
ar
X

iv
:1

80
2.

02
90

7v
1 

 [
st

at
.M

L
] 

 7
 F

eb
 2

01
8

1

A Game-Theoretic Approach to Design Secure and

Resilient Distributed Support Vector Machines
Rui Zhang, Student Member and Quanyan Zhu, Member

Abstract

Distributed Support Vector Machines (DSVM) have been developed to solve large-scale classification problems in networked
systems with a large number of sensors and control units. However, the systems become more vulnerable as detection and defense
are increasingly difficult and expensive. This work aims to develop secure and resilient DSVM algorithms under adversarial
environments in which an attacker can manipulate the training data to achieve his objective. We establish a game-theoretic
framework to capture the conflicting interests between an adversary and a set of distributed data processing units. The Nash
equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the
resilience of the machine learning through dynamic distributed learning algorithms. We prove that the convergence of the distributed
algorithm is guaranteed without assumptions on the training data or network topologies. Numerical experiments are conducted to
corroborate the results. We show that network topology plays an important role in the security of DSVM. Networks with fewer
nodes and higher average degrees are more secure. Moreover, a balanced network is found to be less vulnerable to attacks.
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I. INTRODUCTION

Support Vector Machines (SVMs) [2] have been widely used for classification and prediction tasks, such as spam detection

[3], face recognition [4] and temperature prediction [5]. They are supervised learning algorithms that can be used for prediction

or detection by training samples with known labels. However, just like many other machine learning algorithms, SVMs are

also vulnerable to adversaries who can exploit the systems [6]. For example, an SVM-based spam filter will misclassify spam

emails after training wrong data created intentionally by attacker [7]–[9]. Moreover, an SVM-based face recognition systems

may give wrong authentications to fake images created by attacker [10].

Traditional SVMs are learning algorithms that require a centralized data collection, communication, and storage from multiple

sensors [11]. The centralized nature of SVMs requires a significant amount of computation for large-scale problems, and makes

SVMs unsuitable for online information fusion and processing. Despite the fact that various solutions have been introduced to

address this challenge, e.g., see [12] and [13], they have not changed the nature of the SVM algorithm and its architecture.

Distributed Support Vector Machines (DSVM) algorithms are decentralized SVMs in which multiple nodes or agents process

data independently, and communicate training information over a network, see, for example, [14], [15]. This architecture is

attractive for solving large-scale machine learning problems since each node learns from its own data in parallel, and transfers

the learning results from one node to the others to achieve the global performance as in centralized algorithms. In addition,

DSVM algorithms do not require a fusion center to store all the data. Each node performs its local computation without

sharing the content of the data with other nodes, which effectively reduces the cost of memory and the overhead of data

communications.

In spite of the productivity and efficiency of DSVM, the decentralized training system is more vulnerable than its centralized

counterpart [16], [17]. The DSVM has an increased attack surface since each node in the network can be vulnerable to attacks.

An attacker can not only select a few nodes to compromise their individual learning process [18], but also send misinformation

to other nodes to affect the performance of the entire DSVM network [19]. In addition, in the case of large-scale problems, it

is not always possible to protect a large number of nodes at the same time [20]. Hence there will always exist vulnerabilities

so that an attacker can find the weakest links or nodes to compromise.

As a result, it is important to study the security of DSVM under adversarial environments. In this work, we focus on a class

of consensus-based DSVM algorithms [21], in which each node in the network updates its training result based on its own

training data and the results from its neighboring nodes. Nodes achieve the global training results once they reach consensus.

One compromised node will play a significant role in affecting not only its own training result but spreading the misinformation

to the entire network.
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Machine learning algorithms are inherently vulnerable as they are often open-source tools or methods, and security is not

the primary concern of designers. An attacker can easily acquire the information regarding the DSVM algorithms and the

associated network topologies. With this knowledge, an attacker can launch a variety of attacks, for example, manipulating the

labels of the training samples [22], and changing the testing data [23]. In this work, we consider a class of attacks in which

the attacker has the ability to modify the training data. An example of this has been described in [24], where an adversary

modifies training data so that the learner is misled to produce a prediction model profitable to the adversary. This type of

attack represents a challenge for the learner since it is hard to detect data modifications during a training process [25]. We

further identify the attacker by his goal, knowledge, and capability.

• The Goal of the Attacker: The attacker aims to destroy the training process of the DSVM learner and increase his

classification errors.

• The Knowledge of the Attacker: To fully capture the damages caused by the attacker, we assume that the attacker has a

complete knowledge of the learner, i.e., the attacker knows the learner’s data and algorithm and the network topology.

This assumption is under a worst-case scenario by Kerckhoffs’s principle: the enemy knows the system [26].

• The Capability of the Attacker: The attacker can modify the training data by deleting crafted values to damage the training

process of the DSVM learner.

One major goal of this work is to develop a quantitative framework to address this critical issue. In the adversarial

environments, the goal of a learner is to minimize global classification errors in a network, while an attacker breaks the

training process with the aim of maximizing that errors of classification by modifying the training data. The conflict of

interests enables us to establish a nonzero-sum game framework to capture the competitions between the learner and the

attacker. The Nash equilibrium of the game enables the prediction of the outcome and yields optimal response strategies to

the adversary behaviors. The game framework also provides a theoretic basis for developing dynamic learning algorithms that

will enhance the security and the resilience of DSVM. The major contribution of this work can be summarized as follows:

1) We capture the attacker’s objective and constrained capabilities in a game-theoretic framework and develop a nonzero-sum

game to model the strategic interactions between an attacker and a learner with a distributed set of nodes.

2) We fully characterize the Nash equilibrium by showing the strategic equivalence between the original nonzero-sum game

and a zero-sum game.

3) We develop secure and resilient distributed algorithms based on alternating direction method of multipliers (ADMoM)

[27]. Each node communicates with its neighboring nodes and updates its decision strategically in response to adversarial

environments.

4) We prove the convergence of the DSVM algorithm. The convergence is guaranteed without any assumptions on the

network topology or the form of data.

5) We demonstrate that network topology plays an important role in resilience to adversary behaviors. Networks with fewer

nodes and higher average degrees are shown to be more secure. We also show that a balanced network (i.e., each node

has the same number of neighbors) is less vulnerable.

6) We show that nodes with more training samples and fewer neighbors turn out to be more secure for a specified network.

One way to defend against attacker’s action is to add more training samples, which may increase the training time and

require more memory for storage.

A. Related Works

A general tool to study machine learning under adversarial environment is game theory [28]–[30]. In [28], Dalvi et al. have

formulated a game between a cost-sensitive Bayes classifier and cost-sensitive adversary. In [29], Kantarcıoğlu et al. have

introduced Stackelberg games to model the interactions between the adversary and the learner, which shows that the game

between them is possible to reach a steady state where actions of both players are stabilized. In [30], Rota et al. have presented

a game-theoretic formulation where a learner and an attacker make randomized strategy selections. The major focus of their

work is on developing centralized machine learning tools. In our work, we extend the security framework of machine learning

algorithms to a distributed framework for networks. Hence, it can be seen that the performance of the distributed machine

learning algorithms is also related the security of networks.

Game theory has also been widely used in network security [31]–[38]. In [31], Lye et al. have analyzed the interactions

of an attacker and an administrator as a two-player stochastic game at a network. In [32], Michiardi et al. have presented a

game-theoretic model in ad hoc networks to capture the interactions between normal nodes and misbehaving nodes. However,

when solving distributed machine learning problems, the features and properties of data processing in each node can cause

unanticipated consequences in a network.

In our previous work [1] , we have established a preliminary framework to model the interactions between a consensus-based

DSVM learner and an attacker. In this paper, we develop fully distributed algorithms and investigate their convergence, security

and resilience properties. Moreover, new sets of experiments are performed to show the influence of network topologies and

the number of samples at each node on the resilience of the network.
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(a) Network example. (b) SVM at compromised node 1.

Fig. 1. Network example: There are 7 nodes in this network as shown in Fig. (a). Each node contains a labelled training set Dv := {(xvn,yvn) : n = 1, ...,Nv}.
Node 4 can communicate with its 4 neighbors: node 2, 3, 5 and 6. An attacker can take over node 1 and 4. The compromised nodes are marked in red.
In each node, the learner aims to find the best linear discriminant line, for example, the black dotted line shown in (b). In compromised nodes, an attacker
modifies the training data which leads to a wrong discriminant line of the learner, for example, the black solid line shown in (b).

B. Organization of the Paper

The rest of this paper is organized as follows. Section II outlines the design of distributed support vector machines. In

Section III, we establish game-theoretic models for the learner and the attacker. Section IV deals with the distributed and

dynamic algorithms for the learner and the attacker. Section V presents the convergence proof of the algorithm. Section VI

and Section VII present numerical results and concluding remarks, respectively. Appendices A, B, and C provide the proof of

the Propositions 1, 2 and Lemma 1, respectively.

C. Summary of Notations

Notations in this paper are summarized as follows. Boldface letters are used for matrices (column vectors); (·)T denotes

matrix and vector transposition; (·)(t) denotes values at step t; [·]vu denotes the vu-th entry of a matrix; diag(X) is the diagonal

matrix with X on its main diagonal; ‖ · ‖ is the norm of the matrix or vector; V denotes the set of nodes in a network; Bv

denotes the set of neighboring nodes of node v; U denotes the action set which is used by the attacker.

II. PRELIMINARIES

In this section, we present a two-player machine learning game in a distributed network involving a learner and an attacker to

capture the strategic interactions between them. The network is modeled by an undirected graph G (V ,E ) with V := {1, ...,V}
representing the set of nodes, and E representing the set of links between nodes. Node v ∈ V communicates only with his

neighboring nodes Bv ⊆ V . Note that without loss of generality, graph G is assumed to be connected; in other words, any two

nodes in graph G are connected by a path. However, nodes in G do not have to be fully connected, which means that nodes

are not required to directly connect to all the other nodes in the network. The network can contain cycles. At every node v ∈ V ,

a labelled training set Dv := {(xvn,yvn) : n = 1, ...,Nv} of size Nv is available, where xvn ∈R
p represents a p-dimensional data,

and they are divided into two groups with labels yvn ∈ {+1,−1}. Examples of a network of distributed nodes are illustrated

in Fig. 1(a).

The goal of the learner is to design DSVM algorithms for each node in the network based on its local training data Dv, so

that each node has the ability to give new input x a label of +1 or −1 without communicating Dv to other nodes v′ 6= v. To

achieve this, the learner aims to find local maximum-margin linear discriminant functions gv(x) = xT w∗
v + b∗v at every node

v ∈ V with the consensus constraints {w∗
v = w∗

u,b
∗
v = b∗u}v∈V ,u∈Bv

forcing all the local variables {w∗
v,b

∗
v} to agree across

neighboring nodes. Variables w∗
v and b∗v of the local discriminant functions gv(x) can be obtained by solving the following

convex optimization problem [21]:

min
{wv,bv}

1
2 ∑

v∈V

‖wv‖
2
2

+VCl ∑
v∈V

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

s.t. wv = wu, bv = bu, ∀v ∈ V ,u ∈ Bv.

(1)

In the above problem, the term
[
1− yvn(w

T
v xvn + bv)

]
+

:= max{1− yvn(w
T
v xvn + bv),0} is the hinge loss function. It can also

be written as slack variable ξvn with the constraints yvn(w
T
v xvn + bv)≥ 1− ξvn and ξvn ≥ 0, where ξvn account for non-linearly

separable training sets. Cl is a tunable positive scalar for the learner.
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III. DISTRIBUTED SUPPORT VECTOR MACHINES WITH ADVERSARY

Optimization Problem (1) is formed by the DSVM learner who seeks to find the maximum-margin linear discriminant

function. We assume that an attacker has a complete knowledge of the learner’s Problem (1), and he can modify the value

xvn of the node v into x̂vn = xvn − δvn, where δvn ∈ Uv, and Uv is the attacker’s action set at node v. We use Va = {1, ...,Va}
and Vl = {1, ...,Vl} to represent nodes with and without the attacker, respectively. Note that, V = Va +Vl and V = Vl ∪Va. A

node in the network is either under attack or not under attack. The behavior of the learner can be captured by the following

optimization problem:

min
{wv,bv}

1
2 ∑

v∈V

‖wv‖
2
2

+VlCl ∑
v∈Vl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+VaCl ∑
v∈Va

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

s.t. wv = wu, bv = bu, ∀v ∈ V ,u ∈ Bv.

(2)

For the learner, the learning process is to find the discriminant function which separates the training data into two classes with

less error, and then use the discriminant function to classify testing data. Since the attacker has the ability to change the value

of the original data xvn ∈ X into x̂vn ∈ X̂ , the learner will find the discriminant function that separates the data in X̂ more

accurate, rather than the data in X . As a result, when using the discriminant function to classify the testing data x ∈ X , it

will be prone to be misclassified.

By minimizing the objective function in Problem (2), the learner can obtain the optimal variables {w∗
v,b

∗
v}, which can be

used to build up the discriminant function to classify the testing data. The attacker, on the other hand, aims to find an optimal

way to modify the data using variables {δvn} to maximize the classification error of the learner. The behavior of the attacker

can thus be captured as follows:

max
{δvn}

1
2 ∑

v∈V

‖wv‖
2
2

+VlCl ∑
v∈Vl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+VaCl ∑
v∈Va

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

−Ca ∑
v∈Va

Nv

∑
n=1

‖δvn‖0

s.t. (δv1, ...,δvNv) ∈ Uv, ∀v ∈ Va.

(3)

In above problem, the term Ca ∑v∈Va ∑
Nv

n=1‖δvn‖0 represents the cost function for the attacker. l0 norm is defined as ‖x‖0 :=
#{i : xi 6= 0}, i.e., the total number of nonzero elements in a vector. Here, we use the l0 norm to denote the number of elements

which are changed by the attacker. The objective function with l0-norm captures the fact that the attacker aims to make the

largest impact on the learner by changing the least number of elements. Uv denotes the action set for the attacker. We use the

following form of Uv:

Uv =

{
(δv1, ...,δvNv )

∣∣∣∣∣
Nv

∑
n=1

‖δvn‖
2
2 ≤Cv,δ

}
,

which is related to the atomic action set

Uv0 =
{

δv

∣∣∣‖δv‖
2
2 ≤Cv,δ

}
.

Cv,δ indicates the bound of the sum of the norm of all the changes at node v. A higher Cv,δ indicates that the attacker has a

large degree of freedom in changing the value xvn. Thus training these data will lead to a higher risk for the learner. Notice

that Cv,δ can vary at different nodes, and we use Cδ to represent the situation when Cv,δ are equal at every node. δv ∈R
p from

the atomic action set has the same form with δvn, but δv and (δv1, ...,δvNv ) are bounded by same Cv,δ . Furthermore, the atomic

action set Uv0 has the following properties.
(P1) 0 ∈ Uv0;

(P2) For any w0 ∈ R
p :

max
δv∈Uv0

[
wT

0 δv

]
= max

δ ′
v∈Uv0

[
−wT

0 δ ′
v

]
<+∞.

The first property (P1) states that the attacker can choose not to change the value of xvn. Property (P2) states that the atomic

action set is bounded and symmetric. Here, “bounded” means that the attacker has the limit on the capability of changing xvn.

It is reasonable since changing the value significantly will result in the evident detection of the learner.

Problem (2) and Problem (3) can constitute a two-person nonzero-sum game between an attacker and a learner. The solution

to the game problem is often described by Nash equilibrium, which yields the equilibrium strategies for both players, and
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predicts the outcome of machine learning in the adversarial environment. By comparing Problem (2) with Problem (3), we

notice that the first three terms of the objective function in Problem (3) are the same as the objective function in Problem (2).

The last term of the objective function in Problem (3) is not related to the decision of the learner when he solves Problem (2),

and thus it can be treated as a constant for the learner. Moreover, both the constraints in Problem (2) and (3) are uncoupled. As

a result, the nonzero-sum game can be reformulated into a strategically equivalent zero-sum game, which takes the minimax

or max-min form as follows:

min
{wv,bv}

max
{δvn}

K ({wv,bv} ,{δvn})
∆
= 1

2 ∑
v∈V

‖wv‖
2
2

+VlCl ∑
v∈Vl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+VaCl ∑
v∈Va

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

−Ca ∑
v∈Va

Nv

∑
n=1

‖δvn‖0

s.t.
wv = wu,bv = bu,
(δv1, ...,δvNv) ∈ Uv,

∀v ∈ V ,u ∈ Bv;

∀v ∈ Va.
(4a)
(4b)

(4)

Note that there are two sets of constraints: (4a) only contributes to the minimization part of the problem, while (4b) only

affects the maximization part. The first term of K ({wv,bv} ,{δvn}) is the inverse of the distance of margin. The second term

is the error penalty of nodes without attacker. The third term is the error penalty of nodes with attacker, and the last term

is the cost function for the attacker. On the one hand, minimizing the objective function captures the trade-off between a

larger margin and a small error penalty of the learner, while on the other hand, maximizing the objective function captures the

trade-off between a large error penalty and a small cost of the attacker. As a result, solving Problem (4) can be understood as

finding the saddle point of the zero-sum game between the attacker and the learner.

Definition 1. Let SL and SA be the action sets for the DSVM learner and the attacker respectively. Notice that here SA =
{Uv}v∈Va

. Then, the strategy pair ({w∗
v ,b

∗
v} ,{δ ∗

vn}) is a saddle-point solution of the zero-sum game defined by the triple

Gz := 〈{L,A} ,{SL,SA} ,K〉, if

K ({w∗
v ,b

∗
v} ,{δvn})

≤ K ({w∗
v ,b

∗
v} ,{δ ∗

vn})≤ K ({wv,bv} ,{δ ∗
vn}) ,∀v ∈ V ,

where K is the objective function from Problem (4).

Based on the property of the action set and atomic action set, Problem (4) can be further simplified as stated in the following

proposition.

Proposition 1. Assume that Uv is an action set with corresponding atomic action set Uv0. Then, Problem (4) is equivalent to

the following optimization problem:

min
{wv,bv,{ξvn}}

max
{δv}

1
2 ∑

v∈V

‖wv‖
2
2 +VCl ∑

v∈V

Nv

∑
n=1

ξvn

+ ∑
v∈Va

(
VaClw

T
v δv −Ca‖δv‖0

)

s.t.
yvn(w

T
v xvn + bv)≥ 1− ξvn,

ξvn ≥ 0,
wv = wu,bv = bu,
δv ∈ Uv0,

∀v ∈ V ,n = 1, ...,Nv;

∀v ∈ V ,n = 1, ...,Nv;

∀v ∈ V ,u ∈ Bv;

∀v ∈ Va.

(5)

Proof. See Appendix A.

In Problem (4), the third term of function K ({wv,bv} ,{δvn}) is the sum of hinge loss functions of the nodes under attack.

This term is affected by the decision variables of both players. However, Problem (5) transforms that into hinge loss functions

without attacker’s action δvn and a coupled multiplication of wv and δv. Notice that δv here can be seen as the combination of

all the δvn in node v. In this way, the only coupled term is VaClw
T
v δv, which is linear in the decision variables of the attacker

and the learner respectively.

IV. ADMOM-DSVM AND DISTRIBUTED ALGORITHM

In the previous section, we have combined Problem (2) for the learner with Problem (3) for the attacker into one minimax

Problem (4), and showed its equivalence to Problem (5). In this section, we develop iterative algorithms to find equilibrium

solutions to Problem (5).
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Firstly, we define rv := [wT
v ,bv]

T , the augmented matrix Xv := [(xv1, ...,xvNv)
T ,1v], the diagonal label matrix Yv := diag([yv1, ...,yvNv ]),

and the vector of slack variables ξv := [ξv1, ....,ξvNv ]
T . With these definitions, it follows readily that wv = Îp×(p+1)rv, where

Îp×(p+1) = [Ip×p,0p×1] is a p× (p+1) matrix with its first p columns being an identity matrix, and its (p+1) column being

a zero vector. We also relax the l0 norm to l1 norm to represent the cost function of the attacker. Thus, Problem (5) can be

rewritten as
min

{rv,ξv,ωvu}
max
{δv}

1
2 ∑

v∈V

rT
v Πp+1rv +VCl ∑

v∈V

1T
v ξv

+ ∑
v∈Va

(
VaClr

T
v ÎT

p×(p+1)δv −Ca‖δv‖1

)

s.t.

YvXvrv ≥ 1v − ξv,
ξv ≥ 0v,
rv = ωvu,ωvu = ru,
δv ∈ Uv0,

∀v ∈ V ;

∀v ∈ V ;

∀v ∈ V ,∀u ∈ Bv;

∀v ∈ Va.

(6a)
(6b)
(6c)
(6d)

(6)

Note that Πp+1 = ÎT
p×(p+1)̂Ip×(p+1) is a (p+ 1)× (p+ 1) identity matrix with its (p+ 1, p+ 1)-st entry being 0. ωvu is used

to decompose the decision variable rv to its neighbors ru, where u ∈ Bv. Problem (6) is a minimax problem with matrix

form coming from Problem (4). To solve Problem (6), we first prove that the minimax problem is equivalent to the max-min

problem, then we use the best response dynamics for the min-problem and max-problem separately.

Proposition 2. Let K′({rv,ξv},{δv}) represent the objective function in Problem (6), the minimax problem

min
{rv,ξv}

max
{δv}

K′({rv,ξv},{δv})

s.t. (6a),(6b),(6c),(6d).

yields the same saddle-point equilibrium as the max-min problem

max
{δv}

min
{rv,ξv}

K′({rv,ξv},{δv})

s.t. (6a),(6b),(6c),(6d).

Moreover, there exists an equilibrium of the minimax or max-min Problem (6), but the equilibrium is not necessarily unique.

Proof. See Appendix B.

Proposition 2 illustrates that the minimax problem is equivalent to the max-min problem, and thus we can construct the

best response dynamics for the min-problem and max-problem separately when solving Problem (6). The min-problem and

max-problem are archived by fixing {rv,ξv} and {δv}, respectively. We will also show that both the min-problem and the

max-problem can be solved in a distributed way.

A. Max-problem for fixed {r∗v,ξ
∗
v }

For fixed {r∗v,ξ
∗
v }, the first two terms of the objective function and the first three constraints in Problem (6) can be ignored

as they are not related to the max-problem. We have

max
{δv}

∑
v∈Va

(
VaClr

∗
v

T ÎT
p×(p+1)δv −Ca ‖δv‖1

)

s.t. δv ∈ Uv0, ∀v ∈ Va.
(7)

Note that δv is independent in the Problem (7), and thus we can separate Problem (7) into Va sub-max-problems solving which

is equivalent to solving the global max-problem. We have relaxed the l0 norm to l1 norm to represent the cost function of the

attacker. By writing the equivalent form of the l1-norm optimization, we arrive at the following problem

max
{δv,sv}

VaClr
∗
v

T ÎT
p×(p+1)δv − 1T sv

s.t.
Caδv ≤ sv,

Caδv ≥−sv,
δv ∈ Uv0,

∀v ∈ Va;

∀v ∈ Va;

∀v ∈ Va.

(8)

Problem (8) is a convex optimization problem, the objective function and the first two constraints are linear while the third

constraint is convex. Note that each node can achieve their own δv without transmitting information to other nodes. The global

Max-Problem (7) now is solved in a distributed fashion using Va Sub-Max-Problems (8).
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B. Min-problem for fixed {δ ∗
v }

For fixed {δ ∗
v }, we have

min
{rv,ωvu,ξv}

1
2 ∑

v∈V

rT
v Πp+1rv

+VaCl ∑
v∈Va

rT
v ÎT

p×(p+1)δ
∗
v +VCl ∑

v∈V

1T
v ξv

s.t.
YvXvrv ≥ 1v − ξv, ∀v ∈ V ; (9a)

ξv ≥ 0v, ∀v ∈ V ; (9b)
rv = ωvu,ωvu = ru, ∀v ∈ V ,∀u ∈ Bu. (9c)

(9)

Note that term −Ca ‖δ ∗
v ‖1 is ignored since it does not play a role in the minimization problem. Furthermore, we use the

alternating direction method of multipliers to solve Problem (9).

The surrogate augmented Lagrangian function for Problem (9) is

Lη({rv,ξv},{ωvu},{αvu,k})
= 1

2 ∑
v∈V

rT
v Πp+1rv +VCl ∑

v∈V

1T
v ξv

+VaCl ∑
v∈Va

rT
v ÎT

p×(p+1)δ
∗
v

+ ∑
v∈V

∑
u∈Bv

αT
vu,1(rv −ωvu)+ ∑

v∈V

∑
u∈Bv

αT
vu,2(ωvu − ru)

+η
2 ∑

v∈V

∑
u∈Bv

‖rv −ωvu‖
2
2 +

η
2 ∑

v∈V

∑
u∈Bv

‖ωvu − ru‖
2
2.

(10)

Notice that αvu,1 and αvu,2 donate the Lagrange multipliers with respect to rv = ωvu and ωvu = ru. “Surrogate” here means

that Lη does not include the constraints (9a) and (9b). “Augmented” indicates that Lη contains two quadratic terms which are

scaled by constant η > 0, and these two terms are used to further regularize the equality constraints in (9). ADMoM solves

Problem (9) by following update rules [39]:
{

r
(t+1)
v ,ξ

(t+1)
v

}
∈ arg min

{rv,ξv}
Lη({rv,ξv},{ω

(t)
vu },{α

(t)
vu,k}); (11)

{
ω

(t+1)
vu

}
∈ arg min

{ωvu}
Lη({r

(t+1)
v ,ξ

(t+1)
v },{ωvu},{α

(t)
vu,k}); (12)

α
(t+1)
vu,1 = α

(t)
vu,1 +η(r

(t+1)
v −ω

(t+1)
vu ),∀v ∈ V ,∀u ∈ Bv; (13)

α
(t+1)
vu,2 = α

(t)
vu,2 +η(ω

(t+1)
vu − r

(t+1)
u ),∀v ∈ V ,∀u ∈ Bv. (14)

Note that (11)-(14) contains two quadratic programming problems and two linear computations. Furthermore, (11)-(14) can be

simplified into the following proposition.

Proposition 3. Each node iterates with randomly initialization λ
(0)
v ,r

(0)
v and α

(0)
v = 0(p+1)×1,

λ
(t+1)
v ∈ arg max

0≤λv≤VCl 1v

− 1
2
λ T

v YvXvU−1
v XT

v Yvλv

+(1v+YvXvU−1
v f

(t)
v )T λv,

(15)

r
(t+1)
v = U−1

v

(
XT

v Yvλ
(t+1)
v − f

(t)
v

)
, (16)

α
(t+1)
v = α

(t)
v +

η

2
∑

u∈Bv

[
rv

(t+1)− r
(t+1)
u

]
, (17)

where Uv = Πp+1 + 2η |Bv|Ip+1, f
(t)
v =VaCl Î

T
p×(p+1)δ

∗
v + 2α

(t)
v −η ∑u∈Bv

(r
(t)
v + r

(t)
u ),η > 0 .

Proof. A similar proof can be found in [21]. By solving (12) directly, we have that ω
(t+1)
vu = 1

2η (α
(t)
vu,1−α

(t)
vu,2)+

1
2
(r

(t+1)
v +r

(t+1)
u ),

and thus, (12) can be eliminated by directly plugging the solution into (11), (13), and (14).

By plugging the solution of (12) into (13) and (14), we can achieve that α
(t+1)
vu,1 = 1

2
(α

(t)
vu,1 +α

(t)
vu,2)+

η
2
(r

(t+1)
v − r

(t+1)
u ), and

α
(t+1)
vu,2 = 1

2
(α

(t)
vu,1 +α

(t)
vu,2)+

η
2
(r

(t+1)
v − r

(t+1)
u ), respectively. Let α

(0)
vu,1 = α

(0)
vu,2 = 0(p+1)×1 be the initial condition, we have that

α
(t)
vu,1 = α

(t)
vu,2 for t ≥ 0. Thus, (12), (13), and (14) can be simplified further as ω

(t+1)
vu = 1

2
(r

(t+1)
v +r

(t+1)
u ), and α

(t+1)
vu,1 = α

(t+1)
vu,2 =

α
(t)
vu,1 +

η
2
(r

(t+1)
v − r

(t+1)
u ) = α

(t)
vu,2 +

η
2
(r

(t+1)
v − r

(t+1)
u ), respectively.
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By plugging the solution of (12) into (11), the sixth and seventh terms of the objective function in (11) can be simplified

as η ∑v∈V ∑u∈Bv

∥∥∥rv −
1
2
(r

(t)
v + r

(t)
u )

∥∥∥
2

2
. Moreover, notice that the following equality holds for the forth and fifth terms of the

objective function in (11):

∑
v∈V

∑
u∈Bv

α
(t)T
vu,1 (rv −ω

(t)
vu )+ ∑

v∈V

∑
u∈Bv

α
(t)T
vu,2 (ω

(t)
vu − ru)

= ∑
v∈V

∑
u∈Bv

α
(t)T
vu,1 (rv − ru) = ∑

v∈V

∑
u∈Bv

rv
T (α

(t)
vu,1 −α

(t)
uv,1)

= 2 ∑
v∈V

rv
T ∑

u∈Bv

α
(t)
vu,1 = 2 ∑

v∈V

rv
T α

(t)
v ,

where α
(t)
v = ∑u∈Bv

α
(t)
vu,1. Note that the first equality holds as α

(t)
vu,1 = α

(t)
vu,2 for t ≥ 0, the third equality holds as α

(t)
vu,1 =−α

(t)
uv,1,

which holds when α
(0)
vu,1 = α

(0)
vu,2 = 0(p+1)×1. Thus, we only need to calculate α

(t)
v at each iteration for (11). As a result, (13)

and (14) can be written as (17).

Using these results, we can rewrite Problem (11) as follows

{r
(t+1)
v ,ξ

(t+1)
v } ∈ arg min

{rv,ξv}

1
2 ∑

v∈V

rT
v Πp+1rv +VCl ∑

v∈V

1T
v ξv

+VaCl ∑
v∈Va

rT
v ÎT

p×(p+1)δ
∗
v + 2 ∑

v∈V

rv
T α

(t)
v

+η ∑
v∈V

∑
u∈Bv

∥∥∥rv −
1
2
(r

(t)
v + r

(t)
u )

∥∥∥
2

2

s.t.
YvXvrv ≥ 1v − ξv,

ξv ≥ 0v,
v ∈ V ;

v ∈ V .

Let λv and βv denote the Lagrange multipliers associated with the constraints YvXvrv ≥ 1v − ξv and ξv ≥ 0v, respectively.

As a result, we have the Lagrange function for (11) as

L′
η = 1

2 ∑
v∈V

rT
v Πp+1rv − ∑

v∈V

λ T
v (YvXvrv − 1v + ξv)− ∑

v∈V

β T
v ξv

+VCl ∑
v∈V

1T
v ξv +VaCl ∑

v∈Va

rT
v ÎT

p×(p+1)δ
∗
v

+2 ∑
v∈V

rv
T αv +η ∑

v∈V

∑
u∈Bv

∥∥∥rv −
1
2
(r

(t)
v + r

(t)
u )

∥∥∥
2

2
.

By KKT conditions, we have

(Πp+1 + 2η |Bv|Ip+1)rv = XT
v Yvλ

(t+1)
v −VaCl Î

T
p×(p+1)δ

∗
v

−2α
(t)
v +η ∑

u∈Bv

(r
(t)
v + r

(t)
u );

0 =VCl1v −λv −βv.

Note that λv ≥ 0 and βv ≥ 0, thus, the second equality yields 0 ≤ λv ≤ VCl1v. Let Uv = Πp+1 + 2η |Bv|Ip+1 and f
(t)
v =

VaCl Î
T
p×(p+1)δ

∗
v + 2α

(t)
v −η ∑

u∈Bv

(r
(t)
v + r

(t)
u ), the first equality yields (16). λv can be achieved by solving the dual problem of

Problem (11), which yields (15).

Note that (15) is a quadratic programming problem with linear inequality constraints. (16) and (17) are direct computations.

Uv is a diagonal matrix. Thus, U−1
v always exists and is easy to compute. (15)-(17) are fully distributed iterations as each node

uses their own sample data Xv and Yv. But the computations of fv and αv at node v require the value of ru form neighboring

nodes. This can be achieved by allowing communications between nodes. The centralized Min-Problem (9) can be solved in

a fully distributed fashion now.

C. Distributed algorithm for minimax problem

By combining the above Proposition 3 with Problem (8), we have the method of solving Problem (6) in a distributed way

as follows: The first step is that each node randomly pick an initial r
(0)
v ,δ

(0)
v and αv = 0(p+1)×1, then solve Max-Problem (8)

with {r
(0)
v }, and obtain{δ

(1)
v }, the next step is to solve Min-Problem (9) with {δ

(1)
v } using Proposition 3, and obtain {r

(1)
v },

then we repeat solving max-problem with {rv} from the previous step and min-problem with {δv} from the previous step until

the pair {rv,δv} achieves convergence. The iterations of solving Problem (6) can be summarized as follows:
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Algorithm 1

Randomly initialize δ
(0)
v ,r

(0)
v ,λ

(0)
v and α

(0)
v = 0(p+1)×1

for every v ∈ V .

1: for t = 0,1,2, ... do

2: for all v ∈ V do

3: Compute δ
(t+1)
v via (18).

4: end for

5: for all v ∈ V do

6: Compute λ
(t+1)
v via (19).

7: Compute r
(t+1)
v via (20).

8: end for

9: for all v ∈ V do

10: Broadcast r
(t+1)
v to all neighbors u ∈ Bv.

11: end for

12: for all v ∈ V do

13: Compute α
(t+1)
v via (21).

14: end for

15: end for

Proposition 4. With arbitrary initialization δ
(0)
v ,r

(0)
v ,λ

(0)
v and α

(0)
v = 0(p+1)×1, the iterations per node are given by:

δ
(t+1)
v ∈ arg max

{δv,sv}
VaClr

(t)T
v ÎT

p×(p+1)δv

− 1T sv

s.t.
Caδv ≤ sv,
Caδv ≥−sv,
δv ∈ Uv0,

∀v ∈ Va;

∀v ∈ Va;

∀v ∈ Va.

(18)

λ
(t+1)
v ∈ arg max

0≤λv≤VCl 1v

− 1
2
λ T

v YvXvU−1
v XT

v Yvλv

+(1v+YvXvU−1
v f

(t)
v )

T
λv,

(19)

r
(t+1)
v = U−1

v

(
XT

v Yvλ
(t+1)
v − f

(t)
v

)
, (20)

α
(t+1)
v = α

(t)
v +

η

2
∑

u∈Bv

[
r
(t+1)
v − r

(t+1)
u

]
, (21)

where Uv = Πp+1 + 2η |Bv|̂Ip+1, f
(t)
v =VaCl Î

T
p×(p+1)δ

(t)
v + 2α

(t)
v −η ∑u∈Uv

(r
(t)
v + r

(t)
u ).

Iterations (18)-(21) are summarized into Algorithm 1. Note that at any given iteration t of the algorithm, each node v ∈ V

computes its own local discriminant function g
(t)
v (x) for any vector x as

g
(t)
v (x) = [xT ,1]r

(t)
v . (22)

Algorithm 1 solves the minimax problem using ADMoM technique. It is a fully decentralized network operation, and it does

not require exchanging training data or the value of decision functions, which meets the reduced communication overhead

and privacy preservation requirements at the same time. The nature of the iterative algorithms also provides resiliency to the

distributed machine learning algorithms. It provides mechanisms for each node to respond to its neighbors and the adversarial

behaviors in real time. When unanticipated events occur, the algorithm will be able to automatically respond and self-configure

in an optimal way. Properties of Algorithm 1 can be summarized as followings.

D. Game of Games

The zero-sum minimax Problem (5) is a global game between the two players, i.e., a learner and an attacker. The game

captures the interactions on a network of V nodes. However, based on the properties of network, the two-person zero-sum

game can be treated as V small games between a local learner and a local attacker. If we treat each node as a player, then the

global game can be decomposed into V smaller games in which each node constitutes a local game between the local learner

at the node and the local attacker who attacks the node. We call this unique structure “Game of Games”.

To state more formally, we let the two-player zero sum game be represented by GZ = 〈{L,A} ,{SL,SA} ,K〉 , which is

equivalent to a game of games defined by GM ≡ {G1,G2, ...,G|V |}, where

Gv = 〈{Lv,Av} ,{SLv ,SAv} ,{{(19),(20),(21)},{(18)}}〉 .
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Notice that Gv is a local game between the learner and the attacker at node v. {Lv,Av} represents two players, i.e., the DSVM

learner and attacker at node v. The learner Lv at node v solves (19), (20) and (21), while the attacker Av at the node solves

(18). {SLv ,SAv} here represents the action sets for the learner and the attacker at node v, and SAv = Uv0.

E. Complexity

Each iteration of Algorithm 1 requires the computation of 4 variables, δv, λv, rv and αv. The computation of δv is a convex

optimization problem with a linear objective function. Calculating λv requires solving a quadratic programming problem and

contains an inverse of Uv. It can be shown that the inverse of Uv always exists. Variables rv and αv are calculated directly. The

complexity of the algorithm is dominated by the quadratic programming at each iteration. Since the complexity of quadratic

programming is O(n3), we can conclude that the complexity at each iteration is O(n3). Note that the complexity of solving

Problem (6) with Algorithm 1 is dominated by ADMoM, which is affected by the network topologies.

F. Scalability and Real Time Property

Algorithm 1 has made no assumption on the form of the datasets or the networks, and thus it is applicable to different

situations. In addition, it can be implemented as a real-time algorithm as the decision variables are updated at each step. The

attacker and the learner can adapt their strategies online without restarting the whole algorithm. For example, the attacker can

choose to attack at any time or compromise different nodes with different capabilities; the learner can add or delete nodes,

change the network connections, and add or delete the training data. The real-time property provides a convenient way for the

learner to design secure network topologies and algorithms by comparing the converged saddle-point equilibrium performances

under different strategies.

G. Security and Resiliency

Algorithm 1 studies the situation when there is an attacker who can change the value of training data. The algorithm

provides inherent security to the DSVM as it captures the attacker’s goal of maximizing the classification error of the learner.

The resiliency of individual nodes in the network comes from the distributed and iterative nature of the algorithm. In this

algorithm, nodes in a network are cooperative. The performance of one node affects other nodes. Compromised nodes can

reduce the impacts of the attacker’s manipulation of training data through the information from uncompromised nodes. If a

node has a sufficient number of healthy neighbors, it can learn from their classifiers to achieve an acceptable performance.

However, when a large number of nodes are compromised, it will be difficult for the compromised nodes to recover from such

failure.

H. Efficiency and Privacy

Algorithm 1 is a fully distributed algorithm which does not require a fusion center to store or operate large datasets. In this

algorithm, each node operates on their own data and computes their own discriminant functions. Thus, we can implement it

efficiently compared to its centralized counterpart. Besides, Algorithm 1 only requires the communications of decision variables

rv rather than the training data or other parameters between the neighboring nodes, which reduces the communication overhead

and keeps privacy at the same time. The notion of differential privacy can also be applied to safeguard our distributed learning

framework against stronger privacy breaches. Interested readers can refer to [40], [41].

In next section, we will fully analyze the convergence of Algorithm 1.

V. CONVERGENCE OF ALGORITHM 1

Convergence is important for iterative algorithms. In this section, we give a detailed proof of the convergence of our algorithm.

We first prove that iterations (15)-(17) converge to the solution of the Min-Problem (9) for given {δ ∗
v }, then we prove iterations

(18)-(21) converges to the equilibrium of the minimax Problem (6).

Since iterations (15)-(17) come directly from (11)-(14), to prove the convergence of (15)-(17), we only need to show that

iterations (11)-(14) converge to the solutions of Min-Problem (9) for given {δ ∗
v }. We will follow a similar proof in [39].

Note that the Min-Problem (9) can be reformulated with the hinge loss function as follows:

min
{rv,ωvu}

1
2 ∑

v∈V

rT
v Πp+1rv +VaCl ∑

v∈Va

rT
v ÎT

p×(p+1)δ
∗
v

+VCl ∑
v∈V

Nv

∑
n=1

[
1− yvn[x

T
vn,1]rv

]
+

s.t. rv = ωvu,ωvu = ru, ∀v ∈ V ,∀u ∈ Bv.

(23)
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The objective function is convex and the constraints are all linear, and thus the min-problem is solvable, i.e., there exists a

solution for the problem. The optimal value is denoted by

p∗ = inf





1
2 ∑

v∈V

rT
v Πp+1rv +VaCl ∑

v∈Va

rT
v ÎT

p×(p+1)δ
∗
v

+VCl ∑
v∈V

Nv

∑
n=1

[
1− yvn[x

T
vn,1]rv

]
+∣∣ rv = ωvu,ωvu = ru,∀v ∈ V ,∀u ∈ Bv




. (24)

Define the unaugmented Lagrangian L0 as

L0({rv},{ξv},{ωvu},{αvu,k})

= 1
2 ∑

v∈V

rT
v Πp+1rv +VaCl ∑

v∈Va

rT
v ÎT

p×(p+1)δ
∗
v

+VCl ∑
v∈V

Nv

∑
n=1

[
1− yvn[x

T
vn,1]rv

]
+
+ ∑

v∈V

∑
u∈Bv

αT
vu,1(rv −ωvu)

+ ∑
v∈V

∑
u∈Bv

αT
vu,2(ωvu − ru).

(25)

To show the convergence, we state the following assumption:

Assumption 1. The unaugmented Lagrangian L0 has a saddle point. Explicitly, there exist ({rv}
∗,{ξv}

∗,{ωvu}
∗,{αvu,k}

∗) not

necessarily unique, for which
L0({rv}

∗,{ξv}
∗,{ωvu}

∗,{αvu,k})
≤ L0({rv}

∗,{ξv}
∗,{ωvu}

∗,{αvu,k}
∗)

≤ L0({rv},{ξv},{ωvu},{αvu,k}
∗).

From Assumption 1, L0({rv}
∗,{ξv}

∗,{ωvu}
∗,{αvu,k}

∗) is finite for any saddle point ({rv}
∗,{ξv}

∗,{ωvu}
∗,{αvu,k}

∗) . This

indicates that ({rv}
∗,{ξv}

∗,{ωvu}
∗) is a solution of (23). Also it shows that {αvu,k}

∗ is dual optimal, and strong duality holds,

i.e., the optimal values of the primal and dual problems are equal. Notice that there is no assumption on Xv, Yv.

Define primal residuals rvu,1 = rv −ωvu and rvu,2 = ωvu − ru, dual residuals s
(t)
vu = η(ω

(t)
vu −ω

(t−1)
vu ), and Lyapunov function

J(t) for the algorithm,

J(t) = η ∑
v∈V

∑
u∈Bv

∥∥∥ω
(t)
vu −ω∗

vu

∥∥∥
2

2
+ 1

η ∑
v∈V

∑
u∈Bv

∥∥∥α
(t)
vu,1 −α∗

vu,1

∥∥∥
2

2

+ 1
η ∑

v∈V

∑
u∈Bv

∥∥∥α
(t)
vu,2 −α∗

vu,2

∥∥∥
2

2
.

(26)

J(t) is nonnegative and it decreases in each iteration.

Lemma 1. Under Assumption 1, the following inequalities hold:

J(t+1) ≤ J(t)−η ∑
v∈V

∑
u∈Bv

∥∥∥r
(t+1)
vu,1

∥∥∥
2

2
−η ∑

v∈V

∑
u∈Bv

∥∥∥r
(t+1)
vu,2

∥∥∥
2

2

−2η ∑
v∈V

∑
u∈Bv

∥∥∥ω
(t+1)
vu −ω

(t)
vu

∥∥∥
2

2
.

(27)

p(t+1)− p∗ ≤− ∑
v∈V

∑
u∈Bv

(
α
(t+1)T
vu,1 r

(t+1)
vu,1 +α

(t+1)T
vu,2 r

(t+1)
vu,2

)

+ ∑
v∈V

∑
u∈Bv

(
η(ω

(t+1)
vu −ω

(t)
vu )(ω

∗
vu −ω

(t+1)
vu − r

(t+1)
vu,1 )

)

+ ∑
v∈V

∑
u∈Bv

(
η(ω

(t+1)
vu −ω

(t)
vu )(ω

∗
vu −ω

(t+1)
vu + r

(t+1)
vu,2 )

)
.

(28)

p∗− p(t+1) ≤ ∑
v∈V

∑
u∈Bv

α∗T
vu,1r

(t+1)
vu,1 + ∑

v∈V

∑
u∈Bv

α∗T
vu,2r

(t+1)
vu,2 . (29)

Proof. See Appendix C.

Inequality (27) indicates that J(t) decreases at each step, since J(t) is nonnegative, thus J(t) converges to 0, which also indicates

that r
(t)
vu,k and ω

(t+1)
vu −ω

(t)
vu converge to 0. As a result, right hand sides of (28) and (29) converge to 0. Since p(t+1)− p∗ is

both upper and lower bounded by values converging to 0, p(t+1)− p∗ converges to 0. From these inequalities, we arrive at the

following proposition.

Proposition 5. Under on Assumption 1, (11)-(14) satisfy that

• Primal residuals r
(t)
vu,k → 0 as t → ∞.
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• Dual residuals s
(t)
vu → 0 as t → ∞.

• Objective p(t) → p∗ as t → ∞.

• Dual variables α
(t)
vu,k → α∗

vu,k as t → ∞.

• Decision variables rv → r∗v .

The convergence of iterations (11)-(14) to solutions of Min-Problem (9) for given {δ ∗
v } is guaranteed.

Proof. Under Assumption 1, inequalities (27), (28) and (29) hold based on Appendix C.

Inequality (27) indicates that J(t) decreases based on the sum of the norm of primal residuals and the change of ωvu over

one iteration. Since J(t) ≤ J0, α
(t)
vu,1,α

(t)
vu,2 and ω

(t)
vu are bounded. By iterating (27), we have

η
∞

∑
t=0

∑
v∈V

∑
u∈Bv

(∥∥∥r
(t+1)
vu,1

∥∥∥
2

2
+
∥∥∥r

(t+1)
vu,2

∥∥∥
2

2

)

+2η
∞

∑
t=0

∑
v∈V

∑
u∈Bv

∥∥∥ω
(t+1)
vu −ω

(t)
vu

∥∥∥
2

2
≤ J0.

This implies that r
(t)
vu,1,r

(t)
vu,2 and (ω

(t+1)
vu −ω

(t)
vu ) converge to 0 as t → ∞. Thus, the dual residuals s

(t)
vu = η(ω

(t)
vu −ω

(t−1)
vu ) converge

to 0.

The right hand side of inequality (28) goes to 0, since (ω∗
vu −ω

(t+1)
vu ) is bounded, and r

(t)
vu,1,r

(t)
vu,2 and (ω

(t+1)
vu −ω

(t)
vu ) converge

to 0. The right hand side of inequality (29) goes to 0, since r
(t)
vu,1 and r

(t)
vu,2 converge to 0. As a result, we have lim

t→∞
p(t) = p∗,

and arrive at Proposition 5.

Based on Proposition 5, the convergence of (11)-(14) is guaranteed. Since under Assumption 1, strong duality holds, (11)-

(14) will converge to the solution of the Min-Problem (9) with given {δ ∗
v }. As a result, (15)-(17) will also convege to Problem

(9). Next we prove the convergence of Algorithm 1 to the solution of minimax Problem (6).

Assume that the minimax Problem (6) will reach an equilibrium {p∗,q∗}, where p∗ is the optimal objective of the Min-

Problem (9) at the equilibrium, and q∗ is the optimal objective of the Max-Problem (7) at the equilibrium. We arrive at the

following result.

Proposition 6. Under on Assumption 1, (18)-(21) satisfy that

• Pair objectives {p(t),q(t)}→ {p∗,q∗} as t → ∞.

• Pair decision variables {r
(t)
v ,δ

(t)
v }→ {r∗v,δ

∗
v } as t → ∞.

In other words, the pair of objectives and decision variables will converge to the saddle-point equilibrium.

Proof. In Proposition 2, we have shown that with min-problem for the learner and the max-problem for the attacker, the con-

structed minimax problem is equivalent to the max-min problem. Thus, there exists an equilibrium {p∗,q∗} with corresponding

r∗v and δ ∗
v . Since Proposition 5 indicates that the min-problem always converges to the best response of the max-problem, with

the max-problem being a linear programming problem. Therefore, we can conclude that {p(t),q(t)}→ {p∗,q∗}, δ
(t)
v → δ ∗

v and

r
(t)
v → r∗v . Hence, Proposition 6 holds.

Proposition 6 shows that the separated min-problem and max-problem converge to the equilibrium, thus the convergence of

Algorithm 1 is guaranteed. With Assumption 1, Algorithm 1 will converge to the saddle-point solution of minimax Problem (6).

Note that here we have made no assumption on Xv and Yv. Therefore, Algorithm 1 is applicable to various different datasets.

VI. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments of DSVM under adversarial environments. We use empirical risk to measure

the performance of DSVM. The empirical risk at node v at step t is defined as follows:

R
(t)
v :=

1

Ñv

Ñv

∑
n=1

1

2

∣∣∣ỹvn − ŷ
(t)
vn

∣∣∣, (30)

where ỹvn is the true label, ŷ
(t)
vn is the predicted label and Ñv represents the number of testing samples in node v. The empirical

risk (30) sums over the number of misclassified samples in node v, and then divides it by the number of all testing samples

in node v. Notice that testing samples can vary for different nodes. In order to measure the global performance, we use the

global empirical risk defined as follows:

R
(t)
G :=

1

Ñ
∑

v∈V

Ñv

∑
n=1

1

2

∣∣∣ỹvn − ŷ
(t)
vn

∣∣∣, (31)

where Ñ = ∑
v∈V

Ñv, representing the total number of testing samples. Clearly, a higher global empirical risk shows that there

are more testing samples being misclassified, i.e., a worse performance of DSVM. We use the first experiment to illustrate the

significant impact of the attacker.
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Fig. 2. Evolution of the empirical risks of DSVM with an attacker at a fully connected network of 3 nodes. Training data and testing data are generated
from two Gaussian classes. The attacker attacks all three nodes from the beginning of the training process. Dotted lines and solid lines show the results for
the case without an attacker and the one with an attacker. Red and green lines show the results of centralized SVMs and DSVM, respectively.

Consider a fully connected network with 3 nodes. Each node contains 80 training samples and 1000 testing samples from the

same global “Rand” dataset which are shown as points and stars in Fig. 2(a). Yellow stars and magenta points are labelled as

−1 and +1, respectively. They are generated from two-dimensional Gaussian distributions with mean vectors (1,1) and (3,3),

and they have the same covariance matrix

(
1 0

0 1

)
. The learner has the ability Cl = 1 and η = 1. The attacker attacks all

three nodes with ∑v∈V Cv,δ = 7500 and Ca = 1. The attack starts from the beginning of the training process. The discriminant

functions found by the learner under different situations are represented by lines in Fig. 2(a). Numerical results are shown in

Fig. 2(b). We can see that when there is an attacker, both the DSVM and centralized SVMs fail to separate two datasets in

Fig. 2(a). In addition, the DSVM under the control of the same attacker show worse performances as the risk is higher in Fig.

2(b). Thus, the DSVM is more vulnerable when the attacker compromises the whole system.

It is obvious that the attacker can cause disastrous results for the learner. In the following experiments, we will illustrate in

detail how the attacker affects the training process with different abilities. We will study how the network topologies and the

number of samples at each node affect the attacker’s objective. We will use the convergent global equilibrium risks to capture

the impacts of the attacker on the learner. The convergence here is defined by that the moving average of the global risk with

a window length of 40 steps changes less than 0.00001. Without loss of generality, we will use Cl = 1 and η = 1 in all the

experiments. Besides the “Rand” dataset, we will also use “Spam” [42] and “MNIST” [43] datasets to illustrate the impacts of

the attacker. “Spam” and “MNIST” datasets have been widely used, for example, [44], [45], and [46], [47], respectively. For

the “MNIST” dataset, we consider only the binary classification problem of digits “2” and “9”.

A. Attacker’s Ability

Attacker’s ability plays an important role in the game between the learner and the attacker, as a more capable attacker can

modify more training data and control more nodes. There are four measures to represent the attacker’ ability, the time t for

the attacker to take an action, the atomic action set parameter Cv,δ , the cost parameter Ca, and the number of compromised

nodes |Va|. The time t for attacker to take an action will affect the results since attacking at the start of the training process

is different from attacking after the convergence of the training process. Cv,δ comes directly from the attacker’s atomic action

set Uv0 defined in Section III. A larger Cv,δ indicates that the attacker can modify the training data with a larger number.

Without loss of generality, in the following experiments, we assume that the attacker has the same Cv,δ at all the compromised

nodes, and thus we use Cδ =Cv,δ ,∀v ∈ Va. Ca denotes the parameter of the attacker’s cost function. A larger Ca will restrict

the attacker’s actions to change data. The number of compromised nodes |Va| will affect the results as attacking more nodes

gives the attacker access to modify more training samples.

The left figure of Fig. 3 shows the results of global risks when the attacker starts and stops attacking at different times.

It is clear that after the attacker starts attacking, the risks quickly increase, but after the attacker stops attacking, the risks

slowly come back to the level when there is no attacker. Thus, DSVM has the ability to react in real time, and it is a resilient

algorithm. Moreover, though the acting times of the attacker are different, the equilibrium risks are close. As a result, we can

conclude that the timing of the attacks does not significantly affect the equilibrium risks. The right figure of Fig. 3 shows the

results of the average global equilibrium risks when the attacker attacks different numbers of nodes. It can be seen that the

risks are higher when the attacker attacks more nodes, which indicates that the attacker has more influence on the learner.

Fig. 4 shows the average global equilibrium risks with respect to log10(Cδ ) and log10(Ca). We can see from the left figure

that as Cδ increases, the risks become higher, which indicates that the attacker has a more significant impact on the learner.

Notice that when Cδ is small, the risks are close to the risks of the case when there is no attacker, showing that the attacker

has no influence on the learner as he is only capable of making small changes. From the right figure, we can see that as Ca

increases, the risks become lower, which indicates that the attacker is more restricted to take actions when Ca is high.
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Fig. 3. Global risks of DSVM at a fully connected network with 6 nodes. Each node contains 40 training samples and 300 testing samples. The left figure
shows the evolution of the risks on “Rand” dataset when the attacker only attacks 1 node, but with different starting and stopping times. The attacker has
parameters Cδ = 108 and Ca = 0.01. The right figure shows the average global equilibrium risks when the attacker attacks different numbers of nodes at the
beginning of the training process with the ability Ca = 1 and Cδ = 104 , 109, and 104 for “Rand”, “Spam”, and “MNIST” datasets, respectively. .
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Fig. 4. Average global equilibrium risks of DSVM at a fully connected network with 3 nodes. Each node contains 80 training samples and 600 testing
samples. The left figure shows the results with respect to log10(Cδ ) when the attacker attacks 2 nodes with Ca = 1. The right figure shows the results with
respect to log10(Ca) when the attacker attacks 1 node with Cδ = 107.

B. Network Topology

In this subsection, we will study the effect of the network topology on the game between the learner and the attacker.

Consider a network with V := {1,2, ...,V} representing the set of nodes. Neighboring nodes of node v are represented by set

Bv ⊆ V . We define the normalized degree of node v as | Bv | /(| V | −1), i.e., the actual number of neighbors of this node

divided by the most achievable number of neighbors. The normalized degree of a node is always larger than 0 and less or

equal to 1. A higher normalized degree indicates that the node has more neighbors. Notice that the normalized degree of a

node cannot be 0 as there is no isolated nodes in this network. In addition, we define the degree of a network as the average

of normalized degrees of all the nodes. In the following experiments, all the nodes in a specified network contain the same

number of training and testing samples, and the attacker has the same Cv,δ =Cδ in all compromised nodes. Note that we repeat

each experiments 20 times using different sets of samples at each node to find the average global equilibrium risks.

Table I shows the results of average equilibrium risks when the attacker attacks balanced networks, i.e., all the nodes in these

networks have the same number of neighbors, with different numbers of nodes and degrees. Comparing the risks of networks

with 6 nodes but with different degrees, we can see that the attacker has more impact on networks with lower degrees as the

risks are higher. Comparing the risks of the networks with 3 nodes and 6 nodes, we can see that the risks are higher when

the attacker attacks networks with more nodes. Thus, a network with fewer nodes and a higher degree is more resilient. In

addition, the centralized SVMs under attacks have lower risks than DSVM, which indicates that DSVM is more vulnerable

than centralized SVMs when the attacker compromises the whole training systems.

TABLE I
AVERAGE GLOBAL EQUILIBRIUM RISKS (%) OF DSVM AT BALANCED NETWORKS, I.E., EACH NODE HAS THE SAME NUMBERS OF NEIGHBORS,

TRAINING SAMPLES, AND TESTING SAMPLES. EACH NETWORK CONTAINS THE SAME 180 TRAINING SAMPLES AND 1800 TESTING SAMPLES. THE

ATTACKER COMPROMISES ALL THE NODES WITH THE ABILITY Ca = 0.001 AND ∑v∈V Cδ = 105 , 1012 , AND 105 FOR “RAND”, “SPAM”, AND “MNIST”
DATASETS, RESPECTIVELY. BY FIXING ∑v∈V Cδ , THE ATTACKER HAS THE SAME ABILITY IN DIFFERENT NETWORKS. NOTE THAT “C” INDICATES

“CENTRALIZED”, “D” INDICATES “DEGREE OF THE NETWORK”, “NA” INDICATES “NO ATTACK”, AND “A” INDICATES “ATTACK”.

Network 1Node C 3Nodes D1 6Nodes D0.4 6Nodes D1

Rand
NA 8.44±0.00 8.46±0.00 8.48±0.01 8.44±0.00
A 41.74±0.00 42.15±0.24 44.20±0.33 43.59±0.39

Spam
NA 16.44±0.00 16.87±2.00 17.86±2.72 17.28±2.50
A 37.09±0.00 43.60±2.03 46.55±1.63 45.71±1.57

MNIST
NA 14.94±0.00 15.03±0.30 15.16±0.52 14.99±0.31
A 44.32±0.00 45.26±0.62 46.85±0.36 46.34±0.57
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TABLE II
AVERAGE GLOBAL EQUILIBRIUM RISKS (%) OF DSVM AT NETWORKS WITH 6 NODES. IN THE UNBALANCED NETWORK, NODE 1 HAS 5 NEIGHBORS,

WHILE NODES 2−6 HAVE 1 NEIGHBOR. IN THE BALANCED NETWORK, NODES 1−4 HAVE 2 NEIGHBORS, WHILE NODES 5−6 HAVE 1 NEIGHBOR. NOTE

THAT BOTH NETWORKS HAVE THE SAME DEGREE 0.33. EACH NODE IN BOTH NETWORKS CONTAINS 40 TRAINING SAMPLES AND 300 TESTING SAMPLES.
THE ATTACKER ATTACKS EITHER THE HIGHER DEGREE NODE 1 OR THE LOWER DEGREE NODE 6 WITH THE ABILITY Ca = 0.01 AND Cδ = 108 , 1014 , AND

108
FOR “RAND”, “SPAM”, AND “MNIST” DATASETS, RESPECTIVELY.

Network Unbalanced Balanced

Attack Node 1 Node 6 Node 1 Node 6

Rand
NA 8.51±0.15 8.51±0.24
A 43.43±0.22 35.45±0.37 36.00±0.46 28.12±0.35

Spam
NA 16.56±0.94 16.41±1.06
A 43.44±2.77 39.87±2.38 41.65±2.68 36.62±1.11

MNIST
NA 13.84±0.21 13.81±0.29
A 46.72±0.57 41.91±1.84 43.41±0.93 33.48±0.98

TABLE III
AVERAGE GLOBAL EQUILIBRIUM RISKS (%) OF DSVM IN A FULLY CONNECTED NETWORK WITH 3 NODES. IN EITHER CASE, NODE 2 AND NODE 3 ARE

FIXED AS EITHER OF THEM CONTAINS 50 TRAINING SAMPLES, BUT NODE 1 CONTAINS 50 OR 100 TRAINING SAMPLES. THE ATTACKER ATTACKS NODE 1
WITH THE ABILITY Ca = 1, AND Cδ = 106,1012 , AND 105 FOR “RAND”, “SPAM”, AND “MNIST” DATASETS, RESPECTIVELY.

Number of Training
Samples in Each Node

50, 50, 50 100, 50, 50

Rand
NA 9.00±0.00 8.51±0.00
A 33.70±0.58 28.17±0.68

Spam
NA 16.06±0.88 15.98±0.70
A 37.78±4.00 33.68±2.59

MNIST
NA 18.50±0.00 15.67±0.00
A 36.06±2.14 31.50±1.59

Table II shows the results of average equilibrium risks when the attacker attacks networks with 6 nodes and degree 0.33.

Note that one of the network is unbalanced, while the other network is balanced. In both networks, Node 1 is with the highest

degree, while Node 6 is with the lowest degree. Comparing the results of attacking Node 1 and Node 6 in unbalanced network

(or balanced network), we can see that the risks are higher when Node 1 is compromised. Thus, we can conclude that nodes

with more neighbors tend to be more vulnerable. Comparing the results of attacking Node 1 (or Node 6) in unbalanced network

and balanced network, we can see that the risks are higher when the network is unbalanced no matter the attacker attacks higher

degree nodes or lower degree nodes. Thus. we can conclude that balanced network tends to be more resilient to adversaries.

C. Weight of Node

In the previous experiments, nodes in a network are considered to have the same number of training samples and testing

samples. In this subsection, we study how the number of training samples affects the game between the learner and the attacker.

We define the weight of a node as the number of training samples it contains. A higher weight means that the node contains

more training samples.

From Table III, we can see that when Node 1 has more training samples, the risks become lower, which shows that the

attacker has a smaller influence on the learner and the system is more secure. Though training more samples makes the system

less vulnerable, it will require more time and more space for storage, which indicates that there is a trade-off between security

and efficiency.

VII. CONCLUSION

Machine learning algorithms are ubiquitous but inherently vulnerable to adversaries. This paper has investigated the security

issues of distributed support vector machines in an adversarial environment. We have established a game-theoretic framework

to capture the strategic interactions between an attacker and a learner with a network of distributed nodes. We have shown

that the nonzero-sum game is strategically equivalent to a zero-sum game, and hence its equilibrium can be characterized by

a saddle-point equilibrium solution to a minimax problem. By using the technique of ADMoM, we have developed secure

and resilient algorithms that can respond to the adversarial environment. We have shown that the convergence of the minimax

problem to the equilibrium is guaranteed without the assumption of network topologies and the form of training data.

Experimental results have shown that an attacker can have a significant impact on DSVM if his capability and resources

are sufficiently large. We have shown that the system itself can recover from attacks with the iterative and distributed nature

of the algorithms. In addition, a network with a large number of nodes and a low degree is less secure. Hence, the network

topology has a strong relation to the security of the DSVM algorithm. For a specified network, we have also shown that nodes

with lower degrees are more secure. We have shown that a balanced network will be more secure, i.e., nodes in this network

have similar degrees. We have also proved that adding more training samples will make the training process more secure.
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One direction of future works is to develop a network design theory to form machine-learning networks that can achieve

a desirable level of resiliency. In addition, we would also extend the current framework to investigate other machine learning

algorithms, including nonlinear DSVM [21], large-scale SVMs [48], active learning [49], transfer learning [50], and domain

adaptions [51]. We also intend to investigate other attack models, such as the cases when the attacker aims to increase the risk

of a class of samples, he has limited knowledge, or he can modify training labels [17], and so on.

APPENDIX A: PROOF OF PROPOSITION 1

Uv is a sublinear aggregated action set of Uv0 [52], and it satisfies U − ⊆ U ⊆ U +, where

U − ∆
=

n
∪

t=1
U

−
t ,U −

t
∆
=

{
(δ1, ...,δn)

∣∣∣∣
δt ∈ U0;

δi = 0, i 6= t.

}
;

U + ∆
=



(α1δ1, ...,αnδn)

∣∣∣∣∣∣

n

∑
i=1

αi = 1;αi ≥ 0,

δi ∈ U0, i = 1, ...,n



.

This property is used to prove Proposition 1. After reformulating Problem (5) with hinge loss function, we can see that Problem

(4) and Problem (5) are minimax problems with the same variables. Thus, we only need to prove that we minimize the same

maximization problem. As a result, we only need to show that the following problem

max
{δvn}∈Uv

S({δvn})
∆
=VaCl

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

−Ca

Nv

∑
n=1

‖δvn‖0

(32)

is equivalent to the following problem

max
δv∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+
+VaClw

T
v δv

−Ca‖δv‖0 .
(33)

The first term of the objective function in (4) and (5) is ignored as they are not related to the maximization problem. Since

{δvn} is independent in the maximization part of (4), and δv is independent in the maximization part of (5), we can separate

the maximization problem into Va sub-maximization problems, and solving the sub-problems is equivalent to solving the global

maximization problem. Therefore, we only need to show the equivalence between the sub-problem.

We adopt the similar proof in [52], recall the properties of sublinear aggregated action set, U −
v ⊆ Uv ⊆ U +

v . Hence, fixing

any (wv,bv) ∈ R
p+1, we have the following inequalities:

max
{δvn}∈U

−
v

S({δvn})≤ max
{δvn}∈Uv

S({δvn})≤ max
{δvn}∈U

+
v

S({δvn}) (34)

To prove the equivalence, we show that (33) is no larger than the leftmost term and no smaller than the rightmost term of

(34). We first show that

max
δv∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+
+VaClw

T
v δv

−Ca ‖δv‖0

≤ max
(δv1,...,δvNv )∈U

−
v

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

−Ca

Nv

∑
n=1

‖δvn‖0 .

(35)

As the samples {xvn,yvn}
Nv
v=1 are not separable, there exists tv ∈ [1 : Nv] which satisfies that

ytv(wv
T xtv + bv)< 0. (36)
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Hence, recall the definition of sublinear aggregated action set, we have:

max
(δv1,...,δvNv )∈U

−
vtv

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

−Ca

Nv

∑
n=1

‖δvn‖0

= max
δvtv∈Uv0

VaCl ∑
n 6=tv

[
1− yvn(w

T
v xvn + bv)

]
+

+VaCl

[
1− yvtv(w

T
v (xvtv − δvtv)+ bv)

]
+

−Ca‖δvtv‖0

= max
δvtv∈Uv0

VaCl ∑
n 6=tv

[
1− yvn(w

T
v xvn + bv)

]
+

+VaCl

[
1− yvtv(w

T
v xvtv + bv)

]
+

+VaCl(yvtv wT
v δvtv)−Ca‖δvtv‖0

= max
δv∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+VaClw
T
v δv −Ca‖δv‖0

The second and third equalities hold because of Inequality (36) and max
δtv∈Uv0

(yvtv wv
T δtv) being non-negative (recall 0 ∈ Uv0).

Besides, we use δv to replace δvtv . Since U
−

vtv ⊆ U −
v , Inequality (35) holds.

In the following step, we prove that

max
(δv1,...,δvNv )∈U

+
v

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

−Ca

Nv

∑
n=1

‖δvn‖0

≤

max
δv∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+VaClw
T
v δv −Ca‖δv‖0 .

(37)

Recall the definition of U +, we have:

max
(δv1,...,δvNv )∈U

+
v

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v (xvn − δvn)+ bv)

]
+

−Ca

Nv

∑
n=1

‖δvn‖0

= max
∑

Nv
n=1 αvn=1;

αvn≥0;δ̂vn∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v (xvn −αvnδ̂vn)+ bv)

]
+

−Ca

Nv

∑
n=1

‖αvnδvn‖0

≤ max
∑

Nv
n=1 αvn=1;

αvn≥0;δ̂vn∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+
Nv

∑
n=1

VaClαvnwT
v δ̂vn −Ca

Nv

∑
n=1

‖αvnδvn‖0

= max
∑

Nv
n=1 αvn=1;

αvn≥0.

max
δ̂vn∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+αvn

Nv

∑
n=1

(
VaClw

T
v δ̂vn −Ca‖δvn‖0

)

= max
δv∈Uv0

VaCl

Nv

∑
n=1

[
1− yvn(w

T
v xvn + bv)

]
+

+VaClw
T
v δv −Ca ‖δv‖0 .

Thus, Inequality (37) holds. By combining the two steps, we can show the equivalence between (32) and (33). Hence, Proposition

1 holds.
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APPENDIX B: PROOF OF PROPOSITION 2

To prove the equivalence, we use Neumann’s Minimax Theorem [53]. Notice that solutions to the first and second constraints

are convex for {rv,ξv}. The third constraints are linear equality functions. The forth constraint describes the set Uv0 for δv,

which is convex set based on its definition. Thus we only need to prove that K′ is quasi-concave on {δv} and quasi-convex

on {rv,ξv}.

On the one hand, the first two parts of K′ are constants for {δv}; the third part of K′ is a linear function of {δv}; the forth

part of K′ is deleting the l1 norm of {δv}, which is concave. So K′ is a concave function for {δv}. Thus K′ is quasi-concave

for {δv}. On the other hand, the first part of K′ is convex for {rv} and linear for {ξv}; the second part of K′ is a linear function

for {ξv} and it is constant for {rv}; the third part of K′ is linear for {rv} and it is constant for {ξv}; the forth part is constant

for both {rv} and {ξv}, so K′ is a convex function on {rv}. Thus K′ is quasi-convex on {rv,ξv}. As a result, the equivalence

holds.

Since K′ is concave for {δv} and convex for {rv}, there exists an equilibrium of the minimax or max-min problem [54].

Note that l1 norm is not strictly convex, and thus K′ is not strictly concave for {δv}, so the equilibrium is not necessarily

unique.

APPENDIX C: PROOF OF LEMMA 1

We start with proving Inequality (29) and Inequality (28), and then we prove Inequality (27).

Proof of Inequality (29)

From Assumption 1, we have:
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Since r∗v −ω∗
vu = 0 and ω∗

vu − r∗u = 0, the left side of (38) becomes p∗. Thus, Inequality (29) holds after introducing
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Proof of Inequality (28)

From (11), r
(t+1)
v minimizes Lη . The necessary and sufficient optimality condition is:
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Using the similar method, we can obtain that ω
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Thus, we can obtain:
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and
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With r∗v −ω∗
vu = 0 and ω∗

vu − r∗u = 0, by adding the two inequalities above, we obtain Inequality (28).

Proof of Inequality (27)

Adding Inequality (29) and Inequality (28), by rearranging, we have:
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Recall the definition of J(t), (46) is equivalent to
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Since ω
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Adding (48) and (49) together, we arrive at
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By unfolding the squares in (47), we obtain Inequality (27).
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