
mailto:adam.p.harrison@gmail.com


2 A. P. HARRISON AND D. JOSEPH

resentations of high-order operators [1,2,17], researchers have also focused on how to
explicitly represent sparse tensors [4, 5, 14,26,32,38,39,47].

Tensor decomposition drives a great deal of this work [4, 5, 14, 32, 38, 39], but ap-
plications involving high-order linear operators [1,2,17,47], high-order partial deriva-
tives [26], and deep learning [20] also see need for sparse tensors. Additionally, the
known link between symmetric tensors and polynomial equations [15] introduces fur-
ther impetus for sparse tensor computations. Considering the high-sparsity of real-
world polynomial equations [53], if tensors are used to manipulate such equations,
efficient sparse algorithms will be needed (likely along with symmetric-specific opti-
mizations [50]).

As Bader and Kolda [3, 4] and we [30] have argued, a suite of core tensor data
structures and algorithms can allow fast prototyping and development of algorithms
applied to high-order data. A further argument can be made that multi-purpose al-
gorithms and data structures for tensor arithmetic operations, i.e., those found in
Einstein-like notation [1, 2, 30, 31], are a valuable tool for working with and under-
standing tensor operations [1, 2, 30]. These include multiplication, solution of lin-
ear equations, and addition/subtraction. Combined with an interface that supports
Einstein-like notation, core tensor arithmetic computations would be an important
part of a technical computing framework for tensors, analogous to the environments
used for MV algebra and computations, e.g., MATLAB. We note that core arithmetic
routines would not obviate the need for specialised data structures and algorithms,
e.g., those used for the ubiquitous alternating least-squares (ALS) algorithm [36].

The topic of data structures and algorithms for multi-purpose sparse tensor arith-
metic has been broached previously by Bader and Kolda [4] as part of their MATLAB
Tensor Toolbox (MTT). Yet, since the MTT does not provide high-performance ker-
nels of its own [50], there is considerable opportunity for continued investigation. With
this vision in mind, this work offers a set of core kernels for sparse tensor arithmetic.
Sharing Bader and Kolda’s [4] design philosophy of not favouring any particular in-
dex over another, this work describes a linearised coordinate (LCO) sparse-tensor
data structure, which is related to, but different from, the one seen in the MTT.
The flexibility and simplicity of the LCO data structure comes at the cost of heavily
relying on sorts and permutes. This work describes high-performance rearrangement
algorithms specifically tailored for sparse tensors. Finally, this paper describes a
multiplication poly-algorithm that can effectively compute the products between any
tensors exhibiting any manner of sparsity, including hyper-sparsity.

Detailed benchmarks demonstrate the high performance of these algorithms. To
provide a motivating example, many of the benchmarks are drawn from the exemplar
of using Einstein-like notation to construct high-order differential operators. Because
the impact of different data-structure and algorithmic choices are just beginning to
be understood within sparse tensor arithmetic, we limit our focus to sequential imple-
mentations. This also makes any performance comparisons with the MTT more fair,
whose sparse tensor arithmetic functionality is predominantly based on sequential
algorithms within MATLAB. All computations are implemented within our open-
source LibNT and NTToolbox software libraries2, whose dense tensor routines have
been previously introduced as part of the NT framework [30].
§2 begins by using the example of high-order differential operators, applied to

images, to motivate the development of high-performance routines to support the
tensor arithmetic operations found in Einstein-like notation. With these preliminar-

2https://github.com/extragoya/LibNT



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 3

ies discussed, §3 outlines a flexible data representation for sparse tensors. This data
representation places a heavy burden on fast methods to rearrange data, which §4
addresses by outlining algorithms to permute sparse tensors. Sparse-tensor multi-
plication is discussed in §5. Comparative performance with the MTT, and a high-
performance re-implementation of its multiplication strategy, is highlighted in §6.
Finally §7 discusses and concludes this work. Tests were performed on a Windows
64-bit workstation, using an Intel E8400 CPU with 8 Gb of memory. All algorithms
are implemented as part of LibNT’s C++ code, to which the MATLAB library NT-
Toolbox interfaces.

2. High-Order Differential Operators. Many scientific domains require soft-
ware tools to work with and algebraically manipulate high-order numeric data [30].
High-order differential operators are one such important exemplar [1,2]. We make this
more concrete by focusing on high-order operators applied in computer vision using
an Einstein-like notation, but we emphasise that the need for sparse tensor arithmetic
transcends both computer vision and high-order differential operators.

Applied to gridded data, e.g., an image, often representing a partial differential
equation, differential operators commonly take the form of finite-difference (FD) op-
erators. Such operators may be explicitly needed within optimization problems, e.g.,
where the operand of the differential operator is an unknown that must be solved
using a least squares method. For length N first-order data, sparse FD matrix oper-
ators are relatively easy to construct. For example, should O(h2) central differencing
be required, the sparse FD matrix can be constructed with MV algebra using

D =
1

2


 0 0 0
−I 0 0
0 0 0

+

 0 0 0
0 0 I
0 0 0

+

 −3 4 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −1 4 −3

 ,

(2.1)

where the first and last rows of D are filled using O(h2) forward and backward-
differencing operators. Each term in (2.1) is an N × N matrix, meaning I is of size
(N−2)×(N−2). The 0 sub-matrices are sized based on this and whether they share a
row or column with I or a scalar. Unfortunately, working with FD operators of higher
order using MV algebra and software can be prohibitively challenging and error prone,
as users must work with “flattened” versions of the operators and operands [1,2]. The
challenges only multiply as order increases, e.g., 3D medical imaging scans, or a time
series of such scans. Thus, it can be beneficial to express and programmatically
construct such operators within their natural high-order domain [1, 2].

When dealing with generative models used in computer vision, often FD operators
across different image indices are incorporated. One of many examples is depth-map
and albedo estimation [28], illustrated by Figure 1. Estimating the phenomenon in
question requires constructing a design tensor and inverting a sparse system of high-
order linear equations. Using Einstein-like notation [1, 2, 30, 31], and assuming a 2D
image domain, such systems can be expressed in general terms as

yij = aijk`xk`,(2.2)

where repeated and non-repeated indices denote inner and outer products, respec-
tively, xk` is the tensor of quantities of interest, e.g., a depth-map, yij are observa-
tions relevant to the generative model, and aijk` is a sparse design tensor. A common



4 A. P. HARRISON AND D. JOSEPH

Fig. 1. Illustration of depth-map & albedo estimation. Four images of a single-view image
sequence are displayed. Each image corresponds to a distinct principal light direction, with its own
shading characteristics. From the image sequence, an estimate of the depth of the subject’s face,
along with the albedo, can be produced through a combinatorial Laplacian formulation. Although not
discussed here, anisotropic elements, using entry-wise products, are frequently required to manage
image noise [28]. Image data obtained from the Extended Yale Face Database B [24].

makeup of the design tensor is the combinatorial Laplacian:

aijk` = d
(y)
ii′ δj`d

(y)
i′k + d

(x)
jj′ δikd

(x)
j′` ,(2.3)

where d
(.)
ij is the sparse tensor version of the FD matrix of (2.1) and δij is the Kronecker

delta. Frequently, the Laplacian operator is also anisotropic, e.g., to manage image
noise [28], and nonlinear formulations can also be required [27,29]. Representing such
complexities benefits further from Einstein-like notation, but for the sake of simplicity
we limit the exposition to the isotropic and linear example of (2.3).

Equipped with an appropriate computational environment, a researcher or prac-
titioner could programmatically construct aijk` using an Einstein-like notation. For
example, LibNT and/or NTToolbox [30] will execute (2.3) as binary operations left-
to-right with operator precedence3. As we will elaborate, the executed products in-
clude hyper-sparse matrix products, requiring a strategy different from those found in
standard sparse matrix multiplication. In addition, the multiplication, addition, and
assignment operations will require rearrangements of non-zero values. Thus, there is
a demand here for sparse tensor rearrangement and multiplication algorithms. We
will return to these equations to provide an application-based context for this work’s
contributions.

3. Data Representation. This section first outlines considerations for sparse
tensor representation, highlighting the LCO format used in LibNT. Afterwards, some
comparative results demonstrate the LCO format’s effectiveness.

3.1. Concepts. Sparse MV computations rely on compressed formats [11, 18],
e.g., the compressed sparse-column (CSC) format, which allows efficient column-
centred operations at the expense of inefficient row-centred operations. However,
Bader and Kolda [4] convincingly argue against compressed tensor formats, as it re-
quires categorising an index, or set of indices, differently from others, which becomes
less meaningful as the tensor order increases.

3This follows the same practice found in numerical packages like MATLAB and NumPy. Although
LibNT’s C++ interface uses rvalue references and pools of memory, temporary memory reallocation
still occurs. NTToolbox’s MATLAB interface does not have the same level of optimisation.



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 5

Table 1
The CO and LCO sparse formats. Example zero-based index values from a 4 × 4 × 4 sparse

tensor, with a lexicographical order of {0, 1, 2}, illustrate the two formats.

CO Index Values: {1, 0, 0} {2, 0, 1} {0, 1, 1} {3, 2, 2} {1, 0, 3} {2, 2, 3}
LCO Index Values: 1 18 20 43 49 58

These arguments are bolstered by considering tensor arithmetic’s operational
complexity, i.e., the enormous number of ways that tensor indices can match up
differently for the same arithmetic operation. For instance, enumerating all possible
inner/outer product possibilities between two N -order tensors requires calculating all
partial permutations of the N indices. Partial permutations [6] are calculated using,

P =

N∑
i=0

i!

(
N

i

)2

,(3.1)

which grows factorially with order. Similar conclusions are drawn when considering
the index matchings within Einstein-like notation for addition and subtraction, as the
number of possible index matchings also increases factorially with order.

This operational complexity suggests that data structures for sparse tensor arith-
metic should be as flexible as possible. While several authors have adapted the com-
pressed approach for non-arithmetic purposes [14, 26, 38, 39], these solutions would
struggle to accommodate arithmetic operational complexity. Compression schemes
would need to be re-computed or there would have to be different code implementa-
tions depending on what tasks are performed on what indices. Such strategies become
less viable for tensor arithmetic with each increase in order.

Bader and Kolda make the case for a concurrent list of non-zero data and index
values. When an operation demands a different lexicographical order a rearrangement,
i.e., a sort or permute, is required. Thus, no indices are favoured over others in terms
of operational efficiency, but rearrangements then play a heavy role. This approach
has also been used within computational chemistry [47] and deep learning [20].

The coordinate (CO) and LCO sparse formats are the two main non-compressed
choices that store their non-zeros using straightforward lists. The CO format stores
expanded index values, i.e., for an N -order tensor each of the N index values. In
contrast, the LCO format stores linearised index values (LIVs), i.e., N index values
represented by a single integer value. For instance, the zero-based LIVs for a third-
order tensor, aijk, can be calculated using

LIV = i+ ni(j + njk),(3.2)

where n(.) denotes the range of the corresponding index. Such a lexicographical
order places greatest significance on the third index, followed by the second and first
indices, which we designate numerically as {0, 1, 2}. Any permutation of the {0, 1, 2}
sequence is also valid, and this scheme is trivially extended to higher orders. Table 1
illustrates the differences between the two formats. Of note is that the sparse formats
are identical for first-order tensors.

Both formats rely on a lexicographical order to arrange non-zero values. For
the CO format, {0, 1, 2} indicates that when comparing values, the third index value
must be considered first, followed by the second and first index values. Altering the
lexicographical order requires changing the sequence in which expanded index values
are compared. In contrast, for the LCO format, the lexicographical order governs the



6 A. P. HARRISON AND D. JOSEPH

linearisation scheme used to compute LIVs. Changing the lexicographical order ne-
cessitates recomputing LIVs, which we call LIV shuffle. Once done, a straightforward
integer comparison then suffices to compare LIVs.

Bader and Kolda opt for the CO sparse format for the MTT library [4]. While
Bader and Kolda do not specifically discuss the LCO format, they do mention con-
cerns with linearisation schemes in general, arguing that LIVs may overflow integer
datatypes. This is a valid concern. However, many applications, such as computer
vision [27], computational chemistry [47], and deep learning [20], often employ tensors
whose dimensionalities fit within a 64-bit limit (or 63-bit limit if using signed integers).
For cases where LIVs do exceed standard integer limits, e.g., problems involving the
SNAP dataset [41], high-precision integer libraries [25,40] could offer very-large LIVs.
Nonetheless, here we limit our scope to tensors whose dimensionality fits within the
signed integer limits of 263 − 1, leaving the topic of very-large LIVs to future work.

Moving on from overflow issues, other factors also play an important role. For in-
stance, compared to the CO format and assuming all index values are stored using the
same fixed-sized integer datatype, the LCO format is more memory efficient for tensor
orders greater than one. With additional bookkeeping, less memory could be used
in the CO format by employing variable-sized integers, e.g., choosing 8-bit, 16-bit,
32-bit, or 64-bit integers for each index based on its dimension. However, such extra
bookkeeping and complexity comes with its own penalties. Moreover, developing an
efficient implementation using high-performance statically-typed languages, without
using costly dynamic polymorphistic operations, is not easily resolved. As a result,
the exploration of variable-sized CO indices is left for future work.

With the above caveats in mind, there is an increased cost of certain fundamental
operations when using the CO format. For instance, comparison operations in the
CO format require up to N individual numerical comparisons for an N -order tensor.
Such comparison operations are fundamental kernels within sorting algorithms and
arithmetic operations built on the format. Additionally, the increased memory re-
quirements degrade locality between consecutive non-zero index values, resulting in
more cache misses, which can be the deciding factor in sorting performance [37]. This
also impacts arithmetic operations. These considerations all add up to the CO format
placing greater demands on memory bandwidth, which is often the limiting factor in
modern computer architectures [21].

On the other hand, the LCO format requires an LIV shuffle to change lexicograph-
ical orders. Thus, putting memory storage requirements aside, choosing between the
two can come down to comparing the impact of the increased comparison, read, and
write CO costs vs. the O(nnz ) LIV shuffle step of the LCO format. Benchmark tests
can measure the relative impact of these costs.

3.2. Benchmarks. As the example in §2 highlights, rearrangements of non-
zero data is a frequent requirement for tensor arithmetic. For instance, to perform
the addition in (2.3), one of the terms must be re-sorted based on the index matching.
We call rearranging already sorted data into a new lexicographical order permutation,
which can benefit from specialised algorithms that we discuss in more detail in §4.
However, for the sake of simplicity, here we focus on sorting algorithms to compare the
two formats. Sorting is typically required when non-zero data is unsorted, e.g., after
tensor construction or the insertion of un-ordered non-zeros. We first discuss details
on the data formats we test, followed by an explanation of the sorting algorithms used
in the benchmarks. Afterwards we highlight the results of two different tests.

Two variants of the CO format were tested. The first, denoted CO Separate and



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 7

used within the MTT, uses contiguous memory regions to store specific expanded
index values, e.g., the first coordinates are stored contiguously, followed by the sec-
ond, and so on. We also tested a second variant that packs expanded index values
consecutively one after each other, thereby better maximising memory locality across
consecutive accesses of tensor elements. We call this variant CO Packed. If the N
index values of each of the M non-zeros were stored in an M×N matrix, CO Separate
and CO Packed would arrange them in column- and row-major order, respectively.

As changing the lexicographical order is often performed prior to rearranging
data, we also measure the LIV shuffle cost for the LCO format. If executed naively,
this operation can be very expensive as LIV shuffles require integer division. However,
we use a fast division library [19] to mitigate this cost.

For the most part, experiments are restricted to using signed 64-bit integers to
store index values4. Nonetheless, we do briefly explore the use of fixed 16-bit signed
integers for the CO format to help shed light on any performance impacts of using
smaller-sized integers.

Tests employed two well-known sorting algorithms. The first corresponds to the
introspective sorting algorithm [43], used in the C++ standard and considered a gold-
standard [42]. The second corresponds to most-significant digit (MSD) radix sort [52],
which, unlike general sorting algorithms, is designed specifically for integer-like data.
Experiments used C++ implementations, adapted from optimised and publicly avail-
able general-purpose versions [23,51] to handle the CO Separate, CO Packed, and the
LCO formats, along with the accompanying data array. Attesting to their speed, we
found that in our tests our CO Separate implementation always outperformed MAT-
LAB’s sortrows, which is the approach the MTT uses to sort its CO Separate data.
Code can be found within our publicly available LibNT library. More details on our
implementations can be found in our supplemental material.

The first test measured times to sort a fifth-order sparse tensor. As mentioned,
we also recorded the time needed to shuffle LIV values. As integer division operations
are extraordinarily fast when divisors are a power of two, index ranges were chosen to
be 210−1 to avoid providing the LCO format with an unfair advantage. To judge the
impact of tensor order, the same tensor was also “flattened” into lower-order LCO and
CO formats. Thus the impact of increasing tensor order, with its increased demands
on memory bandwidth and LIV shuffles, was measured under identical conditions.

Figures 2(a) and (b) outline the results of this first test, using introspective and
MSD radix sort, respectively. As the figures demonstrate, shuffling LIVs comes with
a non-trivial running-time cost, which increases with order. However, the cost of
sorting both variants of the CO format is greater, meaning that even with an LIV
shuffle included, sorting LCO indices is still much faster than sorting second-order or
higher CO indices.

To contextualise these results within the differential operators application, we
also measured sorting times to add the two fourth-order tensor terms in (2.3) using
the best performing algorithm of MSD radix sort applied to the LCO and CO Packed
formats. These terms are formed after the necessary products are executed, and can

be denoted c
(y)
ij`k and c

(x)
jik`, where the ordering of indices post-multiplication follows

LibNT’s conventions [27]. We assume both tensors lie in the {0, 1, 2, 3} lexicographical
order, meaning to perform the addition one of the tensors must be re-sorted into the
{1, 0, 3, 2} lexicographical order. While this is technically a permutation task, measur-

4For software engineering reasons we use signed integers to avoid undefined behaviour if an index
is decremented beyond zero.



8 A. P. HARRISON AND D. JOSEPH

1 2 3 4 5
1

2

3

4

5

6

7

8

In
tr

o
so

rt
 T

im
e 

(s
)

Tensor Order

 

 

1 2 3 4 5
1

2

3

4

5

6

7

8

R
ad

ix
so

rt
 T

im
e 

(s
)

Tensor Order

0

2

4

6

8

10

12

 2
8

 2
9

2
10

2
11

2
12

S
o
rt

 T
im

e 
(s

)

N

 

 
CO_Separate

CO_Packed

LCO + LIV Shuffle

LCO

CO_Packed

CO_Packed Short

LCO + LIV Shuffle

(a) (b) (c)

Fig. 2. Sorting times of the LCO, CO Packed and CO Separate sparse formats. (a) and (b)
depict the time to sort a fifth-order N×N×N×N×N tensor, with N = 210−1 and 5N2 non-zeros,
using the introspective and MSD radix sort algorithms, respectively. The time taken with flattened
lesser-order versions and with shuffling LIVs was also measured. (c) depicts the MSD radix sort run
time of CO Packed Short, a 16-bit variant of CO Packed, and LCO plus an LIV shuffle to perform
the sort needed to add the fourth-order tensors in (2.3).

ing differences in using general-purpose sorting algorithms can still be informative to
assess data-format performances. We assume input images are of size N ×N , making
each tensor size N ×N ×N ×N , and we measure sorting times for increasing values
of N . Figure 2(c) depicts a plot of the sorting times, demonstrating the large gain in
speed of the LCO format. In particular, at the highest value of N , the LCO format
plus the LIV shuffle consumes 4.9 s, whereas CO Packed consumes 10.4 s.

For the highest N , once the tensors are sorted the run time for the addition
operation is only 2.7 s for the LCO format. Thus, sorting the LCO format takes
roughly 65% of the total operation time. In contrast, for the CO format, should
the addition operation consume roughly the same amount of time, sorting would
consume 80% of the total time, demonstrating both the importance of optimising
rearrangements and the importance of data format choice for sparse tensor arithmetic.

To shed light on the prospect of using variable-sized integers, we also tested
the sorting performance of CO Packed when using fixed 16 bit integers to hold each
coordinate. While this scheme does not address how to best implement a variable-
sized approach, it does help reveal if using smaller-sized integers may allow CO Packed
to outperform LCO. However, as Figure 2(c) demonstrates, the 16-bit variant of
CO Packed consistently ran slightly slower than the 64-bit variant. One possible
explanation for this is that 64-bit architectures, like the one used for testing, may be
better optimised to operate in its native bit size. While this question does deserve
further investigation, these preliminary tests further support the conclusion that LCO
enables faster sorting speed regardless of the underlying CO datatype.

In sum, these results indicate that the LCO format is better able to manage the
demands of increasing tensor orders. This is crucial when operating with sparse ten-
sors of high orders, such as those seen in computational chemistry [33, 47], computer
vision [27] or deep learning [20]. Considerable performance differences were also ev-
ident at lower orders. Coupled with the fact that the LCO format uses much less
memory at high orders when using native bit sizes, these performance metrics lead us
to prefer the LCO sparse format over either CO format variant.



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 9

4. Permutation. As noted, a non-compressed sparse format places a heavy
demand on rearranging non-zero data. Consequently, fast and efficient sparse tensor
arithmetic can hinge on the algorithmic choices made for rearrangements. For sorting,
this was demonstrated by Figure 2(a) vs (b), where MSD radix sort performed roughly
twice as fast as introsort. For this reason, we opt for MSD radix sort as the sorting
algorithm for sparse tensors. Our supplemental material includes more extensive
experiments supporting this conclusion, comparing MSD radix sort against three other
leading algorithms.

Yet, permutation, i.e., rearranging already sorted data into a different lexico-
graphical order, is arguably even more important than sorting. In the MV paradigm
such tasks are called transposition. Because of operational complexity, tensors are fre-
quently arranged in an undesired lexicographical order, making sparse permutation a
frequent first step within tensor arithmetic. In fact, this was already demonstrated
in the benchmarks of Figure 2(c), where a permutation was required to perform the
sum in (2.3). While permutation operations are tasked with the same goal as sort-
ing, i.e., rearranging data into a desired lexicographical order, their starting points
differ. By taking advantage of the existing structure of already sorted non-zero data,
faster means to permutation can be realised. These speedups can be quantified using
benchmarks.

4.1. Algorithm. When permuting data the first step is to recompute the LIVs
into the new lexicographical order. The work needed for the subsequent rearrangement
depends on the relationship between the starting and ending lexicographical orders.
For instance, intuitively it should be simpler to permute sparse tensor data from the
{0, 1, 2, 3} lexicographical order to the {1, 0, 2, 3} lexicographical order than it would
be to permute it to the {3, 2, 1, 0} lexicographical order. The former only rearranges
two indices, while the latter rearranges all of them. This intuition stems from the
fact that regardless of their starting and ending lexicographical orders, new LIVs will
always be arranged in sequences of sorted sublists. Specific subsequences of these
sublists must be merged together, creating new sequences of sorted lists that may be
in the right arrangement or may require additional merges. This relationship can be
formalised, providing for a ready identification of efficiencies.

A permutation essentially divides tensor indices into two sets—those that require
rearranging and those that do not. Figure 3 illustrates how this can be determined,
with a third-order tensor aijk. The top of the figure illustrates the bipartite graph of
the starting and ending arrangements of i,j,k. Because the i index crosses an index
that originally had a higher significance, i.e., j, the new LIVs must be rearranged
according to the i index. We call such indices rearrangement indices. The other two
indices do not meet this criterion and thus, the new LIVs do not need to be rearranged
according to j and k. These indices we call resting indices.

Categorising the indices this way breaks the permutation task into a recursive
hierarchy of steps. For instance, working from highest-to-lowest significance of the
new LIVs in Figure 3’s example, k is a resting index. As a result, regions where
k is constant can each be independently sorted. These independent regions can be
stably sorted based solely on the i index, which is a rearrangement index. Stability
means the original relative ordering is used to break ties between equal values. The
next resting index j is also the final index, so there is no more work to do. However,
if j was not the final index, then the process would have to continue, where each
sub-region where j is constant would be sorted. This process can be generalised to
arbitrary orders and starting/ending lexicographical orders. An important aspect to



10 A. P. HARRISON AND D. JOSEPH

k

0 3 985 6 8 1 5 9 5 7 8 0 1 2 7

0 53 59585 6 8 11151925272830314247

j ki

i kj

Original lexicographical order: {0,1,2}

New lexicographical order: {1,0,2}

0 41 5956151824 4 162817232630333752

Re-compute LIs in new lexicographical order

j + 3(i + 10k)

i + 10(j + 3k)

New Unsorted LIVs:

New Sorted LIVs:
j+ 3(i + 10k)

Original Sorted LIVs:

0 2 220 0 0 1 1 1 2 2 2 0 0 1 1

0 1 110 0 0 0 0 0 0 0 0 1 1 1 1

i
j

For each region wherek is constant, stable sort using i index

0 52 59564 151617182324262830333741

Fig. 3. Permuting a 10 × 3 × 2 third-order tensor, aijk. The figure depicts the original and
new LIVs corresponding to starting and ending lexicographical orders of {0, 1, 2} and {1, 0, 2}, re-
spectively. The index of highest significance in the new LIVs is a resting index, so regions where k
is constant can be sorted independently. Each such independent region must be stably sorted based
on the rearrangement index i. The final resting index j can be ignored. Note that the i, j, and
k indices are rendered for the sake of illustration, but in the RP algorithm indices are computed
on-the-fly using integer division and modulo operations.

note is that the final index is always a resting index.

Returning to Figure 3’s example, identifying regions in the new LIVs where k is
constant can be done by integer dividing the starting LIV by njni = 30 to compute
the k value, and then computing the maximum possible LIV at that value of k. A
linear scan that stops when this threshold is broken identifies the end-point of the
region. The process can be repeated for the next value of k. Separating the LIV
values into independent parts benefits all sorting algorithms. For comparison sorts,
the asymptotic bounds may be lowered. However, for radix sorts, within each region
of constant k, each LIV can be examined modulo 30, reducing the maximum possible
integer magnitude to accommodate. Depending on the radix digit size, this can reduce
the key length, thereby reducing the number of passes a radix sort need perform.
Moreover, when sorting each independent region of constant k, the LIVs modulo 30
need only be stably sorted using the rearrangement index i. Thus each LIV modulo
30 can be reduced even further by integer dividing by nj = 3. In the general case,
this aggressive shaving off of irrelevant portions of the LIVs can drastically reduce the
key length for radix sorts, significantly reducing the number of passes the sort must
perform.

To take advantage of these characteristics, LibNT includes an algorithm, called
RP. Given a starting and ending lexicographical order, a preprocessing step de-
termines which indices are rearrangement or resting indices. The RP routine then
employs a stable, but not inplace, variant of the MSD radix sort algorithm. Since
shaving off irrelevant portions of the LIVs relies on integer division, libdivide [19] is
used to to minimise slowdowns. Nonetheless, even when using a fast integer-division
library, shaving off LIVs comes with a computational cost, which can only be justified
if the number of radix sort passes can be reduced. This is typically the case when



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 11

1.5

1

0.5

0

0.5

N

R
P

 
 R

ad
ix

so
rt

 (
s)

29 210 211

3

2

1

0

N26.0 26.5 27.0 27.5 28.0

(a) (b)

Fig. 4. Permutation benchmark results. (a) and (b) depict the differences in time between RP
and radixsort to permute N ×N ×N ×N tensors. Positive and negative values mean RP ran slower
and faster, respectively. (a) and (b) use the combinatorial Laplacian in (2.3) and a tensor with 2%
fill factor, respectively. All 23 possible permutations were performed, with the heavy-weighted line
displaying median run time differences across all permutations, and lighter-weighted lines depicting
maximum and minimum differences.

both the number of non-zeros (NNZ) and reductions in LIV magnitude are large. For
this reason, LibNT’s RP algorithm is adaptive and will switch to the standard MSD
radix sort based on an estimate of the reduction in pass numbers.

There are theoretically interesting implications of permuting sparse tensor data
this way. As Sedgewick explains, radix sorts are often sublinear in the information
content of the keys being sorted [52], meaning they can often arrange data without
examining every bit. However, this is only an average-case result based on random
conditions. Yet, in the context of sparse-tensor permutations, by always having at
least one index a resting index, it is always possible to permute without examining
every bit in the LIVs. Whether these theoretical gains translate to practical ones is a
matter revealed by benchmarks.

4.2. Results. Tests measured the permutation performance of RP using all 4!−
1 = 23 permutations of a fourth-order tensor. Figure 4(a) first depicts differences
in run time between RP and the MSD radix sort algorithm (negative values are
better for RP) to permute the fourth-order combinatorial Laplacian tensor in (2.3).
This operator’s fill factor decreases quadratically with dimensionality, which produces
highly-sparse fill factors at large dimensionalities. Figure 4(b), on the other hand,
depicts results of a fourth tensor whose fill factor remains a constant 2%. Both sets
of tests were performed at increasing levels of dimensionality. While other algorithms
were also tested, including those well suited to sorting already sorted sublists, e.g.,
natural mergesort, only the MSD radix sort algorithm proved competitive to RP.

As the graph demonstrates, when examining the median run time across all per-
mutations, RP typically performed slightly better than MSD radix sort, indicating
that most permutations provide an opportunity for further optimization. More im-
portantly, certain permutations provide even greater speed-up opportunities, with the
RP algorithm running at significantly faster speeds. To shed some more light on this,
Table 2 depicts timings corresponding to those of Figure 4(a) at N = 211.5. As can be
seen, a permutation like {1, 0, 2, 3}, which only requires that RP rearrange according
to the second index, allows a roughly 50% increase in speed.

These results demonstrate that when opportunity affords, RP can significantly
speed up permutations. Considering that the MSD radix sort already represents one
of the fastest means to sort LCO data, these improvements attest to the value of



12 A. P. HARRISON AND D. JOSEPH

Table 2
Permutations and run times of RP vs. MSD radix sort, corresponding to the maximum, median,

and minimum differences in time. All timings drawn from Figure 4(a) at N = 211.5.

Ranking Permutation MSD Radix Sort (s) RP (s)
Max {3, 1, 2, 0} 3.50 3.54

Median {2, 1, 3, 0} 3.54 3.45
Min {1, 0, 2, 3} 2.71 1.38

0 50 100

0

20

40

60

80

100

nz = 10

(a) (b) (c)

Fig. 5. Hyper-sparsity of a matricised tensor. A fourth-order diagonal tensor aijk`, meaning
all-zero except for when i = j = k = `, can produce hyper-sparse matrices when flattened: (a) depicts
the hyper-sparsity pattern when a 10× 10× 10× 10 diagonal tensor is matricised so that two of its
indices are mapped to rows while the remaining are mapped to columns. An example multiplication
causing this would be aijk`ak`mn. (b) depicts the same tensor, except that it is matricised by
mapping one index to rows, while the remaining are mapped to columns; (c) depicts the same as (b)
except that the role of rows and columns are reversed. In the example multiplication of aijk`ajk`m
the first and second operands would exhibit the patterns in (b) and (c), respectively. The two figures
of (b) and (c) depict column- and row-sparsity, respectively, while (a) depicts index-sparsity.

using specialised permutation algorithms. It is expected that these gains would only
increase with higher orders and greater NNZs.

5. Multiplication. Multiplying two sparse tensors together epitomises the unique
demands of sparse tensor arithmetic. Any tensor multiplication, involving inner, en-
trywise, and outer products, can be represented as a sequence of matrix products [30].
Thus, sparse matrix products play a fundamental role in executing sparse tensor prod-
ucts. However, as §5.1 will explain, hyper-sparsity comes into play, calling for different
strategies than those found in the MV paradigm. Answering this need, §5.2 outlines
an effective multiplication poly-algorithm designed to handle operands exhibiting any
manner of hyper-sparsity.

5.1. Hyper-Sparsity. Sparse tensors often exhibit hyper-sparsity. Typically
raised in an MV context, hyper-sparsity refers to matrices where the numbers of
rows and columns exceed the NNZ [8, 9]. Applied to a tensor context, this meaning
implies a dimension that exceeds the NNZ. While comparatively rare in linear algebra,
graph algorithm applications, which see uses for tensors [22], encounter hyper-sparsity
frequently [8, 9].

However, even when tensors are not hyper-sparse on their own, they can exhibit
hyper-sparsity when they are mapped to matrices during multiplication. For instance,
as Figure 5(a) demonstrates, flattening a purely diagonal tensor can produce index-



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 13

sparse matrices, meaning both row and column ranges exceed the NNZ. In addition,
as Figure 5(b) and (c) demonstrate, flattening operations can also produce row- and
column-sparse matrices, often manifesting as very-tall and very-wide matrices, respec-
tively, in which only one of the dimensions exceeds the NNZ. Such a case occurs in
the differential operators example of §2, which we return to in §6. Thus, any routine
executing sparse tensor products must be able to handle hyper-sparsity.

5.2. Poly-Algorithm. Sparse-tensor multiplication can be executed in three
steps:

1. map sparse-tensor LCO data to a matrix, using a permute or sort if needed;
2. convert each LCO matrix to an appropriate multiplication datatype (MDT),

e.g., CSC, and multiply;
3. map the resulting matrix back to a sparse tensor.

This is similar to the scheme used by the MTT. However, the MTT always uses
the CSC MDT and algorithm. However, the standard CSC and compressed sparse-
row (CSR) MDTs are not equipped to handle hyper-sparsity [8,9]. This explains why
the MTT excises all-zero columns and rows before performing standard CSC multipli-
cation, requiring that each matrix be sorted twice5 and also necessitating additional
bookkeeping which incurs its own running-time and memory costs. The reader is en-
couraged to consult our supplementary material for a more detailed explanation of the
sorting and bookkeeping costs associated with excising all-zero rows and columns. In
our experience, mirrored by others [47] and in the tests of §3.2, sorting or permuting
costs can be a major run time cost in sparse tensor computations. For this reason,
we minimise them as much as possible.

Thus, an attractive alternative is to employ algorithms and MDTs specialised
to naturally handle the different types of hyper-sparsity that can possibly be en-
countered. Choosing different MDTs is not a freedom typically enjoyed within the
MV paradigm, in which matrices, once constructed, are typically locked into a single
datatype and lexicographical order. Yet, this is not an issue in a sparse tensor con-
text, where a conversion to an MDT is required regardless. This extra flexibility calls
for a poly-algorithm that dispatches to specific multiplication algorithms and MDTs
depending on whether the flattened tensors are sparse, row-sparse, column-sparse, or
index-sparse.

Table 3 outlines the 16 different possible sparsity combinations. In addition, it
details the algorithmic choices used by LibNT. Two considerations motivated these
choices. The primary consideration was on ensuring memory use and run time were
not dependant on any hyper-sparse dimension sizes. As Buluç and Gilbert [8, 9]
warn, algorithms, e.g., the CSC, whose run time and memory use depend on the
dimensionalities of the matrix can consume inordinate amounts of memory or exhibit
impractical run times under hyper-sparse conditions. With the first consideration
satisfied, the second goal was gaining the fastest run time and/or the lowest memory
use. Unlike MV computations, performance metrics of sparse-tensor multiplication
must include the cost of converting to the MDT.

In describing the different multiplication algorithms, this subsection will use a set
of common notation outlined in Table 4. While entrywise products are an important
concept in tensor computations, their presence only means that the tensor product is
mapped to a repeated sequence of matrix products [30], which does not change the

5In actuality the MTT performs the excisions while the data is still in tensor form, but the
implications for run time are identical.



14 A. P. HARRISON AND D. JOSEPH

Table 3
Multiplication possibilities based on sparse characteristics of operands. Table entries indi-

cate the algorithm LibNT employs, along with the section number describing it, for each sparse-
characteristic combination.

A
B Sparse Row-Sparse Column-Sparse Index-Sparse

Sparse
CSC/CSR

(§5.2.2)
CSC

(§5.2.2)
CSC

(§5.2.2)
CSC

(§5.2.2)
Column-
Sparse

CSR
(§5.2.2)

DCSC/DCSR
(§5.2.3)

DCSC
(§5.2.3)

DCSC
(§5.2.3)

Row-Sparse
CSR

(§5.2.2)
DCSR
(§5.2.3)

CSCNA/ CSRNA
(§5.2.4)

CSCNA
(§5.2.4)

Index-Sparse
CSR

(§5.2.2)
DCSR
(§5.2.3)

CSRNA
(§5.2.4)

SOP
(§5.2.5)

Table 4
Multiplication Notation

First Operand A Second Operand B
Rows and Columns of A m and k Rows and Columns of B k and n

Number of Columns of A
with one or more non-zeros

nzcA
Number of Rows of B with

one or more non-zeros
nzrB

Number of Rows of A with
one or more non-zeros

nzrA
Number of Columns of B

with one or more non-zeros
nzcB

basic approach of sparse-tensor multiplication. Thus, for simplicity only inner/outer
products will be considered, explaining why the first and second operands of Table 4
are single matrices. Apart from the notation of Table 4, this section will use f to
refer to the number of floating-point operations in a multiplication, which is the same
for all algorithms. C will denote the matrix product of A and B. To make the
exposition simpler, the subsection will focus mostly on column-by-column versions
of the algorithms, e.g., CSC. As such, f(i) will denote the number of floating-point
operations to compute the ith column of C and nnzC(i) will denote the resulting NNZ.
LibNT tests for hyper-sparsity by measuring the ratio of NNZ to the dimension in
question. For example, the row-sparsity of A can be tested by measuring whether
m/nnzA > 1.

To begin the discussion, §5.2.1 outlines the dataset used for benchmarking. After-
wards, §5.2.2 focuses on LibNT’s implementation of the standard sparse multiplication
algorithm. This is followed by §5.2.3 and §5.2.4 which describe specialised algorithms
to multiply a column-sparse with a row-sparse matrix and a row-sparse with a column-
sparse matrix, respectively. Finally, §5.2.5 describes LibNT’s algorithm to multiply
two index-sparse matrices.

5.2.1. Dataset. Datasets used for testing can consist of real-world examples
or synthetic datasets, which are parameterised and/or randomly generated. While
real-world datasets do exist, e.g., those used in decomposition techniques applied to
networks [35, 46], these datasets do not consist of many examples. Thus, to charac-
terise sparse-multiplication algorithms under different conditions, e.g., NNZs, hyper-
sparsities, and dimension sizes, this work uses a synthetic dataset. Nevertheless, we
return to the differential operators example in §6 to provide comparative benchmarks
in an application-based context.

We use a third-order tensor generalisation of the R-MAT recursive graph model [13],
which can control for dimension size, fill factor, and fill pattern. In the original R-MAT



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 15

Table 5
Base edge probabilities used for the R-TENSOR model in the sparse multiplication experiments

with their octant specified in parentheses. To add variability into experiment runs, the probabilities
were adjusted by additive values drawn from a uniform distribution of [−.1 .1] and renormalised so
that they all sum to 1.

Octant: (1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 2) (2, 1, 1) (2, 1, 2) (2, 2, 1) (2, 2, 2)
BEP: .3 .5/6 .5/6 .5/6 .5/6 .5/6 .5/6 .2

Table 6
Characteristics of the three different column-by-column multiplication algorithms. Importantly,

run times include the cost to convert to the MDT from column-major LCO data. Memory use only
includes temporary data structures used for multiplication.

Algorithm
Sparse

Accumulator
Column
Indexing

Run time Memory Use

CSC yes
singly-

compressed
O(m + k + nnzA + nnzB +
f +

∑n
i nnzC(i) log nnzC(i))

O(m + k)

DCSC yes
doubly-

compressed
O(m + nnzA + nnzB + f +∑n

i nnzC(i) log nnzC(i))
O(m + nzcA)

CSCNA no
singly-

compressed
O(k + nnzA + nnzB +∑n

i f(i) log f(i))
O(max f(i) + k)

model, the recursive base edge probabilities (BEPs) are specified for each quadrant.
To generalise to a third-order R-TENSOR, the BEPs must be specified for each oc-
tant. Table 5 outlines the probabilities used for this work. The symbols aijk and bijk
will be used to denote R-TENSORs. R-TENSORs can manifest column-, row-, or
index-sparsity depending on their fill factor and how they are flattened. Maximum
NNZs were limited by what our workstation could handle when using the CSC/CSR
formats at the highest levels of hyper-sparsity. This allows us to demonstrate the ben-
efits of specialised hyper-sparse formats even when settings allow the use of standard
formats.

5.2.2. Standard CSC/CSR. The tried-and-tested column-by-column CSC al-
gorithm relies on a dense, size k, singly-compressed array to quickly access columns
and a dense, size m, accumulator array to quickly collect non-zeros as each column of
C is constructed. Readers unfamiliar with these algorithms and requisite index and
accumulator arrays are encouraged to consult Davis [18] and Buluç et al. [11]. Table 6
summarises the salient characteristics of the CSC algorithm.

When both matrices present no hyper-sparsity, LibNT opts for the CSC or CSR
algorithms. LibNT gains additional efficiency by converting only one of the matrices
to compressed form. For instance, the CSC algorithm only requires fast access of
the columns of A, meaning it suffices if B is simply stored in column-major LCO
format. The primary consideration to choose between the two algorithms is based
on what minimises any extra sorts. For instance, if the lexicographic order of both
tensors happened to produce column-major matrices once they were flattened, then
the CSC algorithm will be chosen. In cases were both flattened matrices must be
rearranged, the choice is based on a simple heuristic of run time costs of the CSC
and CSR algorithms. Run time between the two is almost identical, except for the
final summation term, where the CSR algorithm must sort each row of C instead of
each column. Assuming somewhat uniform distribution of non-zeros across rows and
columns, the run time for the sort should be smaller if the task is broken into a greater
number of pieces. Thus, LibNT opts for the CSC format when n > m, otherwise it



16 A. P. HARRISON AND D. JOSEPH

chooses CSR.
Finally, by avoiding converting one of the matrices to compressed form, the ap-

plicability of the standard algorithms can be extended to greater numbers of cases.
For instance, as long as A has no hyper-sparsity, the standard CSC algorithm can be
applied, regardless whether B is row-, column-, or index-sparse. Thus, the CSC and
CSR algorithms can be employed beyond the sparse-sparse case, explaining the first
column and row of Table 3.

5.2.3. DCSC/DCSR. Hyper-sparsity challenges the CSC/CSR algorithms in
two manners. The first corresponds to cases where using singly-compressed arrays
for row or column access are no longer tenable. For instance, should two cubic R-
TENSORS be multiplied using

aijkb`jk,(5.1)

the left and right operands would be mapped to very-wide and very-tall matrices,
respectively. Consequently, when N2 � nnz using the CSC or CSR datatypes is
prohibitive or even intractable.

A solution is offered by Buluç and Gilbert [8], who introduced the doubly compressed-
sparse column (DCSC) and doubly compressed-sparse row (DCSR) formats, which
remove run time and memory-use dependance on k. Thus, their column-by-column
multiplication algorithm can be executed when A is column-sparse. Similarly, the
DCSR algorithm can handle cases when B exhibits row sparsity. Even when k still
fits comfortably within memory, the doubly-compressed scheme can produce highly
significant speedups. Both variants come at the cost of additional memory accesses,
compared to the standard CSC and CSR options, and so they are not used when the
level of hyper-sparsity is likely insufficient to reap the benefits.

To demonstrate these points, experiments used the CSC and DCSC algorithms to
compute (5.1). The tests used cubic R-TENSORs generated with NNZs ranging from
4e5 to 1e6 in increments of 1e5. Column-sparsity of the R-TENSORs ranged from 1,
i.e., no column-sparsity, to 500, i.e., 1 non-zero per 500 columns, in log10-scale in-
crements. The NNZ and column-sparsity govern the corresponding dimensions of the
R-TENSOR. This was performed 3 times for each NNZ/column-sparsity combination.
Finally, two different types of runs were performed. The first run used two different
R-TENSORs in (5.1) and the second used the same R-TENSOR for each operand.

Differences in run time were primarily dependent on the hyper-sparsity, and not
dimensionality. The relative run times across different levels of hyper-sparsity are
depicted in Figure 6(a). As the figure demonstrates, a column-sparsity value of 10
separates the point at which the DCSC algorithm outperforms CSC. As column-
sparsity increases, the DCSC algorithm’s run time is on average roughly 20 times
faster than the CSC approach, demonstrating a tremendous amount of speedup.

For the purposes of LibNT’s poly-algorithm, the library opts for the DCSC algo-
rithm whenever column sparsity exceeds 3. While lower than the threshold indicated
by Figure 6(a), this satisfies the primary consideration of keeping memory use pro-
portional to the NNZs. LibNT uses the same criteria explained in §5.2.2 to choose
between the DCSC and DCSR variants. As well, and indicated in Table 3, LibNT uses
the DCSC algorithm whenever A is column-sparse and for all cases of B, except when
the latter presents no hyper-sparsity. The reverse holds true for the DCSR algorithm.

5.2.4. CSCNA/CSRNA. §5.2.3 outlined a multiplication strategy to handle
cases when using the dense CSC and CSR access arrays becomes untenable. In the



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 17

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

Column−Sparsity

C
S

C
 T

im
e 

R
el

at
iv

e 
to

 D
C

S
C

10
0

10
1

10
2

10
−2

10
0

10
2

Row−Sparsity

C
S

C
 T

im
e 

R
el

at
iv

e 
to

 C
S

C
N

A
10

0

10
1

10
2

10
−2

10
0

10
2

10
4

Index−Sparsity

T
im

e 
R

el
at

iv
e 

to
 S

O
P

 

 

CSC

CombBLAS

(a) (b) (c)

Fig. 6. Run times of the multiplication algorithms under differing levels and types of hyper-
sparsity. (a) graphs the ratio of running-times of the CSC vs. the DCSC algorithm under different
levels of column-sparsity, while (b) measures the ratio of the CSC vs. the CSCNA algorithms under
different levels of row-sparsity. (c) graphs the ratio of the CSC and CombBLAS algorithms to
LibNT’s SOP algorithm under different levels of index-sparsity. For all scenarios, performance
ratios correlated the most with hyper-sparsity levels.

opposite scenario, i.e., multiplying a very-tall matrix with a very-wide one, the dense
access arrays of the CSC and CSR data structures pose no problems and it is the
accumulator array that can become untenable. For example, this situation would
manifest should two R-TENSORs be multiplied using

aijkb`mk.(5.2)

In this situation, the standard CSC and CSR algorithms can be modified to forego
the accumulator array, resulting in the compressed sparse-column no-accumulator
(CSCNA) and compressed sparse-row no-accumulator (CSRNA) algorithms, respec-
tively. In the column-by-column case, jettisoning the accumulator array means that
as each column of A is constructed the non-zeros are not collected and summed to-
gether in one step. Instead for each column i, f(i) values are computed and stored
in a simple LCO list. These f(i) values must then be sorted and any data values
with the same LIV are then summed together. As Table 6 indicates, this results in
an increased sorting burden, but comes at the benefit of not having memory use and
run time be dependent on the potentially huge number of rows of A. Note that in
this scenario, it is possible to also perform an inner-product algorithm [11]. However,
due to excessive run times, discussed in more detail in our supplemental material, we
do not include its results in our graphs.

As with the DCSC algorithm, improvements can be garnered even when the
very-large dimensions fit comfortably in memory. To test this, the R-TENSOR ex-
periments in §5.2.3 were repeated, except that (5.2) was computed. NNZs ranged
from 1e5 to 3e5 in increments of 5e4. Apart from this change, all other test settings
were kept identical. Figure 6(b) depicts the results of this test, graphing the ratio
of run times of the CSC algorithm to the CSCNA algorithm under different levels of
row-sparsity. As the figure demonstrates, apart from some outliers at low-levels of
row-sparsity, the CSCNA algorithm is able to match or exceed the CSC algorithm.
At row-sparsity values of roughly 3 or higher the CSCNA algorithm begins to exhibit
faster execution speeds than the CSC algorithm, eventually running on average 6
times faster. Nonetheless, in isolated instances the CSCNA algorithm performed con-
siderably worse. Characterising when these situations occur is an important area for



18 A. P. HARRISON AND D. JOSEPH

Fig. 7. The outer-product multiplication algorithm. Using example matrices, the top of the
figure demonstrates how the outer-product algorithm would multiply each column of A with each
row of B. Below, the SOP algorithm used by LibNT to sum each of the k rank-1 matrices is
illustrated.

further investigation. Even so, as the CSCNA algorithm posts excellent performance
for the far majority of trials and avoids having memory use and run time depend on
m, LibNT opts for the CSCNA approach whenever row-sparsity is greater than 3.

As before, LibNT uses the same criteria explained in §5.2.2 to choose between the
CSCNA and CSRNA variants. LibNT also opts for the CSCNA algorithm whenever
A is row-sparse and B is index-sparse while the CSRNA is chosen when B is column-
sparse and A is index-sparse.

5.2.5. SOP. The final case to consider is when both A and B are index-sparse.
Buluç and Gilbert [8,9] have demonstrated that the outer-product approach is fast and
memory efficient for this scenario. Under this approach, A and B must be sorted in
different lexicographical orders—column- and row-major, respectively. As the top of
Figure 7 demonstrates, each column of A is multiplied with each row of B, producing
k m× n rank-1 matrices. To produce the final result, these rank-1 matrices must be
summed together. Under an index-sparse setting, both nzcA and nzrB are each less
than k, and not all non-zero columns of A have a matching non-zero row of B. Thus,
the number of rank-1 matrices to sum together is always less than k and often less
than min(nzcA,nzrB).

As part of their CombBLAS library, Buluç and Gilbert use their DCSC and
DCSR formats in combination with a heap-like data structure to merge the rank-1
matrices [9]. Buluç and Gilbert’s motivating problem is large-scale parallel matrix
multiplication. As such, the authors correctly did not account for the time to con-
struct doubly-compressed matrices in their performance metrics, because their parallel
algorithm amortises these costs across sub-tasks. In contrast, the conversion costs to
the MDT must be considered in a sparse-tensor setting.

As a result, approaches with minimal conversion costs should also be considered.
As the bottom of Figure 7 illustrates, one approach, which we call the simple outer-
product (SOP) algorithm, is to just directly concatenate all the intermediate rank-1
matrices together into a length f LCO data-structure. This LCO array can then be
sorted based on the LIVs, with duplicate entries being summed together. The down-
side is the O(f) memory use and a O(f log f) sort, which dominates the complexity.
However, unlike in regular sparse settings, f can often be small compared to the NNZ
of A and B. Moreover, the ratio of f to the NNZ of C can also be close to 1, meaning
strategies to efficiently add duplicate entries do not always justify their overhead.

These conclusions are borne out when multiplying R-TENSORs using a very



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 19

similar setup as the experiments in §5.2.3. However, instead of cubic R-TENSORs,
M × N × N tensors are used instead, where M = N2. Thus, when flattening the
R-TENSORs to compute (5.1), the resulting matrices exhibit square dimension sizes
of N2 × N2, providing appropriate conditions to vary the row- and column-sparsity
together. Additionally, the NNZs varied from 5e4 to 1e5 in increments of 1e4 and the
time taken for the CSC, SOP, and CombBLAS’ [10] C++ index-sparse algorithm,
including setup costs, was measured. All other conditions were kept the same.

The results of this test are depicted in Figure 6(c). The SOP algorithm outper-
formed the CSC algorithm at most of the index-sparsity range. Inspection of the
numerical results reveal that faster run times begin at index-sparsities greater than
6, with the performance gap increasing to roughly 35 times faster execution at the
highest levels of index-sparsity. Compared to the CombBLAS algorithm, the SOP
outperformed it on average by a factor of 2 at all levels of index-sparsity, demonstrat-
ing the value of a simplified approach in sparse tensor settings. However, in several
instances CombBLAS outperformed the SOP algorithm, indicating that certain sce-
narios call for a more sophisticated merging approach. Further work should focus on
identifying these scenarios a priori. Even so, the SOP executed the fastest on almost
all test instances.

As a result, LibNT opts for the SOP algorithm whenever both A and B are
index-sparse. For the purposes of satisfying the primary consideration of avoiding
highly excessive memory use, the SOP algorithm is applied whenever both row- and
column-sparsity exceed 3.

6. Comparative Performance. So far, this work has contrasted performance
of different algorithmic choices. What has not been discussed is the impact of using
such high-performance kernels in an actual multi-purpose sparse-tensor arithmetic
setting. Returning to the differential operators example of §2 and using left-to-right
precedence, the first term in (2.3) can be broken into two binary products, with the
second written as

b
(y)
ii′j`d

(y)
i′k ,(6.1)

where b
(y)
ii′j` = d

(y)
ii′ δj`. Assuming uniform index ranges, when flattened (6.1) describes

an N3 ×N row-sparse matrix as the left operand multiplied with a standard sparse
N ×N matrix.

To unearth some of the significance of using this work’s techniques, we compare
the performance of NTToolbox against two alternatives in executing (6.1). The first
alternative is the MTT. Like the NTToolbox, the MTT relies on a MATLAB frontend
to setup and call optimised compiled-language backends, except that the former uses
LibNT’s C++ algorithms specialised for tensor arithmetic, while the latter relies on
MATLAB’s optimised, but general-purpose, built-in routines. Differences in perfor-
mance will be partly driven by any limitations that the MATLAB environment im-
poses upon the MTT. The MTT handles all hyper-sparsity combinations by executing
CSC multiplication after excision of all-zero rows and columns. As such, the number
of sorts performed remains constant, i.e., through MTT’s three and two calls to MAT-
LAB’s unique function and CSC sparse matrix construction routines, respectively. A
head-on comparison helps uncover when NTToolbox’s specialised high-performance
kernels are warranted over the convenience of a pure MATLAB implementation.

The second alternative is an NTToolbox re-implementation of the MTT’s multi-
plication strategy, using a LibNT-based backend. For fair comparison, care was taken



20 A. P. HARRISON AND D. JOSEPH

10
−2

10
−1

10
0

10
1

10
2

10
3

N

R
u
n
n

in
g
 T

im
e 

(s
)

 

 

 2
7

 2
8

 2
9

2
10

2
11

2
12

MTT

NTToolbox (MTT Strategy)

NTToolbox (Poly−algorithm)

0.9

1

1.1

1.2

1.3

1.4

1.5

 2
7

 2
8

 2
9

2
10

2
11

2
12

N

N
T

T
o
o
lb

o
x
 (

M
T

T
 S

tr
at

eg
y
)

R
el

at
iv

e 
to

 P
o

ly
−

A
lg

o
ri

th
m

Fig. 8. Comparative performance of NTToolbox multiplication poly-algorithm vs. the MTT
and an NTToolbox implementation of the MTT’s multiplication strategy. All graphs depict the run
time to execute the hyper-sparse products in (2.3). (a) graphs all three run times in logarithmic
scale, whereas (b) graphs the run time of the NTToolbox (MTT strategy) vs. the NTToolbox (poly-
algorithm).

in optimising this approach, e.g., only converting the right operand to the CSC MDT
and avoiding the superfluous excision of all-zero columns of the right operand. Thus,
differences in performance will be driven solely by the impact of the poly-algorithm
vs. the all-purpose strategy of CSC multiplication combined with excision used in the
MTT.

Tests assumed input images of size N × N , where N = 2k − 1, with increas-
ing values of k. The subtraction of 1 ensures the integer division libraries used by
NTToolbox are not given an unfair advantage. The time needed to rearrange both
operands into the required lexicographical order for the poly-algorithm was included
in the measurements. Figure 8(a) graphs the run times of all three implementations,
demonstrating that NTToolbox speeds up the calculation by an order of magnitude
or more. Figure 8(b) depicts the run time of the NTToolbox (MTT strategy) relative
to the NTToolbox (poly-algorithm), demonstrating that the latter speeds up compu-
tations by 40% or more at high dimensionalities. For context when N = 211 − 1 the
run time of the MTT, NTToolbox (MTT strategy), and NTToolbox (poly-algorithm)
were 23.7 s, 2.7 s, and 2.0 s, respectively. For the NTToolbox-specific tests, the per-
formance improvements of the poly-algorithm can mainly be attributed to eliminating
superfluous permutations, meaning only those required to flatten operands into matrix
form are executed.

7. Conclusion. LibNT offers a multi-purpose environment for the sparse ten-
sor arithmetic operations seen in Einstein-like notation, meaning addition, subtrac-
tion and multiplication, and the solution of equations incorporating dense, sparse, or
dense/spase tensor mixtures. This work focused on three core aspects. First, like
Bader and Kolda [4], we believe a multi-purpose arithmetic library should not place
an a priori precedence on certain tensor indices over others. However, we argue for
the LCO format over Bader and Kolda’s CO format, presenting results showing faster
sort run times. Importantly, these benefits come with a smaller memory footprint, es-
pecially at higher orders. Currently tensor dimensionalities are limited to 63 bits, but
future work incorporating very-large integer datatypes should remove this limitation,
extending the LCO’s benefits to a greater set of tensor problems.

Secondly, we emphasise the importance of high-performance rearrangement algo-
rithms when using list-like data structures such as the CO and LCO formats. Such
algorithms are necessary to realise a high-performance sparse tensor arithmetic li-



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 21

brary. This work outlined the impact of using radix sort, which is specialised to sort
integer datatypes, over more general-purpose sorting algorithms. Importantly, we also
outline how to take advantage of the inherent structure of sparse data to speed up the
frequent permutations required for list-like data structures. An algorithm exploiting
these underlying characteristics was developed, outperforming the fastest standard
sorting option and demonstrating the value of employing specialised approaches to
sparse tensor arithmetic.

Finally, we addressed how to implement sparse-times-sparse tensor multiplica-
tion, an operation that exemplifies the unique requirements of sparse tensor arith-
metic. A multi-purpose library could encounter any combination of sparse, index-
sparse, column-sparse, or row-sparse data, which all demand their own specialised
approaches. Apart from highlighting this unique characteristic, we also outlined a mul-
tiplication poly-algorithm that can choose appropriate algorithms accordingly. The
poly-algorithm ensures that excessive memory use is avoided, a potentially catas-
trophic event. Moreover, the poly-algorithm produces highly-significant reductions
in run time over the common CSC/CSR approach. While the MTT can also handle
hyper-sparsity, its one-size-fits-all algorithm does not exploit the very distinct features
of the different sparsity types.

We demonstrate the impact of this work on several benchmarks derived from
the application of high-order differential operators. These tests are complemented
by other benchmarks incorporating randomly generated sparse tensors. Compared to
the MTT, the outlined kernels contributed to considerable improvements in run time
on constructing high-order combinatorial Laplacians, demonstrating the value of this
work’s specialised and high-performance kernels. The discussed high-performance
kernels are accessible through the LibNT and NTToolbox, which are open-source
libraries for Einstein-like notation, implemented in C++ and MATLAB, respectively.
However, the data structures and algorithms described here, or variants thereof, are
also well suited to any other package incorporating sparse tensor arithmetic.

Considerable future work can further advance the state of sparse-tensor arith-
metic. In particular, multi-core and heterogeneous routines would be welcome, e.g.,
parallel approaches to radix sort [49]. Another possibility is to leverage work within
the graph algorithm community on parallel sparse matrix-matrix multiplication [9,12].
Efficiencies stemming from symmetry of sparse tensors, possibly adapting existing
dense approaches [50], should also be incorporated. Reducing temporary memory
allocation in chained arithmetic expressions should help reduce overhead. Finally,
adapting LibNT to be able to handle very-large integers as LIVs is highly important.
These and other advancements will help further the impact of this, and other [4, 47],
efforts towards establishing a mature body of sparse tensor arithmetic routines.

REFERENCES

[1] Krister Åhlander, Einstein Summation for Multidimensional Arrays, Computers and Math-
ematics with Applications, 44 (2002), pp. 1007–1017.

[2] Krister Åhlander and Kurt Otto, Software design for finite difference schemes based on
index notation, Future Gener. Comput. Syst., 22 (2006), pp. 102–109.

[3] Brett W. Bader and Tamara G. Kolda, Algorithm 862: MATLAB Tensor Classes for Fast
Algorithm Prototyping, ACM Transactions on Mathematical Software, 32 (2006), pp. 635–
653.

[4] , Efficient matlab computations with sparse and factored tensors, SIAM Journal of Sci-
entific Computing, 30 (2007), pp. 205–231.

[5] Muthu Baskaran, Benoit Meister, Nicolas Vasilache, and Richard Lethin, Efficient



22 A. P. HARRISON AND D. JOSEPH

and Scalable Computations with Sparse Tensors, in High Performance Extreme Computing
(HPEC), 2012 IEEE Conference on, Sept 2012, pp. 1–6.

[6] Edward A. Bender and S. G. Williamson, Foundations of Applied Combinatorics, Addison-
Wesley, 1991.

[7] Gregory Beylkin and Martin J. Mohlenkamp, Algorithms for Numerical Analysis in High
Dimensions, SIAM Journal on Scientific Computing, 26 (2005), pp. 2133–2159.

[8] Aydın Buluç and John Gilbert, On the Representation and Multiplication of Hypersparse
Matrices, in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE International
Symposium on, April 2008, pp. 1–11.

[9] , New Ideas in Sparse Matrix Matrix Multiplication, in Graph Algorithms in the Lan-
guage of Linear Algebra, Jeremy Kepner and John Gilbert, eds., SIAM, 2011.

[10] Aydın Buluç, John Gilbert, and Adam Lugowski, CombBLAS. Retrieved April 15, 2015,
from http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/.

[11] Aydın Buluç, John Gilbert, and Viral B. Shah, Implementing Sparse Matrices for Graph
Algorithms, in Graph Algorithms in the Language of Linear Algebra, Jeremy Kepner and
John Gilbert, eds., SIAM, 2011.

[12] Aydın Buluç and John R. Gilbert, Parallel sparse matrix-matrix multiplication and index-
ing: Implementation and experiments, SIAM Journal of Scientific Computing (SISC), 34
(2012), pp. 170 – 191.

[13] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos, R-mat: A recursive model
for graph mining, in SIAM International Conference on Data Mining, 2004.

[14] Rong-Guey Chang, Tyng-Ruey Chuang, and Jenq Kuen Lee, Parallel Sparse Supports
for Array Intrinsic Functions of Fortran 90, The Journal of Supercomputing, 18 (2001),
pp. 305–339.

[15] Pierre Comon, Gene H. Golub, Lek-Heng Lim, and Bernard Mourrain, Symmetric ten-
sors and symmetric tensor rank., SIAM Journal on Matrix Analysis and Applications, 30
(2008), pp. 1254–1279.

[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction To Algorithms, MIT
Press, 2001.

[17] Julian C. Cummings, James A. Crotinger, Scott W. Haney, William F. Humphrey,
Steve R. Karmesin, John V.W. Reynders, Stephen A. Smith, and Timothy J.
Williams, Rapid Application Development and Enhanced Code Interoperability using the
POOMA Framework, in Object Oriented Methods for Interoperable Scientific and En-
gineering Computing: Proceedings of the 1998 SIAM Workshop, Michael E. Henderson,
Christopher R. Anderson, and Stephen L. Lyons, eds., SIAM, 1999.

[18] Timothy A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms
2), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2006.

[19] Cory Doras, libdivide. Retrieved Aug. 3, 2017, from http://libdivide.com/, 2017.
[20] , torch.sparse. Retrieved Aug. 3, 2017, from http://pytorch.org/docs/master/sparse.

html, 2017.
[21] Ulrich Drepper, What Every Programmer Should Know About Memory, tech. report, Red

Hat, Inc., 2007.
[22] Daniel M. Dunlavy, Tamara G. Kolda, and W. Philip Kegelmeyer, Multilinear Algebra

for Analyzing Data with Multiple Linkages, in Graph Algorithms in the Language of Linear
Algebra, Jeremy Kepner and John Gilbert, eds., SIAM, 2011.

[23] Victor J. Duvanenko, In-place Hybrid N-bit-Radix Sort, Dr. Dobb’s, (2009). Retrieved Sept.
22, 2014.

[24] A.S. Georghiades, P.N. Belhumeur, and D.J. Kriegman, From few to many: Illumination
cone models for face recognition under variable lighting and pose, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23 (2001), pp. 643–660.

[25] GMP.Org, The GNU Multiple Precision Arithmetic Library. Retrieved Sept. 1, 2015, from
http://gmplib.org/, 2014.

[26] Geir Gundersen and Trond Steihaug, Sparsity in higher order methods for unconstrained
optimization, Optimization Methods and Software, 27 (2012), pp. 275–294.

[27] Adam P. Harrison, Numeric Tensor Framework: Toward a New Paradigm in Technical Com-
puting, PhD thesis, University of Alberta, 2015.

[28] Adam P. Harrison and Dileepan Joseph, Maximum Likelihood Estimation of Depth Maps
Using Photometric Stereo, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 34 (2012), pp. 1368–1380.

[29] , Depth-Map and Albedo Estimation with Superior Information-Theoretic Performance,
in Image Processing: Machine Vision Applications VIII, Edmund Y. Lam and Kurt S. Niel,
eds., vol. 9405 of Proceedings of the SPIE, SPIE, 2015, pp. 94050C–94050C–15.

http://gauss.cs.ucsb.edu/~aydin/CombBLAS/html/
http://libdivide.com/
http://pytorch.org/docs/master/sparse.html
http://pytorch.org/docs/master/sparse.html
http://gmplib.org/


HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 23

[30] , Numeric Tensor Framework: Exploiting and Extending Einstein Notation, Journal of
Computational Science, 16 (2016), pp. 128–139.

[31] Richard A. Harshman, An index formalism that generalizes the capabilities of matrix notation
and algebra to n-way arrays, SIAM Journal on Scientific Computing, 15 (2001), pp. 689–
714.

[32] U. Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos, GigaTensor:
Scaling Tensor Analysis Up by 100 Times - Algorithms and Discoveries, in Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’12, New York, NY, USA, 2012, ACM, pp. 316–324.

[33] Daniel Kats and Frederick R. Manby, Sparse tensor framework for implementation of
general local correlation methods, The Journal of Chemical Physics, 138 (2013).

[34] Boris N. Khoromskij, Tensors-structured numerical methods in scientific computing: Survey
on recent advances, Chemometrics and Intelligent Laboratory Systems, 110 (2012), pp. 1
– 19.

[35] T.G. Kolda and Jimeng Sun, Scalable tensor decompositions for multi-aspect data mining,
in Data Mining, 2008. ICDM ’08. Eighth IEEE International Conference on, Dec 2008,
pp. 363–372.

[36] Tamara G. Kolda and Brett W. Bader, Tensor decompositions and applications, SIAM
REVIEW, 51 (2009), pp. 455–500.

[37] Anthony LaMarca and Richard E Ladner, The Influence of Caches on the Performance
of Sorting, Journal of Algorithms, 3 (1999), pp. 66–104.

[38] Chun-Yuan Lin, Yeh-Ching Chung, and Jen-Shiuh Liu, Efficient Data Compression Meth-
ods for Multidimensional Sparse Array Operations Based on the EKMR Scheme, IEEE
Transactions on Computers, 52 (2003), pp. 1640 – 1646.

[39] Chun-Yuan Lin, Jen-Shiuh Liu, and Yeh-Ching Chung, Efficient Representation Scheme for
Multidimensional Array Operations, IEEE Transactions on Computers, 51 (2002), pp. 327–
345.

[40] John Maddock and Christopher Kormanyos, The Boost Multiprecision Library. Retrieved
Sept. 1, 2015, from http://www.boost.org/doc/libs/1_59_0/libs/multiprecision/doc/

html/index.html, 2015.
[41] J. J. McAuley and J. Leskovec, Hidden factors and hidden topics: understanding rating

dimensions with review text, in ACM Conference on Recommender Systems, 2013.
[42] Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Tem-

plate Library, Addison-Wesley Professional, 2001.
[43] David Musser, Introspective Sorting and Selection Algorithms, Software Practice and Experi-

ence, 27 (1997), pp. 983–993.
[44] Ivan V. Oseledets and S. V. Dolgov, Solution of linear systems and matrix inversion in

the tt-format, SIAM J. Scientific Computing, 34 (2012).
[45] Ivan V. Oseledets and Eugene E. Tyrtyshnikov, Breaking the curse of dimensionality, or

how to use svd in many dimensions, SIAM J. Scientific Computing, 31 (2009), pp. 3744–
3759.

[46] Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D. Sidiropoulos, Parcube:
Sparse parallelizable tensor decompositions., in ECML PKDD’12, Peter A. Flach, Tijl De
Bie, and Nello Cristianini, eds., vol. 7523 of Lecture Notes in Computer Science, Springer,
2012, pp. 521–536.

[47] John A. Parkhill and Martin Head-Gordon, A sparse framework for the derivation and
implementation of fermion algebra, Molecular Physics, 108 (2010), pp. 513–522.

[48] Tim Peters, timsort. Retrieved August 25, 2014, from http://bugs.python.org/file4451/

timsort.txt, 2002.
[49] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee,

Daehyun Kim, and Pradeep Dubey, Fast sort on cpus and gpus: A case for bandwidth
oblivious simd sort, in Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, New York, NY, USA, 2010, ACM, pp. 351–362.

[50] Martin D. Schatz, Tze-Meng Low, Robert A. van de Geijn, and Tamara G. Kolda,
Exploiting Symmetry in Tensors for High Performance: Multiplication with Symmetric
Tensors, SIAM Journal on Scientific Computing, 36 (2014), pp. C453–C479.

[51] Keith Schwarz, An implementation of the introsort algorithm, a fast hybrid of quicksort,
heapsort, and insertion sort, 2010.

[52] Robert Sedgewick, Algorithms in C++, Parts 1-4: Fundamentals, Data Structure, Sorting,
Searching, Algorithms in C++, Pearson Education, 3 ed., 1998, ch. Radix Sorting.

[53] Hans J. Stetter, Numerical Polynomial Algebra, Society for Industrial and Applied Mathe-
matics, Philadelphia, 2004.

http://www.boost.org/doc/libs/1_59_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_59_0/libs/multiprecision/doc/html/index.html
http://bugs.python.org/file4451/timsort.txt
http://bugs.python.org/file4451/timsort.txt


24 A. P. HARRISON AND D. JOSEPH

0

2

4

6

8

T
im

e
 R

e
la

ti
v
e
 t

o

M
S

D
 R

a
d
ix

 S
o
rt

N

 

 

 2
7

 2
8

 2
9

2
10

2
11

Timsort

IntroSort

LSD Radix Sort

MSD Radix Sort

0

1

2

3

4

5

N2
5

2
6

2
6

2
7

2
7

(a) (b)

Fig. 9. Benchmark results of different sorting algorithms applied to sparse fourth-order tensors.
(a) and (b) depict results from randomly generated N ×N ×N ×N sparse tensors, with a fill factor
of a fourth-order Laplacian and a 5% fill factor, respectively. Tests were run on increasing values
of N and repeated 10 times. Trend lines represent median values and error bars represent quartiles.

8. Supplemental Material.

8.1. Sorting. We provide more details on the performance of MSD radix sort
vs competitor algorithms in sorting sparse tensor data. When sorting LIVs, another
array, i.e., the data array, must be sorted alongside it. By increasing the memory
bandwidth needed to perform rearrangements, cache misses can be more predominant,
which is often the leading factor in sorting performance [37]. The LCO sorting task
can be categorised as sorting with “satellite” data [16], which is often tackled using
pointers to the additional data or by using data structures containing key/record pairs.
In contrast, sorting LCO data requires sorting a contiguous integer-valued LIV array
with a contiguous and separate data array acting as satellite data. The importance
of fast sorting speed to the sparse LCO format makes it highly worthwhile to focus
on optimising sorts.

We tested and adapted several different algorithms using our own C++ implemen-
tations. The leading comparison-based sorting algorithms that were tested include
the highly prominent introspective sort [43], adapted from Schwarz [51], and Tim-
sort [48]. Integer sorting algorithms were also tested, including a least-significant
digit (LSD) radix sort [52] and an in-place version of MSD radix sort [23] that uses
no extra memory. All of the tested algorithms were adapted to sort the LCO data
array alongside any movements of the LCO LIV array. In addition, effort was taken
to optimise their implementations, including using hybrid and adaptive approaches,
in order to achieve fast run times.

Two different types of tests were performed. The first type of test, depicted in
Figure 9(a), measures the sorting time on a randomly-generated tensor matching the
fill-factor of a fourth-order Laplacian operator, e.g., one that can act on an image. The
Laplacian operator’s fill factor decreases quadratically with dimensionality, providing
a highly-sparse test setting. While it is important to measure performance in a highly-
sparse setting, it is also worthwhile to test under settings where sparsity does not vary
quadratically with dimensionality. Along those lines, Figure 9(b) depicts sorting times
of fourth-order tensors with 5% fill factors.

As the figure makes clear, both radix sorts beat out the two comparison sorts in
a highly-sparse setting, posting 2 to 4 times faster speeds for most of the range of
dimensionalities. These results are more striking when considering that the bench-



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 25

mark setup is directly unfavourable to radix sorts. More specifically, a fourth-order
Laplacian’s fill factor decreases quadratically, meaning the maximum size of the LIV
increases at a quadratic rate compared to the linear rate increase of the NNZ. This
can be problematic for radix sorts, because its run time is proportional to the magni-
tude of the keys being sorted [52], i.e., the LIVs. Nonetheless, these results indicate
that radix sort can perform extremely well even in this demanding setting. One likely
reason for this is that both radix sort variants used a commonly recommended [52]
hybrid implementation that switched to a comparison-based sort when appropriate.
Thus, dependence on the magnitude of the LIVs is relaxed.

Similar results were produced when the algorithms were tested on sparse tensors
with 5% fill factor, with the radix sorts outperforming their comparison counterparts
by highly significant margins.

Apart from illustrating the high-performance of radix sorts, these results demon-
strate the significant impact of algorithm choice in sorting sparse tensors. Depending
on the choice of algorithm, sorting can take roughly 2-4 times longer, which is of high
consequence when considering the importance of rearrangement operations to sparse
tensor computations. In terms of whether the LSD or MSD variant is preferable,
the latter generally outperformed the former, particularly at very-large values of N .
Moreover, the MSD version used here is inplace. For these reasons, LibNT uses MSD
radix sort.

8.2. Excising All-zero Rows and Columns. We provide more details on the
rationale for why we avoid excising all-zero rows and columns and use instead spe-
cialised algorithms designed to handle hyper-sparsity. To help make our explanation
as concrete as possible, we use an example where two tensors have been flattened into
matrices, A and B, to execute a tensor product. These are multiplied together in
the equation A ∗B. First, we will assume A is row-sparse and proceed through the
four possible hyper-sparsity options of B. Second we will assume B is row-sparse and
proceed through the four possible hyper-sparsity options of A

Before beginning with the first case, i.e., assuming A is row-sparse, we note that
one approach to handle A’s row-sparsity, regardless of the hyper-sparsity of B, is to
sort A in row-major order, excise the all-zero rows, and then re-sort A back in column-
major order. B would be sorted once into column-major order. In this scenario, CSC
multiplication can be executed, which can be done by only converting the excised
version of A into the CSC format and leaving B in LCO format, which avoids any
possible issues should B be hyper-sparse in any way. This approach, however, requires
an extra sort, which is why we avoid this option.

Going through the four possible hyper-sparsity characteristics of B brings up the
following considerations:

1. B is simply sparse. In this case, we can sort both matrices in row-major order,
excise all-zero rows of A, and then perform standard CSR multiplication.
However, in CSR multiplication, only B need be in compressed form. So in
this scenario, only B need be converted to CSR form, and A can be kept in
row-major LCO form. This approach requires no excisions.

2. B is row-sparse. The number of columns of A must match the number of
rows of B to be a valid matrix multiplication. As a result, even though B
is row-sparse, because A is not column-sparse, we know that we can safely
store the CSR version of B. Thus, there is no need perform any excision, and
the standard CSR algorithm can be employed, keeping A in row-major LCO
form.



26 A. P. HARRISON AND D. JOSEPH

3. B is column-sparse. There are several options in this case:
(a) To stay with the excision approach we can sort both matrices in row-

major order and then perform standard CSR multiplication. However,
because B is column-sparse, the sparse accumulator used in the CSR
algorithm can consume amounts of memory far exceeding the NNZ of
either A or B. Thus, to perform the CSR algorithm, B would need to
be first sorted in column-major order, have its all-zero columns excised,
and then be re-sorted in row-major order. Similar issues apply if we
attempt to perform CSC multiplication. Thus, an additional expensive
sort would be required.

(b) Another option is to sort A and B in row- and column-major orders
respectively and perform an inner product algorithm [11], which does
not require excising all-zero rows and columns. A sparse accumulator
can be used to store one-by-one either the non-zero rows of A or the
non-zero columns of B. However, in this case, the run time cost would
be either O(nzrAnnzB) or O(nzcBnnzA), which is typically on the same
order of magnitude as O(nnzAnnzB). In our experiments, this option
ran one to three orders of magnitude slower than the CSCNA or CSRNA
algorithms. For this reason, we do not include its results in this work.

(c) Due to the above considerations, we use a variant of the CSC and CSR
algorithms, CSCNA and CSRNA, respectively, that eschew the sparse
accumulator, thus avoiding the need for additional re-sorts or the use
of the expensive inner-product algorithm. The choice of CSCNA vs.
CSRNA is based on the criteria given in Section 4.2.3. Either way no
excisions are required.

4. B is index-sparse. Similar issues as the previous case ensue, except with even
more complications. However, since A is only row-sparse, we can use the
CSCNA algorithm and data structure.

To help complete this picture, we also outline the issues that arise if B is row-
sparse and proceed through the following four hyper-sparsity options of A:

1. A is simply sparse. This is similar to 1 in the first set of considerations,
except that we perform CSC multiplication instead.

2. A is column-sparse. For simplicity, we outline the options involving algo-
rithms relying on row-major order, but identical considerations apply in the
column-major case. It is possible to sort both matrices in row-major order,
excise the all-zero rows of B, and then perform CSR multiplication. How-
ever, in this case, excising the all-zero rows of B is a challenge, as it requires
coordinating in some way with the columns of A, since the columns and rows
of A and B, respectively, are inner-product dimensions and any matchings
before pre-excision must remain post-excision. For this reason the rows of B
cannot be excised independently. So to stay with the excision approach there
are two options.
(a) One option would be to sort A in column-major order to excise the

columns matching the excised rows of B. A would then be re-sorted
in row-major form and CSR can be executed. This would require an
additional expensive sort.

(b) Another option is to avoid excising the matching columns of A and
instead use some form of on-the-fly mapping of the columns of A so
that they match the excised versions of the rows of B. This would



HIGH PERF ROUTINES FOR SPARSE TENSOR ARITH 27

require creating an additional data structure, such as a binary search
tree or a hash map.

(c) For either option, when columns of A are excised there is no guarantee
they will be all-zero, which will leave orphaned data and indices. So,
temporary memory will be needed of the truncated data and indices
of A (since we want to avoid altering the original tensor data), or the
multiplication algorithm would need to be able to handle “skip” columns
of A.

(d) All this to say, that excising the all-zero rows of B requires additional
sorts or additional data structures with their own costs. Our approach
avoids these complications altogether by using the DCSR or DCSC al-
gorithms, which do not need to perform any excisions.

3. A is row-sparse. Similar considerations as 2 in the first set of considerations
apply, except that the CSC algorithm should be performed.

4. A is index-sparse. Similar considerations as 4 in the first set of considerations
apply, except that the CSRNA algorithm should be performed.

These considerations generalise to additional hyper-sparsity combinations of A
and B, except for certain cases where the roles of A and B are reversed, which
would then require using the counterpart of the algorithms described above, e.g.,
CSC instead of CSR.


