the other hand, a minimal vertex cover can be found in polynomial-time by simple heuristic

algorithms. We propose such an algorithm in Algorithm 2, which prioritizes data packets based on their

popularity.

One way to understand HLNC is that HLNC aims at achieving throughput optimality by encoding the

minimum number of data packets together. Such minimization will minimize the intersection between

the coding set and receivers’ Wants sets to a minimum of one data packet, which makes such data packets

instantly decodable to the corresponding receivers. We note that although [10] has a similar aim, the

way how the coding set is determined is completely different, and there is no claim on guaranteed

instantly packet decodings nor guaranteed APDD approximation.

Example 2. Consider the SFM in Fig. 4(a), with its hypergraph H plotted in Fig. 4(b). For simplicity

we assume erasure-free transmissions. Then, the transmissions using HLNC is as follows:

1) A minimal vertex cover of H is Vc = {v1, v2, v3}. Thus, X = α1p1 + α2p2 + α3p3 is sent, where

{α1, α2, α3} are coefficients chosen from Fq \{0}. Since receivers r1, r2, r3 only want p1, p2, p3

from X , respectively, they can decode them from X . Hence, v1, v2, v3 are removed from e1, e2, e3,

respectively. On the other hand, r4 cannot decode any data packet. It only holds X , and thus e4

is still incident to {v1, v2, v3}. The updated graph H′ is plotted in Fig. 4(c);

2) A minimal vertex cover of H′ is V ′c = {v1, v4, v5, v6}. Thus, X ′ = α′1p1 + α′4p4 + α′5p5 + α′6p6

is sent. Since receivers r1, r2, r3, r4 only want p4, p5, p6, p1 from X ′, respectively, they can

3We note that the coding set selection strategies of these techniques are completely different from HLNC. For example, RLNC selects
all the data packets, whilst the technique in [8] selects through solving an NP-hard hitting set problem
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Algorithm 2 Find a minimal hypergraph vertex cover

1: Input: A hypergraph H(V , E), an empty vertex set Vc;

2: Weigh each vertex with the number of hyperedges incident to it; (The weight of a vertex is indeed

the number of receivers which want the corresponding data packet.)

3: while there are still vertices in H do

4: Add to Vc the vertex with the largest weight;

5: Update H by: 1) removing this vertex from H; 2) removing from H all hyperedges incident to

this vertex; 3) removing from H all vertices that do not have any hyperedge incident to them;

6: end while

7: Output Vc as a minimal hypergraph vertex cover.

decode them from X ′. Hence, v4, v5, v6, v1 are removed from e1, e2, e3, e4, respectively. Since

receivers {r1, r2, r3} are satisfied, {e1, e2, e3} are completely removed from H. On the other hand,

r4 holds a linear equation of α2p2 + α3p3 = X − α1p1, where the value of the RHS is known

to r4. Since r4 still wants {p2,p3}, e4 is incident to {v2, v3}. The updated graph H′′ is plotted in

Fig. 4(d).

3) A minimal vertex cover of H′′ is v2. Thus, p2 is sent alone, which will allow r4 to obtain p2,

and then decode p3 from equation α2p2 + α3p3 = X − α1p1. The coded broadcast will then be

completed.

B. Implementation under Different Feedback Availability

The basic HLNC proposed in Algorithm 1 works when the sender can update H after every transmis-

sion. This requires fully-online receiver feedback, namely every receiver sends a feedback every time

it receives a coded packet. However, it could be expensive or even impossible to collect feedback after

every transmission. For example, in time-division-duplex systems the sender has to stop and listen to

the feedback [6], [33]–[35]. Thus, it is desirable to develop implementations of HLNC with semi-online

feedback and without intermediate feedback at all (off-line). The challenge here is how to update H

locally without losing throughput-optimality and APDD-approximation.
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We solve this challenge by our semi-online HLNC proposed in Algorithm 3. At a high level,

we partition the transmissions into semi-online rounds. During each semi-online round (Step 5-9 in

Algorithm 3), the sender iteratively broadcasts a coded packet c and then update H locally by assuming

c is received by all receivers. The iteration will be terminated if the reception of c will allow one receiver

to fully decode all its wanted data packets. After the termination, the sender will collect receiver feedback

to correctly update H, and then enter the next semi-online round.

Due to this termination condition, the locally updated H always has the same number of hyper-

edges/receivers as the actual packet reception state H′ at the receivers with. Moreover, since we update

H by assuming all coded packets are received by all receivers, the vertices removed from H during the

updates are at least as many as H′. Thus, H is also a subgraph of H′. Consequently, H and H′ have

the following easily-proved property:

Property 1. If H is a subgraph of H′ with the same number of hyperedges, then any minimal vertex

cover Vc of H is also a minimal vertex cover of H′.

This property immediately indicates that the coded packets generated by semi-online HLNC have

the same features as those generated by the fully-online basic HLNC, namely, 1) innovative to every

receiver, and 2) always provide early packet decodings. This is because the minimal vertex covers we

found in each semi-online round are also minimal vertex covers of the actual H′ at the receivers.

Therefore, semi-online HLNC is throughput-optimal and APDD-approximating as its fully-online

counterpart. As we will see in the simulation results presented in the next section, there is no visible

performance difference between the two.

Based on semi-online HLNC, we can also develop an offline HLNC by not collecting receiver feedback

after the first semi-online round, but using the classic RLNC in the remaining transmissions. As we

will see in the simulation results presented in the next section, even off-line HLNC can always provide

lower APDD than RLNC.

Moreover, HLNC is very robust to feedback loss. If the feedback from a subset of receivers is lost,

the sender can simply update the hypergraph by assuming that these receivers have not received any
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previous packets.

Last but not least, HLNC is fully compatible with RLNC and offers seemless switch. The sender can

keep sending RLNC packets until one round of receiver feedback is received. Based on the feedback,

the sender conducts one HLNC semi-online round, and then switches back to RLNC until the reception

of the next round of receiver feedback.

Algorithm 3 HLNC Wireless Broadcast with Semi-online Feedback
1: Input: the initial packet reception state H;

2: while Not all receivers have decoded all wanted data packets do

3: The sender updates H by collecting receiver feedback (waived for the first transmission);

4: The sender broadcasts a properly generated coded packet c of a Vc of H;

5: while No receiver can fully decode all its wanted data packets after receiving c do

6: The sender updates H locally by assuming c is received by all receivers;

7: The sender broadcasts a properly generated coded packet c of a Vc of H;

8: Every receiver that receives this coded packet tries to decode by solving linear equations(s).

9: end while

10: end while

VI. SIMULATION RESULTS

In this section, we numerically compare the APDD performance of the proposed technique with some

existing techniques, as well as the lower bound on APDD. In total, there are 6 different APDD we will

compare. They are abbreviated and explained as follows:

1) “Fully-”: the APDD of fully-online HLNC;

2) “Semi-”: the APDD of semi-online HLNC;

3) “Off-”: the APDD of offline HLNC;

4) “E[D]”: the lower bound on the expected APDD of LNC derived in (7);

5) “E[DR]”: the expected APDD of RLNC derived in (11);
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6) “G-IDNC”: the APDD of a heuristic GIDNC algorithm adapted from [13] when fully-online

feedback is collected. We note that there has not been any optimal G-IDNC algorithms in the

literature.

In our simulations, there are K = 15 data packets, N ∈ [5, 100] receivers. The packet erasure proba-

bilities are {Pe,n}Nn=1 = 0.2. For each value of N , we simulate the broadcast of 105 packet blocks, and

then make average on their APDD. The simulation results are plotted in Fig. 5, from which we observe

that:

• The APDD performance of our technique outperforms the existing techniques. This superiority

holds even when our technique is implemented under the off-line scheme;

• The fully- and semi-online schemes share the same performance. This result matches our expecta-

tion. Their performance is better than the off-line one;

• The APDD of RLNC is always within a constant factor of the lower bound, indicating that RLNC is

an approximation technique, and so is our technique. On the other hand, the APDD of the heuristic

G-IDNC is unbounded, indicating that it is not an approximation technique. We further note that

one should not read the approximation ratio from the figure, because the approximation ratio is

achieved when K is sufficiently large, as have discussed in Section IV before Theorem 6.
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Fig. 5: The APDD performance of different NC techniques.
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In addition, we compare the amount of feedback collected under fully- and semi-online HLNC. The

results are plotted in Fig. 6. We observe that semi-online HLNC can reduce up to 30% feedback from the

fully-online one when the number of receivers is small. The reduction becomes marginal with increasing

number of receivers because the probability of having a receiver who only wants one data packet after

a certain semi-online round increases. When this happens, semi-online HLNC has to collect feedback

after only one transmission according to Algorithm 3, which makes it equivalent to fully-online HLNC.
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Fig. 6: The Amount of feedback collected under the fully- and semi-online schemes.

VII. CONCLUSION

In this paper, we conducted a comprehensive study on the APDD performance of LNC techniques

in wireless broadcast with packet erasures. By deriving lower bounds on the expected APDD of LNC

techniques using a conceptual perfect LNC technique, we showed that the APDD of efficient LNC

techniques should not scale up with increasing number of receivers. Then by proving the NP-hardness

of achieving these lower bounds, we proved the NP-hardness of the APDD minimization problem.

Although the optimal APDD is intractable to achieve, we proved that it can be approximated with

a ratio between 4/3 and 2 by throughput-optimal LNC techniques. Therefore, throughput and APDD

can be jointly improved rather than trading each other off. However, such joint improvement does not
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necessarily hold for every LNC technique. For example, we proved that all IDNC techniques cannot

approximate the optimal throughput, and such sub-optimality in turn makes IDNC techniques unable to

guarantee an APDD approximation ratio for at least a subset of receivers.

We then proposed HLNC, a novel hypergraph-based LNC technique that combines all the advantages

of RLNC and IDNC: It is throughput-optimal, APDD-approximating, computational friendly, and it

always provides instant packet decodings. Moreover, its performance does not degrade even if receiver

feedback is not collected after every transmission. Our extensive simulations showed that the APDD of

HLNC outperforms RLNC and a heuristic general IDNC technique under all tested system parameter

settings.

In the future, we are interested in extending our hypergraph model and APDD analysis to other

network coding and index coding problems. We are also interested in applying our technique to other

network models such as cooperative data exchange [36], [37].

APPENDIX A

PROOF OF LEMMA 1

We prove that it is NP-complete to determine whether an r−uniforma hypergraph is size-r strong

colorable or not, for any r > 3. Our method is a reduction from the k-coloring problem of graphs.

Given an arbitrary graph G(V , E). For every edge en = (vi, vj) we construct a hyperedge e′n by

adding r − 2 dummy vertices vn,1 · · · vn,r−2 to en. The result is an r-uniform hypergraph H(V ′, E ′)

that has |V ′| = |V| + |E| · (r − 2) vertices. If G can be colored using r colors, then in any hyperedge

e′n = (vi, vj, v
n,1 · · · vn,r−2), vi and vj are colored differently using 2 colors. By assigning the remaining

r − 2 colors to the r − 2 dummy vertices in e′n greedily, all vertices in e′n are colored differently.

We thus obtain a size-r strong coloring of H. On the other hand, if H can be strong colored using

r colors, then by removing all the dummy vertices, we obtain an r-coloring of G. It is well known

that it is NP-complete to determine whether a graph is r colorable or not, for any r > 3. Hence, it is

NP-complete to determine whether an r-uniform hypergraph is size-r strong colorable. �
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APPENDIX B

PROOF OF THEOREM 1

We first assume that rn is satisfied (i.e., obtains all data packets) after Un coded transmissions. Hence

the packet reception pattern un of rn takes a form of [u1, · · · , uwn−1, Un]. Let u′ = [u1, · · · , uwn−1],

then the APDD under a given u is (‖u′‖+Un)/wn. It is intuitive that all the possible u′ happens with

the same probability. Denote the set of all possible u′ by U , then the expected lower bound under given

Wn and Un, denoted by E[Dn|(Un, wn)], is calculated as:

E[Dn|(Un, wn)] =
1

|U|
∑
u′∈U

‖u′‖+ Un

wn

=
Un

wn

+
1

|U|
∑
u′∈U

‖u′‖
wn

(12)

We now show that all u′ are symmetric. Given u′ = [u1, · · · , uwn−1], by letting u′′i = Un − ui, the

resultant u′′ = [u′′1, · · · , u′′w−1] is the mirror of u′ against Un/2. Obviously, u′′ also belongs to U , and it

holds that ‖u′‖+ ‖u′′‖ = (wn − 1)Un. Hence, there are |U|/2 such pairs, and thus the above equation

can be simplified to:

E[Dn|(Un, wn)] =
Un

wn

+
1

2

(wn − 1)Un

wn

=
Un

2
+

Un

2wn

(13)

Then, by noting that the expected number of coded transmissions for a receiver to be satisfied is

E[Un|wn] = wn/(1− Pe), we have:

E[Dn|wn] =
E[Un|wn]

2
+
E[Un|wn]

2wn

=
wn + 1

2(1− Pe)
(14)

which proves Theorem 1. �

APPENDIX C

PROOF OF THEOREM 2

Here we only need to prove that E
[∑N

n=1 w
2
n∑N

n=1 wn

]
≈ KPe−Pe + 1 when N is sufficiently large. We first

expand E
[∑N

n=1 w
2
n∑N

n=1 wn

]
into its series form:
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E

[∑N
n=1w

2
n∑N

n=1wn

]
= E

[
w2

1∑N
n=1wn

]
+ E

[
w2

2∑N
n=1wn

]
+ · · ·+ E

[
w2

N∑N
n=1wn

]
(15)

Since {wn}Nn=1 are i.i.d. distributed, the N addends in the above equation have the same value. Thus,

E

[∑N
n=1w

2
n∑N

n=1wn

]
= N · E

[
w2

1∑N
n=1wn

]
(16)

= N · E

[
w2

1

w1 +
∑N

n=2wn

]
(17)

Then according to the law of larger numbers, the value of
∑N

n=2wn will approach to its mean

(N − 1)KPe when N is sufficiently large. Thus,

E

[∑N
n=1w

2
n∑N

n=1wn

]
≈ N · E

[
w2

1

w1 + (N − 1)KPe)

]
, when N is sufficiently large (18)

= E

[
w2

1

KPe + w1−KPe

N

]
(19)

≈ E

[
w2

1

KPe

]
, when N is sufficiently large (20)

Then, since w1 ∼ B(K,Pe), we have E[w1] = KPe and V ar[w1] = KPe −KP 2
e . Hence, we have

E[w2
1] = E[w1]

2 + V ar[w1] = K2P 2
e +KPe −KP 2

e , and thus E
[∑N

n=1 w
2
n∑N

n=1 wn

]
≈ KPe − Pe + 1. �
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