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Abstract. In this paper, two approaches are proposed to the definition of abnormally
extremal precipitation. These approaches are based on the negative binomial model for the
distribution of duration of wet periods measured in days [19]. This model demonstrates ex-
cellent fit with real data and provides a theoretical base for the determination of asymptotic
approximations to the distributions of the maximum daily precipitation volume within a wet
period and of the total precipitation volume over a wet period. The asymptotic distribution
of the maximum daily precipitation volume within a wet period turns out to be a tempered
Snedecor–Fisher distribution whereas the total precipitation volume for a wet period turns
out to be the gamma distribution. Both approximations appear to be very accurate. These
asymptotic approximations are deduced using limit theorems for statistics constructed from
samples with random sizes. The first approach to the definition (and determination) of
abnormally extreme precipitation is based on the tempered Snedecor–Fisher distribution of
the maximum daily precipitation. According to this approach, a daily precipitation volume
is considered to be abnormally extremal, if it exceeeds a certain (pre-defined) quantile of
the tempered Snedecor–Fisher distribution. The second approach is based on that the total
precipitation volume for a wet period has the gamma distribution. Hence, the hypothesis
that the total precipitation volume during a certain wet period is abnormally large can be
formulated as the homogeneity hypothesis of a sample from the gamma distribution. Two
equivalent tests are proposed for testing this hypothesis. One of them is based on the beta
distribution whereas the second is based on the Snedecor–Fisher distribution. Both of these
tests deal with the relative contribution of the total precipitation volume for a wet period
to the considered set (sample) of successive wet periods. Within the second approach it is
possible to introduce the notions of relatively abnormal and absolutely abnormal precipita-
tion volumes. The results of the application of these tests to real data are presented yielding
the conclusion that the intensity of wet periods with abnormally large precipitation volume
increases.
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1 Introduction

1.1 Motivation and the structure of the paper

Estimates of regularities and trends in heavy and extreme daily precipitation are important
for understanding climate variability and change at relatively small or medium time horizons.
However, such estimates are much more uncertain compared to those derived for mean
precipitation or total precipitation during a wet period. This uncertainty is due to that,
first, estimates of heavy precipitation depend closely on the accuracy of the daily records;
they are more sensitive to missing values [25, 26]. Second, uncertainties in the estimates of
heavy and extreme precipitation are caused by the inadequacy of the mathematical models
used for the corresponding calculations. Third, these uncertainties are boosted by the
lack of reasonable means for the unambiguous (algorithmic) determination of extreme or
abnormally heavy precipitation amplified by some statistical significance problems owing
to the low occurrence of such events. As a consequence, continental-scale estimates of the
variability and trends in heavy precipitation based on daily precipitation might generally
agree qualitatively but may exhibit significant quantitative differences. In [27] a detailed
review of this phenomenon is presented where it is noted that for the European continent,
most results hint at a growing intensity of heavy precipitation over the last five decades.

At the same time, the climate variability and trends at relatively large time horizons are
of no less importance for long-range business, say, agricultural projects and forecasting of
risks of water floods, dry spells and other natural disasters. In the present paper we propose
a rather reasonable approach to the unambiguous (algorithmic) determination of extreme
or abnormally heavy daily and total precipitation within a wet period. This approach is
based on the negative binomial model for the duration of wet periods measured in days [19].
This model demonstrates excellent fit with the real data and provides a theoretical base
for the determination of asymptotic approximations to the distributions of the maximum
daily precipitation volume within a wet period and of the total precipitation volume for
a wet period. The asymptotic distribution of the maximum daily precipitation volume
within a wet period turns out to be a tempered Snedecor–Fisher distribution whereas the
total precipitation volume for a wet period turns out to be the gamma distribution. Both
approximations appear to be very accurate. These asymptotic approximations are deduced
using limit theorems for statistics constructed from samples with random sizes.

In this paper, two approaches are proposed to the definition of abnormally extremal
precipitation. The first approach to the definition (and determination) of abnormally heavy
daily precipitation is based on the tempered Snedecor–Fisher distribution. The second
approach is based on the assumption that the total precipitation volume over a wet period
has the gamma distribution. This assumption is theoretically justified by a version of the
law of large numbers for sums of a random number of random variables in which the number
of summands has the negative binomial distribution and is empirically substantiated by the
statistical analysis of real data. Hence, the hypothesis that the total precipitation volume
during a certain wet period is abnormally large can be formulated as the homogeneity
hypothesis of a sample from the gamma distribution. Two equivalent tests are proposed
for testing this hypothesis. One of them is based on the beta distribution whereas the
second is based on the Snedecor–Fisher distribution. Both of these tests deal with the
relative contribution of the total precipitation volume for a wet period to the considered set
(sample) of successive wet periods. Within the second approach it is possible to introduce
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the notions of relatively abnormal and absolutely abnormal precipitation volumes. The
results of the application of these tests to real data are presented yielding the conclusion
that the intensity of wet periods with abnormally large precipitation volume increases.

The proposed approaches are to a great extent devoid of the drawbacks mentioned
above: first, estimates of total precipitation are weakly affected by the accuracy of the daily
records and are less sensitive to missing values. Second, they are based on limit theorems of
probability theorems that yield unambiguous asymptotic approximations which are used as
adequate mathematical models. Third, these approaches provide unambiguous algorithms
for the determination of extreme or abnormally heavy daily or total precipitation that do
not involve statistical significance problems owing to the low occurrence of such (relatively
rare) events.

Our approaches improve the one proposed in [26], where an estimate of the fractional
contribution from the wettest days to the total was developed which is less hampered by
the limited number of wet days. For this purpose, in [26] an assumption was enacted (yet,
without any theoretical justification) that the statistical regularities in daily precipitation
follow the gamma distribution and the parameters of the gamma distribution are estimated
from the observations. This assumption made it possible to derive a theoretical distribution
of the fractional contribution of any percentage of wet days to the total from the gamma
distribution function.

However, a more thorough statistical analysis showed that, although being rather ade-
quate and, in general, acceptable model, the gamma distribution is not the best model for
statistical regularities in daily precipitation. For example, the analysis of meteorological
data (daily precipitation volumes) registered registered during 60 years at two geographic
points with very different climate: Potsdam (Brandenburg, Germany) with mild climate
influenced by the closeness to the ocean with warm Gulfstream flow and Elista (Kalmykia,
Russia) with radically continental climate convincingly suggests the Pareto-type model for
the distribution of daily precipitation volumes, see Figure 3.3a, 3.3b. For comparison, on
these figures there are also presented the graphs of the best gamma-densities which, never-
theless, fit the histograms in a noticeably worse way than the Pareto distributions.

a) b)

Fig. 1: The histogram of daily precipitation volumes in Potsdam (a) and Elista (b) and the
fitted Pareto and gamma distributions.

The Pareto model for the daily precipitation volume together with the observation that
the duration of a wet period has the negative binomial distribution makes it possible to
propose a reasonable model for the distribution of the maximum daily precipitation within a
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wet period as an asymptotic approximation provided by the limit theorems for extreme order
statistics in samples with random size. In Section 2 we give a strict derivation of such a model
having the form of the tempered Snedecor–Fisher distribution (that is, the distribution of a
positive power of a random variable with the Snedecor–Fisher distribution) and discuss its
properties as well as some methods of statistical estimation of its parameters. This model
makes it possible to propose the following approach to the definition (and determination)
of an abnormally heavy daily precipitation volume. The grounds for this approach is an
obvious observation that if X1, X2, . . . , XN is a sample of N positive observations, then with
finite (possibly, random) N , among Xi’s there is always an extreme observation, say, X1,
such that X1 ≥ Xi, i = 1, 2, . . . , N . Two cases are possible: (i) X1 is a ‘typical’ observation
and its extreme character is conditioned by purely stochastic circumstances (there must be
an extreme observation within a finite homogeneous sample) and (ii) X1 is abnormally large
so that it is an ‘outlier’ and its extreme character is due to some exogenous factors. As it
will be shown in Section 2, the distribution of X1 in the ‘typical’ case (i) is the tempered
Snedecor–Fisher distribution. Therefore, if X1 exceeds a certain (pre-defined) quantile of
the tempered Snedecor–Fisher distribution (say, of the orders 0.99, 0.995 or 0.999), then
it is regarded as ‘suspicious’ to be an outlier, that is, to be abnormally large (the quantile
orders specified above mean that it is pre-determined that one out of a hundred of maximum
daily precipitations, one out of five hundred of maximum daily precipitations, or one out of
a thousand of maximum daily precipitations is abnormally large, respectively).

Methodically, this approach is similar to the classical techniques of dealing with extreme
observations [1]. The novelty of the method proposed in Section 2 is in a more accurate
specification of the distribution of extreme daily precipitation. In applied problems dealing
with extreme values there is a common tradition which, possibly, has already become a
prejudice, that statistical regularities in the behavior of extreme values necessarily obey one
of well-known three types of extreme value distributions. In general, this is certainly so, if
the sample size is very large, that is, the time horizon under consideration is very wide. In
other words, the models based on the extreme value distributions have asymptotic character.
However, in real practice, when the sample size is finite and the extreme values of the process
under consideration are studied on the time horizon of a moderate length, the classical
extreme value distributions may turn out to be inadequate models. In these situations a
more thorough analysis may generate other models which appear to be considerably more
adequate. This is exactly the case discussed in the present paper. Here, within the first
approach, along with the ‘large’ parameter, the expected sample size, one more ‘small’
parameter is introduced and new models are proposed as asymptotic approximations when
the small parameter is infinitesimal. These models prove to be exceptionally accurate and
demonstrate excellent fit with the observed data.

To construct another test for distinguishing between the cases (i) and (ii) mentioned
above, in Section 3 we also strongly improve the results of [27] by giving theoretical grounds
for the correct application of the gamma distribution as the model of statistical regularities
of total precipitation volume during a wet period. These grounds are based on the negative
binomial model for the distribution of the duration of a wet period. In turn, the adequacy
of the negative binomial model has serious empirical and theoretical rationale the details
of which are described below. With some caveats the gamma model can be also used for
the conditional distribution of daily precipitation volumes. The proof of this result is based
on the law of large numbers for random sums in which the number of summands has the
negative binomial distribution. Hence, the hypothesis that the total precipitation volume
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during a certain wet period is abnormally large can be re-formulated as the homogeneity
hypothesis of a sample from the gamma distribution. Two equivalent statistics are proposed
for testing this hypothesis. The corresponding tests are scale-free and depend only on the
easily estimated shape parameter of the negative binomial distribution and the time-scale
parameter determining the denominator in the fractional contribution of a wet period under
consideration. It is worth noting that within the second approach the test for a total precip-
itation volume during one wet period to be abnormally large can be applied to the observed
time series in a moving mode. For this purpose a window (a set of successive observations)
is determined. The observations within a window constitute the sample to be analyzed. Let
m be the number of observation in the window (the sample size). As the window moves
rightward, each fixed observation falls in exactly m successive windows. A fixed observation
may be recognized as abnormally large within each of m windows containing this observa-
tion. In this case this observation will be called absolutely abnormally large with respect to
a given time horizon (determined by the sample size m. Also, a fixed observation may be
recognized as abnormally large within at least one of m windows containing this observation.
In this case the observation will be called relatively abnormally large with respect to a given
time horizon.

The preconditions and backgrounds of all the approaches as well as their peculiarities
will also be discussed.

The paper is organized as follows. In Sect. 1.2 we discuss the negative binomial model
for the distribution of the duration of a wet period measured in days. Notation, definitions
and some mathematical preliminaries are presented in Sect. 1.3. In Section 2 we introduce
the test for a daily precipitation volume to be abnormally large. In Sect. 2.1 an asymp-
totic approximation is proposed for the distribution of the maximum daily precipitation
volume within a wet period. Some analytic properties of the obtained limit distribution
are described. In particular, it is demonstrated that under certain conditions the limit
distribution is mixed exponential and hence, is infinitely divisible. It is shown that under
the same conditions the limit distribution can be represented as a scale mixture of stable
or Weibull or Pareto or folded normal laws. The corresponding product representations
for the limit random variable can be used for its computer simulation. Several methods
for the statistical estimation of the parameters of this distribution are proposed in Sect.
2.2. Section 2.3 contains the results and discussion of fitting the distribution proposed in
Section 2.1 to real data. The results of application of the test for a daily precipitation
to be abnormally large based on the tempered Snedecor–Fisher distribution to real daily
precipitation data are presented and discussed in Sect. 2.4. Section 3 deals with the test
for a total precipitation volume over a wet period to be abnormally large based on testing
the homogeneity hypothesis of a sample from the gamma distribution. Two equivalent tests
are introduced in Sect. 3.1. In Sect. 3.2 the application of these tests to a time series in
a moving mode is discussed and the notions of relatively abnormally large and absolutely
abnormally large precipitation are introduced. The results of application of these tests to
real daily precipitation data are presented and discussed in Sect. 3.3.

1.2 The negative binomial model for the duration of wet periods

In most papers dealing with the statistical analysis of meteorological data available to the
authors, the suggested analytical models for the observed statistical regularities in precip-
itation are rather ideal and inadequate. For example, it is traditionally assumed that the
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duration of a wet period (the number of subsequent wet days) follows the geometric distri-
bution (for example, see [27]) although the goodness-of-fit of this model is far from being
admissible. Perhaps, this prejudice is based on the conventional interpretation of the ge-
ometric distribution in terms of the Bernoulli trials as the distribution of the number of
subsequent wet days (¡¡successes¿¿) till the first dry day (¡¡failure¿¿). But the framework
of Bernoulli trials assumes that the trials are independent whereas a thorough statistical
analysis of precipitation data registered in different points demonstrates that the sequence
of dry and wet days is not only independent, but it is also devoid of the Markov property so
that the framework of Bernoulli trials is absolutely inadequate for analyzing meteorological
data.

It turned out that the statistical regularities of the number of subsequent wet days can be
very reliably modeled by the negative binomial distribution with the shape parameter less
than one. For example, in [19] we analyzed meteorological data registered at two geographic
points with very different climate: Potsdam (Brandenburg, Germany) with mild climate
influenced by the closeness to the ocean with warm Gulfstream flow and Elista (Kalmykia,
Russia) with radically continental climate. The initial data of daily precipitation in Potsdam
and Elista are presented on Figures 2a and 2b, respectively. On these figures the horizontal
axis is discrete time measured in days. The vertical axis is the daily precipitation volume
measured in centimeters. In other words, the height of each “pin” on these figures is the
precipitation volume registered at the corresponding day (at the corresponding point on the
horizontal axis).

a) b)

Fig. 2: The initial data of daily precipitation in Potsdam (a) and Elista (b).

In order to analyze the statistical regularities of the duration of wet periods this data
was rearranged as shown on Figures 3a and 3b.

On these figures the horizontal axis is the number of successive wet periods. It should
be mentioned that directly before and after each wet period there is at least one dry day,
that is, successive wet periods are separated by dry periods. On the vertical axis there lie
the durations of wet periods. In other words, the height of each ¡¡pin¿¿ on these figures is
the length of the corresponding wet period measured in days and the corresponding point
on the horizontal axis is the number of the wet period.

The samples of durations in both Potsdam and Elista were assumed homogeneous and
independent. It was demonstrated that the fluctuations of the numbers of successive wet
days with very high confidence fit the negative binomial distribution with shape parameter
less than one (also see [4]). Figures 4a and 4b show the histograms constructed from the
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a) b)

Fig. 3: The durations of wet periods in Potsdam (a) and Elista (b).

corresponding samples of duration periods and the fitted negative binomial distribution. In
both cases the shape parameter r turned out to be less than one. For Potsdam r = 0.876,
p = 0.489, for Elista r = 0.847, p = 0.322.

a) b)

Fig. 4: The histogram of durations of wet periods in Potsdam (a) and Elista (b) and the
fitted negative binomial distribution.

In the same paper a schematic attempt was undertaken to explain this phenomenon
by the fact that negative binomial distributions can be represented as mixed Poisson laws
with mixing gamma-distributions. As is known, the Poisson distribution is the best model
for the discrete stochastic chaos [7] by virtue of the universal principle of non-decrease of
entropy in closed systems (see, e. g., [3, 12]) and the mixing distribution accumulates the
statistical regularities in the influence of stochastic factors that can be assumed exogenous
with respect to the local system under consideration.

In the paper [18] this explanation of the adequacy of the negative binomial model was
concretized. For this purpose, the concept of a mixed geometric distribution introduced
in [13] (also see [14, 15]) was used. In [18] it was demonstrated that any negative binomial
distribution with shape parameter no greater than one is a mixed geometric distribution
(this result is reproduced below as Theorem 1). Thereby, a ¡¡discrete¿¿ analog of a theorem
due to L. Gleser [2] was proved. Gleser’s theorem establishes that a gamma distribution with
shape parameter no greater than one can be represented as a mixed exponential distribution.

The representation of a negative binomial distribution as a mixed geometric law can
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be interpreted in terms of the Bernoulli trials as follows. First, as a result of some ¡¡pre-
liminary¿¿ experiment the value of some random variables (r.v.’s) taking values in [0, 1] is
determined which is then used as the probability of success in the sequence of Bernoulli
trials in which the original ¡¡unconditional¿¿ r.v. with the negative binomial distribution is
nothing else than the ¡¡conditionally¿¿ geometrically distributed r.v. having the sense of the
number of trials up to the first failure. This makes it possible to assume that the sequence
of wet/dry days is not independent, but is conditionally independent and the random prob-
ability of success is determined by some outer stochastic factors. As such, we can consider
the seasonality or the type of the cause of a rainy period.

The negative binomial model for the distribution of the duration of wet periods makes it
possible to obtain asymptotic approximations for important characteristics of precipitation
such as the distribution of the total precipitation volume per wet period and the distribution
of the maximum daily precipitation volume within a wet period. The first of these approx-
imations was proposed in [18], where an analog of the law of large numbers for negative
binomial random sums was presented stating that the limit distribution for these sums is the
gamma distribution. The construction of the second approximation is the target of Section
3 of the present paper.

1.3 Notation, definitions and mathematical preliminaries

Although the main objects of our interest are the probability distributions, for convenience
and brevity in what follows we will expound our results in terms of r.v.’s with the corre-
sponding distributions assuming that all the r.v.’s under consideration are defined on one
and the same probability space (Ω, F, P).

In the paper, conventional notation is used. The symbols
d
= and =⇒ denote the co-

incidence of distributions and convergence in distribution, respectively. The integer and
fractional parts of a number z will be respectively denoted [z] and {z}.

A r.v. having the gamma distribution with shape parameter r > 0 and scale parameter
λ > 0 will be denoted Gr,λ,

P(Gr,λ < x) =

∫ x

0

g(z; r, λ)dz, with g(x; r, λ) =
λr

Γ(r)
xr−1e−λx, x ≥ 0,

where Γ(r) is Euler’s gamma-function, Γ(r) =
∫∞
0
xr−1e−xdx, r > 0.

In these notation, obviously, G1,1 is a r.v. with the standard exponential distribution:
P(G1,1 < x) =

[
1 − e−x

]
1(x ≥ 0) (here and in what follows 1(A) is the indicator function

of a set A).
The gamma distribution is a particular representative of the class of generalized gamma

distributions (GG-distributions), which were first described in [23] as a special family of
lifetime distributions containing both gamma distributions and Weibull distributions. A
GG-distribution is the absolutely continuous distribution defined by the density

g∗(x; r, γ, λ) =
|γ|λr

Γ(r)
xγr−1e−λx

γ

, x ≥ 0,

with γ ∈ R, λ > 0, r > 0.
The properties of GG-distributions are described in [23, 24]. A r.v. with the density

g∗(x; r, γ, λ) will be denoted G∗r,γ,λ. It can be easily made sure that

G∗r,γ,λ
d
= G

1/γ
r,λ . (1)
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For a r.v. with the Weibull distribution, a particular case of GG-distributions corresponding
to the density g∗(x; 1, γ, 1) and the distribution function (d.f.)

[
1− e−xγ

]
1(x ≥ 0), we will

use a special notation Wγ. Thus, G1,1
d
= W1. It is easy to see that

W
1/γ
1

d
= Wγ. (2)

A r.v. with the standard normal d.f. Φ(x) will be denoted X,

P(X < x) = Φ(x) =
1√
2π

∫ x

−∞
e−z

2/2dz, x ∈ R.

The distribution of the r.v. |X|, i. e. P(|X| < x) = 2Φ(x)− 1, x ≥ 0, is called half-normal
or folded normal.

The d.f. and the density of a strictly stable distribution with the characteristic exponent
α and shape parameter θ defined by the characteristic function (ch.f.)

fα,θ(t) = exp
{
− |t|α exp{−1

2
iπθαsignt}

}
, t ∈ R,

wheter 0 < α ≤ 2, |θ| ≤ min{1, 2
α
−1}, will be respectively denoted Fα,θ(x) and fα,θ(x) (see,

e. g., [28]). A r.v. with the d.f. Fα,θ(x) will be denoted Sα,θ.
To symmetric strictly stable distributions there correspond the value θ = 0 and the

ch.f. fα,0(t) = e−|t|
α
, t ∈ R. To one-sided strictly stable distributions concentrated on

the nonnegative halfline there correspond the values θ = 1 and 0 < α ≤ 1. The pairs
α = 1, θ = ±1 correspond to the distributions degenerate in ±1, respectively. All the rest
strictly stable distributions are absolutely continuous. Stable densities cannot be explicitly
represented via elementary functions with four exceptions: the normal distribution (α = 2,
θ = 0), the Cauchy distribution (α = 1, θ = 0), the Lévy distribution (α = 1

2
, θ = 1) and

the distribution symmetric to the Lévy law (α = 1
2
, θ = −1).

In [22, 16, 17] it was proved that if α ∈ (0, 1) and the i.i.d. r.v.’s Sα,1 and S ′α,1 have the
same strictly stable distribution, then the density vα(x) of the r.v. Rα = Sα,1/S

′
α,1 has the

form

vα(x) =
sin(πα)xα−1

π[1 + x2α + 2xα cos(πα)]
, x > 0. (3)

A r.v. Nr,p is said to have the negative binomial distribution with parameters r > 0
(¡¡shape¿¿) and p ∈ (0, 1) (¡¡success probability¿¿), if

P(Nr,p = k) =
Γ(r + k)

k!Γ(r)
· pr(1− p)k, k = 0, 1, 2, ...

A particular case of the negative binomial distribution corresponding to the value r = 1
is the geometric distribution. Let p ∈ (0, 1) and let N1,p be the r.v. having the geometric
distribution with parameter p :

P(N1,p = k) = p(1− p)k, k = 0, 1, 2, ...

This means that for any m ∈ N

P(N1,p ≥ m) =
∑∞

k=m
p(1− p)k = (1− p)m.
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Let Y be a r.v. taking values in the interval (0, 1). Moreover, let for all p ∈ (0, 1) the
r.v. Y and the geometrically distributed r.v. N1,p be independent. Let V = N1,Y , that is,
V (ω) = N1,Y (ω)(ω) for any ω ∈ Ω. The distribution

P(V ≥ m) =

∫ 1

0

(1− y)mdP(Y < y), m ∈ N,

of the r.v. V will be called Y -mixed geometric [13].
It is well known that the negative binomial distribution is a mixed Poisson distribution

with the gamma mixing distribution [5] (also see [12]): for any r > 0, p ∈ (0, 1) and
k ∈ {0}

⋃
N we have

Γ(r + k)

k!Γ(r)
· pr(1− p)k =

1

k!

∫ ∞
0

e−zzkg(z; r, µ)dz, (4)

where µ = p/(1− p).
Based on representation (4), in [18] it was proved that any negative binomial distribution

with the shape parameter no greater than one is a mixed geometric distribution. Namely,
the following statement was proved that gives an analytic explanation of the validity of
the negative binomial model for the duration of wet periods measured in days (see the
Introduction).

Theorem 1 [18]. The negative binomial distribution with parameters r ∈ (0, 1) and
p ∈ (0, 1) is a mixed geometric distribution: for any k ∈ {0}

⋃
N

Γ(r + k)

k!Γ(r)
· pr(1− p)k =

∫ ∞
µ

( z

z + 1

)(
1− z

z + 1

)k
p(z; r, µ)dz =

∫ 1

p

y(1− y)kh(y; r, p)dy,

where µ = p/(1− p) and the probability densities p(z; r, µ) and h(y; r, p) have the forms

p(z; r, µ) =
µr

Γ(1− r)Γ(r)
· 1(z ≥ µ)

(z − µ)rz
,

h(y; r, p) =
pr

Γ(1− r)Γ(r)
· (1− y)r−11(p < y < 1)

y(y − p)r
.

Furthermore, if Gr, 1 and G1−r, 1 are independent gamma-distributed r.v.’s, µ > 0, p ∈
(0, 1), then the density p(z; r, µ) corresponds to the r.v.

Zr,µ =
µ(Gr, 1 +G1−r, 1)

Gr, 1

(5)

and the density h(y; r, p) corresponds to the r.v.

Yr,p =
p(Gr, 1 +G1−r, 1)

Gr, 1 + pG1−r, 1
.
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2 The test for a daily precipitation volume to be ab-

normally large based on the tempered Snedecor–

Fisher distribution

2.1 The tempered Snedecor–Fisher distribution as an asymptotic
approximation to the maximum daily precipitation volume
within a wet period

Following [20, 21], in this section we will determine the probability distribution of extremal
daily precipitation within a wet period.

Let F (x) be a d.f., a ∈ R. Denote rext(F ) = sup{x : F (x) < 1}, F−1(a) = inf{x :
F (x) ≥ a}.

In [20, 21] the following statement was proved using Lemma 2 from [10] and some results
of the papers dealing with the asymptotic theory of extreme order statistics constructed from
samples with random sizes that have mixed Poisson distribution (in particular, Theorem
3.1 of [11]).

Theorem 2 [20, 21]. Let n ∈ N, λ > 0, q ∈ (0, 1) and let Nr,pn be a r.v. with the
negative binomial distribution with parameters r > 0 and pn = min{q, λ/n}. Let X1, X2, . . .
be i.i.d. r.v:s with a common d.f. F (x). Assume that rext(F ) = ∞ and there exists a
number γ > 0 such that for each x > 0

lim
y→∞

1− F (xy)

1− F (y)
= x−γ. (6)

Then

lim
n→∞

sup
x≥0

∣∣∣∣P(max{X1, . . . , XNr,pn}
F−1(1− 1

n
)

< x

)
− F (x; r, λ, γ)

∣∣∣∣ = 0,

where

F (x; r, λ, γ) =

(
λxγ

1 + λxγ

)r
, x ≥ 0.

As we have seen in Sect. 1.2, the Pareto model is rather adequate for the distribution
function F of the daily precipitation volume. It can be easily verified that the Pareto
distribution function satisfies condition (6). Therefore, we can conclude that the theoretical
conditions of Theorem 2 are in good correspondence with the empirically observed data.

It is worth noting that the limit distribution with the power-type decrease of the tail was
obtained in Theorem 2 as a scale mixture of the Fréchet distribution (the type II extreme
value distribution) in which the mixing law is the gamma distribution. Namely, since the
Fréchet d.f. e−x

−γ
with γ > 0 corresponds to the r.v. W−1

γ , it is easy to make sure that the

d.f. F (x; r, λ, γ) corresponds to the r.v. Mr,γ,λ ≡ G
1/γ
r,λW

−1
γ , where the multipliers on the

right-hand side are independent. From (1) and (2) it follows that

Mr,γ,λ
d
=
(Gr,λ

W1

)1/γ d
=
G∗r,γ,λ
Wγ

(7)

where in each term the multipliers are independent. Consider the r.v. Gr,λ/W1 in (7) in
more detail. We have

Gr,λ

W1

d
=
Gr,λ

G1,1

d
=

Gr,1

λG1,1

d
=
Qr,1

λr
,
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where Qr,1 is the r.v. having the Snedecor–Fisher distribution with parameters r, 1 (‘degrees
of freedom’) defined by the Lebesgue density

fr,1(x) =
rr+1xr−1

(1 + rx)r+1
, x ≥ 0,

(see, e. g., [6], Section 27).
So,

Mr,γ,λ
d
=
(Qr,1

λr

)1/γ
, (8)

that is, the distribution of the r.v. Mr,γ,λ up to a non-random scale factor coincides with that
of the positive power of a r.v. with the Snedecor–Fisher distribution. In other words, the
distribution function F (x; r, λ, γ) up to a power transformation of the argument x coincides
with the Snedecor–Fisher distribution function. In statistics, distributions with arguments
subjected to the power transformation are conventionally called tempered. Therefore, we
have serious reason to call the distribution F (x; r, λ, γ) tempered Snedecor–Fisher distribu-
tion.

The statement of theorem 2 can be re-formulated as

max{X1, . . . , XNr,pn}
F−1(1− 1

n
)

=⇒Mr,γ,λ ≡
G

1/γ
r,λ

Wγ

d
=
(Qr,1

λr

)1/γ
(n→∞). (9)

The density of the limit distribution F (x; r, γ, λ) of the extreme daily precipitation within
a wet period has the form

p(x; r, γ, λ) =
rγλrxγr−1

(1 + λxγ)r+1
=

γrλr

x1+γ(λ+ x−γ)r+1
, x > 0. (10)

Some properties of the distribution of the r.v. Mr,γ,λ were discussed in [21]. In particular,
it was shown there that p(x; r, γ, λ) = O(x−1−γ) as x→∞. Therefore EM δ

r,γ,λ <∞ only if
δ < γ. Moreover, it is possible to deduce explicit expressions for the moments of the r.v.
Mr,γ,λ.

Theorem 3 [21]. Let 0 < δ < γ <∞. Then

EM δ
r,γ,λ =

Γ
(
r + δ

γ

)
Γ
(
1− δ

γ

)
λδ/γΓ(r)

.

Theorem 4 [21]. Let r ∈ (0, 1], γ ∈ (0, 1], λ > 0. Then the following product represen-
tations are valid:

Mr,γ,λ
d
=
G

1/γ
r,λ Sγ,1

W1

, (11)

Mr,γ,λ
d
=
Wγ

W ′
γ

· 1

Z
1/γ
r,λ

d
= W1 ·

Rγ

W ′
1Z

1/γ
r,λ

d
=

ΠRγ

Z
1/γ
r,λ

d
=
|X|
√

2W1Rγ

W ′
1Z

1/γ
r,λ

, (12)

where Wγ
d
= W ′

γ, W1
d
= W ′

1, the r.v. Rγ has the density (3), the r.v. Π has the Pareto
distribution: P(Π > x) = (x+ 1)−1, x ≥ 0, and in each term the involved r.v:s are indepen-
dent.

With the account of the relation Rγ
d
= R−1γ , from (12) we obtain the following statement.
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Corollary 1 [21]. Let r ∈ (0, 1], γ ∈ (0, 1], λ > 0. Then the d.f. F (x; r, γ, λ) is mixed
exponential:

1− F (x; r, γ, λ) =

∫ ∞
0

e−uxdA(u), x ≥ 0,

where
A(u) = P

(
W1RγZ

1/γ
r,λ < u

)
, u ≥ 0,

and all the involved r.v:s are independent.

Remark 1. It is worth noting that the mixing distribution in Corollary 1 is mixed
exponential itself.

Corollary 2 [21]. Let r ∈ (0, 1], γ ∈ (0, 1], λ > 0. Then the d.f. F (x; r, γ, λ) is
infinitely divisible.

Theorem 3 states that the limit distribution in Theorem 2 can be represented as a
scale mixture of exponential or stable or Weibull or Pareto or folded normal laws. The
corresponding product representations for the r.v. Mr,γ,λ can be used for its computer
simulation.

In practice, the asymptotic approximation F (x; r, λ, γ) for the distribution of the extreme
daily precipitation within a wet period proposed by Theorem 2 is adequate, if the ¡¡success
probability¿¿ is small enough, that is, if on the average the wet periods are long enough.

It should be mentioned that the same mathematical reasoning can be used for the deter-
mination of the asymptotic distribution of the maximum daily precipitation within m wet
periods with arbitrary finite m ∈ N. Indeed, fix arbitrary positive r1, . . . , rm and p ∈ (0, 1).

Let N
(1)
r1,p, . . . , N

(m)
rm,p be independent random variables having the negative binomial distribu-

tions with parameters rj, p, j = 1, . . . ,m, respectively. By the consideration of characteristic
functions it can be easily verified that

N (1)
r1,p

+ . . .+N (m)
rm,p

d
= Nr,p, (13)

where r = r1 + . . . + rm. If all rj coincide, then r = mr1 and in accordance with theorem
2 and (13) the asymptotic distribution of the maximum daily precipitation within m wet
periods has the form

F (m)(x; r, λ, γ) = F (x;mr1, λ, γ) =

(
λxγ

1 + λxγ

)mr1
, x ≥ 0.

And if now m infinitely increases and simultaneously λ changes as λ = cm, c ∈ (0,∞), then,
obviously,

lim
m→∞

F (m)(x; r, λ, γ) = lim
m→∞

F (x;mr1, cm, γ) = lim
n→∞

(
1− 1

1 + cmxγ

)mr1
= e−µx

−γ

with µ = (cr1)
−1, that is, the distribution function F (m)(x; r, λ, γ) of the maximum daily

precipitation within m wet periods turns into the classical Fréchet (inverse Weibull) distri-
bution (the type II distribution of extreme values).

2.2 Statistical estimation of the parameters r, λ and γ of the
tempered Snedecor–Fisher distribution

Some methods of statistical estimation of the parameters r, λ and γ of the tempered
Snedecor–Fisher distribution were proposed in [20, 21]. Here we briefly recall some ideas
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underlying the algorithms proposed in [20, 21] and give the corresponding formulas for
practical computation.

From (10) it can be seen that the realization of the maximum likelihood method for the
estimation of the parameters r, λ and γ inevitably assumes the necessity of numerical solu-
tion of a system of transcendental equations by iterative procedures without any guarantee
that the resulting maximum is global. The closeness of the initial approximation to the true
maximum likelihood point in the three-dimensional parameter set might give a hope that
the terminal extreme point found by the numerical algorithm is global.

For rough estimation of the parameters, the following considerably simpler method can
be used. The resulting rough estimates can be used as a starting point for the ‘full’ max-
imum likelihood algorithm mentioned above in order to ensure the closeness of the initial
approximation to the true solution. The rough method is based on that the quantiles of the
d.f. F (x; r, λ, γ) can be written out explicitly. Namely, the quantile x(ε; r, λ, γ) of the d.f.
F (x; r, λ, γ) of order ε ∈ (0, 1), that is, the solution of the equation F (x; r, λ, γ) = ε with
respect to x, obviously has the form

x(ε; r, λ, γ) =

(
ε1/r

λ− λε1/r

)1/γ

.

Let at our disposal there be observations {Xi,j}, i = 1, . . . ,m, j = 1, . . . ,mi, where i is the
number of a wet period (the number of a sequence of rainy days), j is the number of a day
in the wet sequence, mi is the length of the ith wet sequence (the number of rainy days in
the ith wet period), m is the total number of wet sequences, Xi,j is the precipitation volume
on the jth day of the ith wet sequence. Construct the sample X∗1 , . . . , X

∗
m as

X∗k = max{Xk,1, . . . , Xk,mk}, k = 1, . . . ,m. (14)

Let X∗(1), . . . , X
∗
(m) be order statistics constructed from the sample X∗1 , . . . , X

∗
m. Since we

have three unknown parameters r, λ and γ, fix three numbers 0 < p1 < p2 < p3 < 1 and
construct the system of equations

X∗([mpk]) =

(
p
1/r
k

λ− λp1/rk

)1/γ

, k = 1, 2, 3

(here the symbol [a] denotes the integer part of a number a).
This system can be solved by standard techniques. For example, first, the number s ≡ 1

r

can be found numerically as the solution of the equation

Cs = log
1− ps3
1− ps1

log
X∗([mp1])
X∗([mp2])

− log
1− ps2
1− ps1

log
X∗([mp1])
X∗([mp3])

,

where

C = log
X∗([mp1])
X∗([mp3])

log
p1
p2
− log

X∗([mp1])
X∗([mp2])

log
p1
p3
.

Having obtained the value of s, one can then find the values of γ and λ explicitly:

γ̃ =
s(log p1 − log p3) + log(1− ps3)− log(1− ps1)

logX∗([mp1]) − logX∗([mp3])
, (15)
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λ̃ =
ps2

(1− ps2)(X∗([mp2]))
γ
. (16)

As p1, p2 and p3 one may take, say, pk = k
4
, k = 1, 2, 3. Or it is possible to fix a τ ∈ (0, 1

4
),

set p1 = τ , p2 = 1
2
, p3 = 1 − τ and choose a τ that provides the best fit of the estimated

model d.f. F (x; r, λ, γ) with the empirical d.f.
If the parameter r is known (for example, it is estimated beforehand while solving the

problem of fitting the negative binomial distribution to the empirical data on the lengths
of wet periods), then the parameters λ and γ can be estimated directly by formulas (15)
and (16).

With known r, more accurate estimates of the parameters λ and γ can be also found
by minimizing the discrepancy between the empirical and model d.f:s by the least squares
techniques. Namely, this approach leads to the estimators

γ̂ =
(m− 1)

∑m−1
i=1 ci logX∗(i) −

∑m−1
i=1 logX∗(i)

∑m−1
i=1 ci

(m− 1)
∑m−1

i=1 (logX∗(i))
2 − (

∑m−1
i=1 logX∗(i))

2
, (17)

λ̂ = exp
{ 1

m− 1

(∑m−1

i=1
ci − γ̂

∑m−1

i=1
logX∗(i)

)}
, (18)

where

ci = log
i1/r

m1/r − i1/r
.

So, the following algorithm can be recommended for the practical obtaining of the parame-
ters r, λ and γ of the tempered Snedecor–Fisher distribution.

First, obtain the estimate of r when fitting the negative binomial distribution to the
sample of observed durations of wet periods, say, by the maximum likelihood method or by
the method of moments. The second method is, possibly, less accurate, but is considerably
simpler. Indeed, let D1, . . . , Dm be the initial sample of durations of m wet periods measured
in days. Then the method of moments yields the following simple estimate for r:

r̃ =

(
D)2

S2
D

,

where

D =
1

m

m∑
j=1

Dj, S2
D =

1

m− 1

m∑
j=1

(
Dj −D

)2
.

In practice, any estimation procedure can be used that is built in standard statistical pro-
gram tools of fitting distributions, e. g., in Matlab, etc.

Second, obtain the estimates of γ and λ by formulas (17) and (18).
An example of practical application of this algorithm with r estimated by the Matlab

tools is discussed in the next section.

2.3 The statistical fitting of the tempered Snedecor–Fisher dis-
tribution model to real data

In this section we present the results of statistical estimation of the distribution of extremal
daily precipitation within a wet period by the methods described in the preceding section.
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As the data, we use the observations of daily precipitation in Potsdam and Elista from 1950
to 2009, presented on Fig. 1.2.

First of all, notice that the Pareto distribution of daily precipitation volumes (see Figure
4) satisfies condition (6). Therefore, the asymptotic approximation provided by Theorem 2
can be applied to the statistical analysis of the real data.

The numerical results of estimation of the parameters are presented in Tables 1 and
2. In these table the first column indicates the censoring threshold: since the tempered
Snedecor–Fisher distribution is an asymptotic model which is assumed to be more adequate
with small ¡¡success probability¿¿, the estimates were constructed from differently censored
samples which contain only those wet periods whose duration is no less than the specified
threshold. The second column contains the correspondingly censored sample size. The third
and fourth columns contain the sup-norm discrepancy between the empirical and fitted tem-
pered Snedecor–Fisher distribution for two types of estimators (quantile and least squares)
described above. The rest columns contain the corresponding values of the parameters es-
timated by these two methods. According to Tables 1 and 2, the best accuracy is attained
when the censoring threshold equals 3 days for Elista and 5-6 days for Potsdam.

Table 1: Potsdam (r = 0.847)

Minimum Sample Discrepancy, Discrepancy, λ̃ λ̂ γ̃ γ̂
duration size quantile metod: LS method: quantile LS quantile LS

(15), (16) (17), (18) method method method method

1 3323 0.09 0.092 0.169 0.211 1.177 1.29
2 2066 0.045 0.065 0.0381 0.0538 1.76 1.709
3 1282 0.031 0.041 0.01 0.013 2.261 2.189
4 862 0.026 0.027 0.00487 0.00454 2.449 2.523
6 384 0.025 0.026 0.0016 0.0012 2.822 2.948
8 163 0.04 0.045 0.0007 0.0005 3.174 3.253
10 73 0.041 0.042 0.0003 0.0003 3.389 3.352
15 12 0.13 0.09 0.0014 0.0009 2.667 2.972

Table 2: Elista (r = 0.876)

Minimum Sample Discrepancy, Discrepancy, λ̃ λ̂ γ̃ γ̂
duration size quantile metod: LS method: quantile LS quantile LS

(15), (16) (17), (18) method method method method

1 2937 0.06 0.06 0.361 0.347 1.057 1.266
2 1374 0.049 0.055 0.108 0.1 1.42 1.576
3 656 0.041 0.045 0.0454 0.0377 1.706 1.898
4 319 0.051 0.06 0.0231 0.0272 1.899 1.94
6 77 0.07 0.075 0.0178 0.0144 2.017 2.186
7 42 0.15 0.01 0.0201 0.0206 1.974 2.184
8 22 0.12 0.14 0.0143 0.0355 2.003 1.769
10 10 0.17 0.16 0.0137 0.0377 2.154 1.798
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The values of the parameter r coincide with those of the corresponding negative binomial
distribution (see the Introduction): r = 0.847 for Elista and r = 0.876 for Potsdam.

Figures 5, 6, 7 and 8 illustrate the approximation of the empirical d.f. by the model
d.f. F (x; r, γ, λ) with γ and λ estimated by the ‘rough’ formulas (15) and (16) as well as
by the least squares formulas (17) and (18). To illustrate the asymptotic character of the
approximation F (x; r, γ, λ) we consider a sort of censoring in which the censoring threshold
is the minimum length of the wet periods which varies from 1 day (full sample) to 10 (Elista)
and 15 (Potsdam) days.

a) b)

c) d)

Fig. 5: Fitting the tempered Snedecor–Fisher distribution to the empirical data of maximum
daily precipitation within a wet period in Potsdam with duration of wet periods no less than:
a) one; b) two; c) three; d) four days

For each censoring threshold h = minimi the sample is formed according to the rule (14).
For each value of the threshold on the upper graph there are

• the empirical d.f. (continuous line);

• the d.f. F (x; , r, γ, λ) with γ and λ estimated by the ‘rough’ formulas (15) and (16)
(dash line);

• the d.f. F (x; , r, γ, λ) with γ and λ estimated by the least squares formulas (17)
and (18) (dotted line).

On the lower graph there is the discrepancy (the uniform distance) between the empirical
d.f. and the fitted model d.f. The types of lines correspond to those on the upper graph.
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a) b)

c) d)

Fig. 6: Fitting the tempered Snedecor–Fisher distribution to the empirical data of maximum
daily precipitation within a wet period in Elista with duration of wet periods no less than:
a) six; b) eight; c) ten; d) fifteen days

First of all, from Figures 5–8 it is seen that the asymptotic model F (x; r, γ, λ) provides
very good approximation to the real statistical regularities in the behavior of extremal daily
precipitation within a wet period. As this is so, the least squares formulas (17) and (18)
yield more accurate estimates for the parameters of the model d.f.

It should be also noted that these figures illustrate the dependence of the accuracy of the
approximation on the censoring threshold and the censored sample size. The approximation
is satisfactory even if the censoring threshold h is greater or equal to three and the censored
sample size is grater than 150. As this is so, the influence of the threshold h on the accuracy
is more noticeable than that of the sample size.

2.4 The statistical analysis of real data

The approach to the determination of an abnormally heavy daily precipitation is methodi-
cally similar to the classical techniques of dealing with extreme observations [1]. The novelty
of the proposed method is in an accurate specification of the mathematical model of the
distribution of extreme daily precipitation which turned out to be the tempered Snedecor–
Fisher distribution.

The algorithm of determination of an abnormally heavy daily precipitation is as fol-
lows. First, the parameters of the distribution function F (x; r, λ, γ) are estimated from the
historical data. Second, a small positive number ε is fixed. Third, the (1 − ε)-quantile
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a) b)

c) d)

Fig. 7: Fitting the tempered Snedecor–Fisher distribution to the empirical data of maximum
daily precipitation within a wet period in Elista with duration of wet periods no less than:
a) one; b) two; c) three; d) four days

τ(1− ε; r, λ, γ) of the distribution function F (x; r, λ, γ) is calculated.
If the maximum value, say, X of the daily precipitation volume within some wet period

exceeds τ(1 − ε; r, λ, γ), then X is regarded as ‘suspicious’ to be an outlier, that is, to be
abnormally large.

It is easy to see that the the probability of the error of the first kind (occurring in the
case where a ‘regularly large’ maximum value is erroneously recognized as an abnormally
large outlier) for this test is approximately equal to ε.

The application of this test to real data is illustrated by Figures 9 and 10. On these
figures the lower horizontal line corresponds to the threshold equal to the quantile of the
fitted tempered Snedecor–Fisher distribution of order 0.9. The middle and upper lines
correspond to the quantiles of orders 0.95 and 0.99 respectively.

Figure 9 contains all data. For the sake of vividness, on Figure 10 only one, maximum,
daily precipitation is exposed for each wet period. From Figure 10 it is seen that during
58 years (from 1950 to 2007) in Potsdam there were 13 wet periods containing abnormally
heavy maximum daily precipitation volumes (at 99% threshold) and 69 wet periods con-
taining abnormally heavy maximum daily precipitation volumes (at 95% threshold). Other
maxima were ‘regular’. During the same period in Elista there were only 2 wet periods
containing abnormally heavy maximum daily precipitation volumes (at 99% threshold) and
40 wet periods containing abnormally heavy maximum daily precipitation volumes (at 95%
threshold). Other maxima were ‘regular’. The proportion of abnormal maxima exceeding
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a) b)

c) d)

Fig. 8: Fitting the tempered Snedecor–Fisher distribution to the empirical data of maximum
daily precipitation within a wet period in Elista with duration of wet periods no less than:
a) six; b) seven; c) eight; d) ten days

99% and 95% thresholds in Potsdam is quite adequate (the latter is approximately five times
greater than the former) whereas in Elista this proportion is noticeably different. Perhaps,
this can be explained by the fact that, for Elista, heavy rains are rare events.

3 The tests for a total precipitation volume to be ab-

normally extremal based on the homogeneity test of

a sample from the gamma distribution

3.1 The tests based on the beta and Snedecor–Fisher distribu-
tions

Here we will propose some algorithms of testing the hypotheses that a total precipitation
volume during a wet period is abnormally extremal within a certain time horizon. Moreover,
our approach makes it possible to consider relatively abnormally extremal volumes and
absolutely abnormally extremal volumes for a given time horizon.

Let m ∈ N and G
(1)
r,µ, G

(2)
r,µ, . . . , G

(m)
r,µ – be independent r.v.’s having the same gamma

distribution with shape parameter r > 0 and scale parameter µ > 0. In [26] it was suggested
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a) b)

Fig. 9: Testing maximum daily precipitation within a wet period for abnormal heaviness:
a) Potsdam; b) Elista, all data.

a) b)

Fig. 10: Testing maximum daily precipitation within a wet period for abnormal heaviness:
a) Potsdam; b) Elista, data containing only maximum daily precipitation for every wet
period.

to use the distribution of the ratio

R∗ =
G

(1)
r,µ

G
(1)
r,µ +G

(2)
r,µ + . . .+G

(m)
r,µ

d
=

G
(1)
r,1

G
(1)
r,1 +G

(2)
r,1 + . . .+G

(m)
r,1

(19)

as a heuristic model of the distribution of the extremely large precipitation volume based
on the assumption that fluctuations of daily precipitation follow the gamma distribution.
As we have seen in Sect. 1.2, the gamma model for the distribution of daily precipitation
volume is less adequate than the Pareto model. Here we will modify the technique proposed
in [26] and make it more adequate and justified.

For this purpose we will use the following auxiliary result. Consider a sequence of r.v.’s
W1,W2, ... Let N1, N2, ... be natural-valued r.v.’s such that for every n ∈ N the r.v. Nn is
independent of the sequence W1,W2, ... In the following statement the convergence is meant
as n→∞.

Theorem 3 [8, 9]. Assume that there exist an infinitely increasing (convergent to zero)
sequence of positive numbers {bn}n≥1 and a r.v. W such that

b−1n Wn =⇒ W.
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If there exist an infinitely increasing (convergent to zero) sequence of positive numbers
{dn}n≥1 and a r.v. N such that

d−1n bNn =⇒ N, (20)

then
d−1n WNn =⇒ W ·N, (21)

where the r.v.’s on the right-hand side of (21) are independent. If, in addition, Nn −→ ∞
in probability and the family of scale mixtures of the d.f. of the r.v. W is identifiable, then
condition (20) is not only sufficient for (21), but is necessary as well.

Let X1, X2, . . . be daily precipitation volumes on wet days. For k ∈ N denote Sk =
X1 + . . . + Xk. The statistical analysis of the observed data shows that the average daily
precipitation volume on wet days is finite:

1

n

n∑
j=1

Xj =⇒ a ∈ (0,∞). (22)

Figure 9 illustrates the stabilization of the cumulative averages of daily precipitation
volumes as n grows in Potsdam (continuous line) and Elista (dash line), and thus, the
practical validity of assumption (22).

Fig. 11: stabilization of the cumulative averages of daily precipitation volumes as n grows
in Potsdam (continuous line) and Elista (dash line).

It should be emphasized that in (22) we do not assume that X1, X2, . . . are independent.
Let r > 0, µ > 0, q ∈ (0, 1), n ∈ N. Let the r.v. Nr,pn have the negative binomial

distribution with parameters r and pn = min{q, µ/n}. Using the properties of characteristic
functions it is easy to make sure that

n−1Nr,pn =⇒ Gr,µ
d
= 1

µ
Gr,1 (23)

as n→∞.
From (23) and theorem 3 we obtain the following analog of the law of large numbers for

negative binomial random sums.
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Theorem 4. Assume that the daily precipitation volumes on wet days X1, X2, ... satisfy
condition (22). Let the numbers r > 0, q ∈ (0, 1) and µ > 0 be arbitrary. For each
n ∈ N, let the r.v. Nr,pn have the negative binomial distribution with parameters r and
pn = min{q, µ/n}. Assume that the r.v.’s Nr,pn are independent of the sequence X1, X2, ...
Then

n−1SNr,pn =⇒ aGr,µ
d
= a

µ
Gr,1

as n→∞.

Therefore, with the account of the excellent fit of the negative binomial model for the
duration of a wet period (see Fig. 4), with rather small pn, the gamma distribution can
be regarded as an adequate and theoretically well-based model for the total precipitation
volume during a (long enough) wet period. This theoretical conclusion based on the negative
binomial model for the distribution of duration of a wet period is vividly illustrated by the
empirical data as shown on Figure 3.1 where the histograms of total precipitation volumes in
Potsdam (a) and Elista (b) and the fitted gamma distributions are shown. For comparison,
the densities of the best generalized Pareto distributions are also presented. It can be
seen that even the best fitted Pareto distributions demonstrate worse fit than the gamma
distribution.

a) b)

Fig. 12: The histograms of total precipitation volumes in Potsdam (a) and Elista (b) and
the fitted gamma and generalized Pareto distributions.

Let m ∈ N and G
(1)
r,µ, G

(2)
r,µ, . . . , G

(m)
r,µ be independent r.v.’s having the same gamma dis-

tribution with parameters r > 0 and µ > 0.
Consider the relative contribution of the r.v. G

(1)
r,µ to the sum G

(1)
r,µ +G

(2)
r,µ + . . .+G

(m)
r,µ :

R =
G

(1)
r,µ

G
(1)
r,µ +G

(2)
r,µ + . . .+G

(m)
r,µ

d
=

G
(1)
r,1

G
(1)
r,1 +G

(2)
r,1 + . . .+G

(m)
r,1

d
=

d
=

(
1 +

1

G
(1)
r,1

(G
(2)
r,1 + . . .+G

(m)
r,1 )

)−1
d
=

(
1 +

G(m−1)r,1

Gr,1

)−1
, (24)

where the gamma-distributed r.v.’s on the right hand side are independent. So, the r.v. R
characterizes the relative precipitation volume for one (long enough) wet period with respect
to the total precipitation volume registered for m wet periods.
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The distribution of the r.v. R is completely determined by the distribution of the ratio
of two independent gamma-distributed r.v.’s. To find the latter, denote k = (m − 1)r and
obtain

Gk,1

Gr,1

=
k

r
·
(
r

k
· Gk,1

Gr,1

)
d
=
k

r
·Qk,r,

where Qk,r is the r.v. having the Snedecor–Fisher distribution determined for k > 0, r > 0
by the Lebesgue density

fk,r(x) =
Γ(k + r)

Γ(k)Γ(r)

(k
r

)k xk−1

(1 + k
r
x)k+r

, x ≥ 0, (25)

(as is known, Qk,r
d
= rGk, 1(kGr, 1)

−1, where the r.v.’s Gk, 1 and Gr, 1 are independent (see,
e. g., [6], p. 32)). It should be noted that the particular value of the scale parameter is
insignificant. For convenience, it is assumed equal to one.

So, R
d
=
(
1 + k

r
Qk,r

)−1
, and, as is easily made sure by standard calculation using (25),

the distribution of the r.v. R is determined by the density

p(x; k, r) =
Γ(k + r)

Γ(r)Γ(k)
(1− x)k−1xr−1, 0 ≤ x ≤ 1,

that is, it is the beta distribution with parameters k = (m− 1)r and r.
Then the test for the homogeneity of an independent sample of size m consisting of the

gamma-distributed observations of total precipitation volumes during m wet periods with
known γ based on the r.v. R looks as follows. Let V1, . . . , Vm be the total precipitation
volumes during m wet periods and, moreover, V1 ≥ Vj for all j ≥ 2. Calculate the quantity

SR =
V1

V1 + . . .+ Vm

(SR means ¡¡Sample R¿¿). From what was said above it follows that under the hypothesis
H0: ¡¡the precipitation volume V1 under consideration is not abnormally large¿¿ the r.v.
SR has the beta distribution with parameters k = (m − 1)r and r. Let ε ∈ (0, 1) be a
small number, βk,r(1 − ε) be the (1 − ε)-quantile of the beta distribution with parameters
k = (m− 1)r and r. If SR > βk,r(1− ε), then the hypothesis H0 must be rejected, that is,
the volume V1 of precipitation during one wet period must be regarded as abnormally large.
Moreover, the probability of erroneous rejection of H0 is equal to ε.

Instead of R, the quantity

R0 =
(m− 1)G

(1)
r,µ

G
(2)
r,µ + . . .+G

(m)
r,µ

d
=
k

r

Gr,µ

Gk,µ

d
=
k

r

Gr,1

Gk,1

d
= Qr,k

can be considered. Then, as is easily seen, the r.v.’s R and R0 are related by the one-to-one
correspondence

R =
R0

m− 1 +R0

or R0 =
(m− 1)R

1−R
,

so that the homogeneity test for a sample from the gamma distribution equivalent to the
one described above and, correspondingly, the test for a precipitation volume during a wet
period to be abnormally large, can be based on the r.v. R0 which has the Snedecor–Fisher
distribution with parameters r and k = (m− 1)r.
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Namely, again let V1, . . . , Vm be the total precipitation volumes during m wet periods
and, moreover, V1 ≥ Vj for all j ≥ 2. Calculate the quantity

SR0 =
(m− 1)V1

V2 + . . .+ Vm

(SR0 means ¡¡Sample R0¿¿). From what was said above it follows that under the hypothesis
H0: ¡¡the precipitation volume V1 under consideration is not abnormally large¿¿ the r.v. SR
has the Snedecor–Fisher distribution with parameters r k = (m− 1)r. Let ε ∈ (0, 1) be a
small number, qr,k(1 − ε) be the (1 − ε)-quantile of the Snedecor–Fisher distribution with
parameters r k = (m− 1)r. If SR0 > qr,k(1− ε), then the hypothesis H0 must be rejected,
that is, the volume V1 of precipitation during one wet period must be regarded as abnormally
large. Moreover, the probability of erroneous rejection of H0 is equal to ε.

Let l be a natural number, 1 ≤ l < m. It is worth noting that, unlike the test based
on the statistic R, the test based on R0 can be modified for testing the hypothesis H ′0:
¡¡the precipitation volumes Vi1 , Vi2 , . . . , Vil do not make an abnormally large cumulative
contribution to the total precipitation volume V1 + . . .+ Vm¿¿. For this purpose denote

Tl = Vi1 + Vi2 + . . .+ Vil , T = V1 + V2 + . . .+ Vm

and consider the quantity

SR′0 =
(m− l)Tl
l(T − Tl)

.

In the same way as it was done above, it is easy to make sure that

SR′0
d
=

(m− l)Glr,l

lG(m−l)r,1

d
= Qlr,(m−l)r.

Let ε ∈ (0, 1) be a small number, qlr,(m−1)r(1−ε) be the (1−ε)-quantile of the Snedecor–
Fisher distribution with parameters lr k = (m − l)r. If SR′0 > qlr,(m−l)r(1 − ε), then the
hypothesis H ′0 must be rejected, that is, the cumulative contribution of the precipitation
volumes Vi1 , Vi2 , . . . , Vil into the total precipitation volume V1 + . . .+ Vm must be regarded
as abnormally large. Moreover, the probability of erroneous rejection of H ′0 is equal to ε.

The examples of application of the test for a total precipitation volume within a wet
period to be abnormally large will be discussed in Section 3.3.

3.2 The application of the tests to the statistical analysis of time
series. Relative and absolute abnormality

In this section we present the results of the application of the test SR0 to the analysis of
the time series of daily precipitation observed in Potsdam and Elista from 1950 to 2009.

First of all it should be emphasized that the parameter m of the Snedecor–Fisher distri-
bution of the test statistic SR0 is tightly connected with the time horizon, the abnormality
of precipitation within which is studied. Indeed, the average duration of a wet/dry period
(or, which is the same, the average distance between the first days of successive wet periods)
in Potsdam turns out to be 5.804 ≈ 6 days. So, one observation of a total precipitation
during a wet period, on the average, corresponds to approximately 6 days. This means,
that, for example, the value m = 5 corresponds to approximately one month on the time
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axis, the value m = 15 corresponds to approximately 3 months (a season), the value m = 60
corresponds to approximately one year.

Second, it is important that the test for a total precipitation volume during one wet
period to be abnormally large can be applied to the observed time series in a moving mode.
For this purpose a window (a set of successive observations) should be determined. The
number of observations in this set, say, m, is called the window width. The observations
within a window constitute the sample to be analyzed. After the test has been performed
for a given position of the window, the window moves rightward by one observation so that
the leftmost observation at the previous position of the window is excluded from the sample
and the observation next to the rightmost observation is added to the sample. The test
is performed once more and so on. It is clear that each fixed observation falls in exactly
m successive windows. Two cases are possible: (i) the fixed observation is recognized as
abnormally large within each of m windows containing this observation and (ii) the fixed
observation is recognized as abnormally large within at least one of m windows containing
this observation. In the case (i) the observation will be called absolutely abnormally large
with respect to a given time horizon (approximately equal to m · 5.804 ≈ 6m days). In the
case (ii) the observation will be called relatively abnormally large with respect to a given
time horizon.

Of course, these definitions admit intermediate cases where the observation is recognized
as abnormally large for q ·m windows with q ∈ [ 1

m
, 1].

3.3 The statistical analysis of real data

The results of the application of the test for a total precipitation volume during one wet
period to be abnormally large based on SR0 in the moving mode are shown on Figures 13
– 16 (Potsdam) and 17 – 20 (Elista) for different time horizons. It is seen that at relatively
small time horizons the test yields non-trivial and unobvious conclusions. However, as the
time horizon increases, the results of the test become more expected. At small time horizons
there are some big precipitation volumes that are not recognized as abnormal. At large time
horizons there are almost no ‘regular’ big precipitation volumes at significance level α = 0.05
whereas at the smaller significance level α = 0.01 there are some ‘regular’ big precipitation
volumes which are thus not recognized as abnormal.

Fig. 13: Absolutely (triangles), relatively (squares) and intermediate (circles) abnormal
precipitation volumes, Potsdam, time horizon = 30 days, significance levels α = 0.05 (left)
and α = 0.01 (right).
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Fig. 14: Absolutely (triangles), relatively (squares) and intermediate (circles) abnormal
precipitation volumes, Potsdam, time horizon = 60 days, significance levels α = 0.05 (left)
and α = 0.01 (right).

Fig. 15: Absolutely (triangles), relatively (squares) and intermediate (circles) abnormal
precipitation volumes, Potsdam, time horizon = 90 days, significance levels α = 0.05 (left)
and α = 0.01 (right).
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