


Fig. 6 shows a single step of the MCLNN, where 2n+1 
weight matrices are processing the 2n+1 frames. The 
highlighted regions in each matrix represent the active 
connections following the mask design. The output of a single 
processing window of frames is a single representative vector.  

V. EXPERIMENTS  
We have performed the MCLNN evaluation using the 

Urbansound8k [28], YorNoise [24], ESC-10 [29] and ESC-50 
[29] environmental sound datasets. We will discuss the 
composition of each dataset with the common preprocessing 
applied, and we will defer the discussion to each dataset’s 
relevant section. In this work, we explore the performance of a 
shallow architecture of the MCLNN in combination with a long 
segment compared to the deep MCLNN architectures 
considered for the mentioned datasets in [23-25]. 

Urbansound8k is composed of 8732 files for 10 classes of 
environmental sounds released into 10-folds: air conditioner, car 
horns, children playing, dog bark, drilling, idling engines, 
gunshot, jackhammers, siren and street music. The maximum 
duration for the files is 4 seconds.  

YorNoise is a dataset focusing on rail and road traffic with 
1527 sound files of 4 seconds each. The dataset is released into 
10-folds following the same settings of the Urbansound8k 
dataset.  

ESC-10 is a dataset of 400 files of 5 seconds each for 10 
categories of environmental sounds released in 5-folds: dog 
bark, rain, sea waves, baby cry, clock tick, person sneeze, 
helicopter, chainsaw, rooster and fire cracking. 

ESC-50 is a dataset of 2000 files of 5 seconds each for 50 
categories of environmental sounds released in 5-folds. A subset 
of the classes in this dataset was used for the ESC-10 dataset. 

Common pre-processing for the datasets involved a time-
frequency transformation to 60 bins logarithmically Mel-scaled 
spectrogram at an FFT window of 1024 and 50% overlap with 
the delta (first derivative across the time domain). We 
concatenated the spectrogram and the delta, resulting in a 
spectrogram frame of 120 frequency bins. The training set was 
z-scored, and its standardization parameters (mean and standard 
deviation) were applied to the validation and testing sets. The 
model was trained to minimize the categorical cross-entropy 
using ADAM [32]. We used the Parametric Rectifier Linear 
Units (PRelu) [33] as the transfer function for all neurons and 
Dropout [34] for regularization. The final decision for the sound 
file category is decided based on a probability voting across the 
predicted labels for the segments extracted from each audio file 
following (4). The MCLNN layer is followed by a pooling layer 
and two densely-connected layers of 100 neurons each before 
the final output softmax. Table I lists the hyperparameters used 
for the MCLNN. An order n = 15 and extra frames k=50 were 

utilized for all datasets except for the ESC-50 dataset, an order 
n=14 and k=40 were used. 

A. Urbansound8K 
Environmental sound recognition research is hindered with 

the unavailability of a large labeled dataset. The Urbansound8K 
dataset was released in the work of Salamon et al. [28] in an 
attempt to provide a large labeled dataset for the research 
community. We used the model specified in Table I and the 
signal representation (60 mel-spec with delta) discussed earlier, 
which is the same transformation used by Piczak-CNN [7]. The 
dataset is pre-distributed into 10-folds, which we used to report 
the mean accuracy in Table II. 

The shallow MCLNN in combination with a long segment 
(k=50) achieved an accuracy of 74.22% compared to a deep 
MCLNN with a shorter segment (k=5) in [24]. The accuracy of 
the MCLNN surpasses other reported neural networks based 
attempts using state-of-the-art CNN architectures proposed by 
Salamon et al. in [31] and Piczak in [7]. The baseline accuracy 
of 68% was achieved in [28] using an RBF-SVM [1] for 
classification. Salamon et al. in [30] achieved the highest non-
neural attempt on the Urbansound8k. They proposed the use of 
an unsupervised feature learning technique using the Spherical 
k-means to establish a codebook, Principal Component Analysis 
(PCA) for dimensionality reduction and they used Random 
Forest [35]  for classification. The Piczak-CNN applied through 
the work of Piczak et al. [7] used two convolutional layers, two 

TABLE II  PERFORMANCE ON URBANSOUND8K DATASET USING THE MCLNN 
COMPARED WITH OTHER ATTEMPTS IN THE LITERATURE 

Classifier and Features Acc. % 

MCLNN (Shallow, k=50) + Mel-Spectrogram (This Work) 74.22 
Random Forest + Spherical K-Means + PCA + Mel-Spec.[30] 73.70 
MCLNN (Deep, k=5) + Mel-Spectrogram [24] 73.30 
Piczak-CNN + Mel-Spectrogram [7] 73.10 
S&B-CNN + Mel-Spectrogram [31] 73.00 
RBF-SVM + MFCC [28] 68.00 

TABLE I    MCLNN HYPER-PARAMETERS 

Layer 
 

Type Nodes Mask 
Bandwidth 

Mask 
Overlap Order n 

1  MCLNN 300 20 -5 15 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.  Urbansound8k confusion using MCLNN. Classes: Air Conditioner(AC), 
Car Horns(CH), Children Playing(CP), Dog Bark(DB), Drilling(Dr), Engine 
Idling(EI), Gun Shot(GS), Jackhammers(Ja), Siren(Si) and Street Music(SM) 

 

 

 

 

 

 



pooling layers and two fully-connected layers of 5000 neurons 
each resulting in a total number of weights exceeding 25 million. 
Salamon et al. in [31] used a deeper architecture then the Piczak-
CNN with fewer parameters. The MCLNN achieved an 
accuracy of 74.22% using approximately 1 million parameters, 
which are less than 5% of the parameters employed in the 
Piczak-CNN. Fig. 7 shows the confusion across the different 
classes using the MCLNN. The highest confusion is occurring 
across the Air Conditioner, Drilling, Engine Idling and 
Jackhammers sounds. This is due to the high similarity of the 
tonal components between these categories. Similar findings 
were reported in the work of Salamon et al. [31] and Piczak [7].  

B. YorNoise 
The dataset is used as an extension to the Urbansound8k 

dataset with more emphasis on urban sounds especially rail and 
road traffic. The dataset is used to analyze the effect of common 
low tonal components across sounds generated from machines 
and engines on the confusion rates.  The dataset has an 
unbalanced distribution of sound files with 620 samples for rail 
and 907 samples for road traffic. The YorNoise dataset is pre-
distributed into 10-folds, and in combination with the 
Urbansound8k, it establishes a dataset composed of 12 
categories of urban sounds.  

 Table III lists the mean accuracies achieved over a 10-fold 
cross-validation for both the Urbansound8k and YorNoise 
combined. A shallow MCLNN achieved an accuracy of 75.92% 
compared to the deep architecture in [24] that reached 75.13%. 
Despite the comparable accuracy, the shallow MCLNN used 1 

million parameters compared to the 3 million parameters of the 
deep variant and achieved higher accuracy using a longer 
segment. Fig. 8 shows the confusion across the 12 classes of 
both datasets. The confusion extends from the machine-
generated sounds of the Urbansound8k, e.g. Air Conditioner, 
Jack Hammer, Drilling and Engine Idling to the YorNoise Rail 
and Road traffic sounds due to the common tonal properties 
across these categories.    

C. ESC-10  
For the ESC-10 dataset, we followed the transformation 

applied by Piczak in [7] (60 bin Mel-spec. with Delta) to 
benchmark the MCLNN without the influence of the 
intermediate representation. The experiments followed the 5-
fold cross-validation of the original distribution of the dataset to 
unify the reported accuracies.  

Table IV lists the accuracies achieved over the dataset. The 
deep MCLNN architecture in [23] achieved 85.5% without 
augmentation with extra frames k = 40 and it achieved 83% at 
k=1. The shallow architecture used in this work achieved 83% 
using a longer segment with 1 million weights compared to the 
deep MCLNN that used 3 million parameters. Piczak-CNN [7] 
achieved an accuracy of 80% using a CNN model that used 25 
million parameters (discussed in the previous section) compared 
to the 1 million parameters used by the shallow MCLNN. 
Additionally, Piczak used augmentation, which involves 
introducing deformations to sound signal, e.g. time delay, pitch 

TABLE III   PERFORMANCE ON THE URBANSDOUND8K AND YORNOISE 
DATASETS USING THE MCLNN  

Classifier and Features Acc. % 

MCLNN (Shallow, k=50) + Mel-Scaled Spectrogram  75.82 
MCLNN (Deep, k=5) + Mel-Scaled Spectrogram [24] 75.13 
 
 

 
 
 
 
 
 

TABLE IV   PERFORMANCE ON ESC-10 DATASET USING THE MCLNN 
COMPARED WITH OTHER ATTEMPTS IN THE LITERATURE  

Classifier and Features Acc. % 

MCLNN (Deep, k=40) + Mel-Scaled Spectrogram [23]2  85.50 
MCLNN (Shallow, k=50) + Mel-Scaled Spectrogram (this work)2  83.00 
MCLNN (Deep, k=1) + Mel-Scaled Spectrogram [25]2  83.00 
MCLNN (Deep, k=25) + Mel-Scaled Spectrogram [23]2  82.00 
Piczak-CNN + Mel-Scaled Spectrogram [7]1 80.00 
Random Forest + MFCC [29]2 72.70 
1 Augmentation 
2 Without Augmentation 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 9.  Confusion matrix for the ESC-10 dataset. Classes: Dog Bark(DB), 
Rain(Ra), Sea Waves(SW), Baby Cry(BC), Clock Tick(CT), Person 
Sneeze(PS), Helicopter(He), Chainsaw(Ch), Rooster(Ro) and Fire 
Cracking(FC) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 
Fig. 8.  YorNoise and Urbansound8k confusion using MCLNN. Classes: Air 
Conditioner(AC), Car Horns(CH), Children Playing(CP), Dog Bark(DB), 
Drilling(Dr), Engine Idling(EI), Gun Shot(GS), Jackhammers(Ja), Siren(Si) , 
Street Music(SM), Rail (Ra) and Traffic (Tr) 

 

 

 

 

 

 

 



shifting. Piczak applied 10 augmentation variants to each sound 
file, which increases the dataset and consequently the accuracy 
as studied by Salamon in [31]. We did not apply augmentation 
as it is not relevant to benchmarking the models we are 
proposing in this work. Fig. 9 shows the confusion across the 
ESC-10 classes using the MCLNN. The highest confusion is for 
the clock ticks with other short event sounds such as the person 
sneeze and the fire cracking sounds. There is also a noticeable 
confusion among the rain, sea wave, helicopter and chainsaw 
sounds due to the common low tones across them. 

D. ESC-50 
The dataset is pre-distributed into 5-folds. We used the same 

model and signal representation (60 mel-spec with Delta) we 
applied for the ESC-10 dataset, except for the order n and the 
extra frames k, where we used n =14 and k=40. Table V lists the 
accuracies achieved on the ESC-50 including the MCLNN.  The 
accuracy by Piczak-CNN is based on a CNN model, described 
earlier, of 25 million parameters like the one applied to the ESC-
10 and Urbansound8k datasets. Additionally, Piczak [7] used 4 
augmentation variants for each sound file in the ESC-50 dataset. 
Without applying any augmentation, the MCLNN achieved 
62.85% using 5% of the parameters utilized by Piczak-CNN. 
Fig. 10 shows the confusion across the 50 sound categories of 
the ESC-50 dataset.  

VI. CONCLUSION AND FUTURE WORK 
The ConditionaL Neural Network (CLNN) and its extension 

the Masked Conditional Neural Network (MCLNN) are 
designed for multi-dimensional temporal signals. The CLNN 
considers the inter-frame relation across a temporal signal, and 
the MCLNN extends the CLNN by enforcing a systematic 
sparseness through a binary mask following a band-like pattern. 
The mask allows the network to learn in bands rather than bins, 
mimicking the behavior of the filterbank used in spectrogram 
transformations such as Mel-Scaled analysis. Additionally, the 
mask is designed to include several shifted versions of the 
filterbank-like pattern, which automates the hand-crafting 
process of the feature combinations. This allows each node in 
the hidden layer to learn distinct localized features in its scope 
of observation. We benchmarked the MCLNN using the 
Urbansound8k, YorNoise, ESC-10 and ESC-50 environmental 
sounds datasets. MCLNN have achieved competitive results 
compared to models based on state-of-the-art Convolutional 
Neural Networks (CNN) in addition to hand-crafted attempts. 
We applied the MCLNN on a time-frequency representation, but 
MCLNN still preserves the generalization of applying it to other 
multi-dimensional representations of temporal signals, which 
we will explore in our future work.   
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