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Towards Environmentally Equitable AI
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The skyrocketing demand for artificial intelligence (AI) has created an enormous appetite for globally de-

ployed power-hungry servers. As a result, the environmental footprint of AI systems has come under in-

creasing scrutiny. More crucially, the current way that we exploit AI workloads’ flexibility and manage AI

systems can lead to wildly different environmental impacts across locations, increasingly raising environ-

mental inequity concerns and creating unintended sociotechnical consequences. In this paper, we advocate

environmental equity as a priority for the management of future AI systems, advancing the boundaries of ex-

isting resource management for sustainable AI and also adding a unique dimension to AI fairness. Concretely,

we uncover the potential of equity-aware geographical load balancing to fairly re-distribute the environmen-

tal cost across different regions, followed by algorithmic challenges. We conclude by discussing a few future

directions to exploit the full potential of system management approaches to mitigate AI’s environmental

inequity.

1 INTRODUCTION

The growing adoption of artificial intelligence (AI) has been accelerating across all parts of society,
boosting productivity and addressing pressing global challenges such as climate change. Nonethe-
less, the technological advancement of AI relies on computationally intensive calculations and thus
has led to a surge in resource usage and energy consumption. Even putting aside the environmen-
tal toll of server manufacturing and supply chains, AI systems can create a huge environmental
cost to communities and regions where they are deployed, including air/thermal pollution due to
fossil fuel-based electricity generation and further stressed water resources due to AI’s staggering
water footprint [12, 25]. To make AI more environmentally friendly and ensure that its overall
impacts on climate change are positive, recent studies have pursued multi-faceted approaches,
including efficient training and inference [5], energy-efficient GPU and accelerator designs [19],
carbon forecasting [14], carbon-aware task scheduling [1, 21], green cloud infrastructures [2], sus-
tainable AI policies [10, 18], and more. Additionally, data center operators have also increasingly
adopted carbon-free energy (such as solar andwind power) and climate-conscious cooling systems,
lowering carbon footprint and direct water consumption [8].
Although these initiatives are encouraging, unfortunately, a worrisome outcome — environmen-

tal inequity — has emerged [3]. That is, minimizing the total environmental cost of a globally de-
ployed AI system across multiple regions does not necessarily mean that each region is treated eq-
uitably. In fact, the environmental cost of AI is often disproportionately higher in certain disadvan-
taged regions than in others. Even worse, AI’s environmental inequity can be amplified by existing
environmental equity agnostic resource allocation, load balancing, and scheduling algorithms and
compounded by enduring socioeconomic disparities between regions. For example, geographical
load balancing (GLB) algorithms that aggressively exploit regional differences to seek lower elec-
tricity prices and/or more renewables [7, 17] may schedule more workloads to water-inefficient
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data centers (located in, for example, water-stressed Arizona), resulting in a disproportionately
high water footprint and adding further pressures to local water supplies [9].
Addressing the emerging environmental inequity is becoming an integral part of responsible AI

[3]. It has increasingly received public attention and urgent calls for mitigation efforts. For exam-
ple, the AI Now Institute compares the uneven regional distribution of AI’s environmental costs
to “historical practices of settler colonialism and racial capitalism” in its 2023 Landscape report
[11]; the United Nations Educational, Scientific and Cultural Organization (UNESCO) recommends
against the usage of AI if it creates “disproportionate negative impacts on the environment” [23];
California recognizes the need for “ensuring environmental costs are equitably distributed” in its
State Report [4]; and environmental justice is ranked by Meta as the most critical factor among all
environmental-related topics [15].
In this paper, we advocate environmental equity as a priority for the management of future glob-

ally deployed AI systems. Concretely, we explore the potential of harnessing AI workloads’ sched-
uling flexibility and utilizing equity-aware GLB as a lever to fairly re-distribute the environmental
cost across regions, ensuring that no single region disproportionately bears the environmental
burden. Then, we present key algorithmic challenges to enable AI’s environmental equity without
significantly degrading the other performance metrics, such as the energy cost and inference accu-
racy. Finally, we discuss future directions to unleash the full potential of system management for
environmentally equitable AI, including coordinated scheduling of AI training and inference, joint
optimization of IT and non-IT resources, holistic control of system knobs, and building theoretical
foundations.
Our proposal of environmental equity advances the boundaries of existing research on sustain-

able AI and mitigates the otherwise uneven distribution of AI’s environmental costs across dif-
ferent regions. Additionally, equity and fairness are crucial considerations for AI. The existing
research in this space has predominantly tackled prediction unfairness against disadvantaged in-
dividuals and/or groups [20, 26]. Thus, environmental equity adds a unique dimension of fairness
and significantly complements the existing literature, collaboratively building equitable and re-
sponsible AI.

2 OPPORTUNITIES AND CHALLENGES FOR EQUITY-AWARE GLB

In this section, we present the potential opportunities of leveraging equity-aware GLB to fairly
re-distribute the environmental cost across different regions, followed by algorithmic challenges.

2.1 Opportunities

The limited power grid capacity has necessitated increasing flexibility from data centers to support
demand response and maintain grid stability. A notable example is the recent industry initiative
to maximize load flexibility for grid-integrated data centers [6]. Specifically, AI workloads exhibit
three primary types of flexibility: (1) Spatial: AI training and inference tasks can be distributed
across multiple data centers with minimal impact on latency. (2) Temporal: AI training tasks can
be executed intermittently, provided they meet a given deadline. (3) Performance: A single infer-
ence request can be processed by different AI models, each offering distinct trade-offs between
accuracy and resource consumption. These flexibilities can be exploited to promote environmen-
tal equity while satisfying other performance objectives. To achieve this, we can leverage a variety
of approaches, such as AI computing resource allocation, load balancing and job scheduling, which
we collectively refer to as system knobs.

In practice, the data center fleet of large companies such as Google and Microsoft often includes
a few tens of self-managed hyperscale data centers and many more leased third-party colocation
data center spaces spreading throughout the world [8]. By renting virtual machines on public
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clouds, even a small business can flexibly choose its deployment region and place its computing
workloads accordingly. As such, GLB is an important and common knob that can spatially bal-
ance computing workloads’ energy demand as well as environmental footprint across different
locations.
As a concrete example, we consider moving AI inference workloads around from one data cen-

ter to another and exploit equity-aware GLB to mitigate AI’s environmental inequity. To achieve
equitable distribution of AI’s environmental cost, we consider the notion of minimax fairness.
Mathematically, denoting G8,C as the amount of AI workloads processed in data center 8 at time
C and �8,C (G8,C ) as the resulting regional environmental cost (e.g., due to water consumption [12]
and air/thermal/waste pollution from non-renewable energy [24]), we consider an equity-aware

objective:
∑)

C=1

∑

8 2>BC8,C (G8,C ) +_ ·max8
[
∑)

C=1 �8,C (G8,C )
]

, where the first term is the traditional GLB
cost (e.g., total carbon/water footprint and energy cost) specified based on the prior literature [9],

the second term “max8
[
∑)

C=1 �8,C (G8,C )
]

” serves as the equity regularizer by reducing the highest
regional environmental cost, and _ ≥ 0 is the weight.

GLB Metric
Algorithm

GLB-Cost GLB-Carbon GLB-Dist eGLB-Off eGLB

Full
Cost (US$) 29170 45535 47038 33669 33752
PAR (Water) 1.71 1.85 1.44 1.27 1.37
PAR (Carbon) 1.68 1.70 1.41 1.13 1.22

Partial
Cost (US$) 29659 45535 47038 34186 34162
PAR (Water) 1.72 1.84 1.44 1.30 1.38
PAR (Carbon) 1.69 1.71 1.41 1.12 1.22

Fig. 1. Comparison of GLB algorithms in terms of the total energy cost and the

normalized water/carbon peak-to-average ratio (PAR). Details in [13].

A snapshot of results. We
run a simulation based on
the BLOOM model (a large
language model) inference
trace deployed in 10 differ-
ent data centers through-
out the world and show a
snapshot of our results in
Table 1. The details of the
simulation are available in [13]. We consider both full GLB (i.e., each request can be flexibly routed
to any data center) and partial GLB (i.e., each request can only be routed to a subset of data centers
depending on its originating location). Compared to common baseline algorithms that simply min-
imize the total energy cost (GLB-Cost), carbon emission (GLB-Carbon) or workload-to-data center
distance (GLB-Dist), our algorithm (called eGLB-Off) can effectively mitigate the environmental
inequity by reducing the ratio of the maximum to the average regional environmental footprint.
Importantly, while there is an inevitable conflict between minimizing the total cost/environmental
footprint and addressing the environmental inequity, eGLB-Off can still keep the total cost reason-
ably low. Additionally, we study a simple online algorithm (called eGLB) based on dual mirror de-
scent to show the potential of mitigating environmental inequity in an online setting. While there
is a gap between eGLB and eGLB-Off due to online informational constraints, eGLB outperforms
the equity-unaware baseline algorithms in terms of the environmental footprint’s peak-to-average
ratio, demonstrating the potential of online GLB to mitigate AI’s environmental inequity.

2.2 Challenges

While equity-aware GLB can potentially mitigate AI’s environmental inequity, the equity reg-

ularizer “max8
[
∑)

C=1 �8,C (G8,C)
]

” fundamentally separates our problem from the existing sustain-
able GLB approaches and creates substantial algorithmic challenges. Specifically, the equity cost

“max8
[
∑)

C=1 �8,C (G8,C )
]

” is unknown until the end of) time slots, but complete future information
(e.g., future workload arrivals and water efficiency) may not be perfectly known in advance. More-
over, even though prediction is often available in practice, it may not be accurate, and its untrusted
nature means we cannot simply take the prediction as if it were the ground truth.
Additionally, the traditional design of online competitive algorithms often focuses on guaran-

teeing the worst-case performance robustness. But, the resulting average performance can be far
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from optimal due to the conservativeness needed to address potentially worst instances. By con-
trast, machine learning (ML) based optimizers, e.g., reinforcement learning policies, can improve
the average performance of online decision-making by exploiting rich historical data and statisti-
cal information, but they typically sacrifice the strong performance robustness needed by real AI
systems, especially when there is a distributional shift, the ML model capacity is limited, and/or
inputs are adversarial. Thus, in order to achieve the best of both worlds while pursuing online
equitable-aware GLB, we have to carefully balance the usage of traditional competitive algorithms
and ML-based optimizers by designing new learning-augmented online algorithms.

3 FUTURE DIRECTIONS

We discuss a few future directions to leverage system knobs for environmentally equitable AI.
Coordinated scheduling of AI training and inference. While AI inference offers spatial

flexibility, AI model training has great temporal scheduling flexibility as we can choose when to
train the AI models in a stop-and-go manner. We can also choose where to perform AI model
training and even possibly change the locations in the middle of the training process. Thus, a
potential direction is to explore coordinated scheduling of AI training and inference tasks to fairly
distribute AI’s overall environmental costs across different regions.
Joint optimization of IT and non-IT resources. Data centers have increasingly begun to

install on-site carbon-free energy, such as solar power, to partially power the workloads and lower
the environmental footprint [21]. However, renewables are often intermittent, and the available
energy storage capacity is finite. Thus, how to optimize AI demand response given intermittent
renewables is challenging, yet worth investigating for addressing AI’s environmental inequity.
Holistic control of system knobs. In addition to GLB, a rich set of system knobs are available

and offer flexible tradeoffs, such as dynamic model selection for inference, turning servers on/off,
and resource allocation to different AI tasks. For example, different AI models can exhibit different
energy-accuracy tradeoffs for the same task. Holistic control of these system knobs holds enor-
mous potential to curb AI’s resource usage and mitigate environmental inequity, but also presents
additional challenges due to the significantly enlarged decision space.
Theoretical foundations.Optimizing a variety of system knobs for environmentally equitable

AI has its roots in fair decision-making, which is a classical area that bridges computer systems
and algorithms and enjoys a long history with rich theoretical results [16, 22] and prominent pro-
duction deployments. However, this classic literature primarily focuses on algorithms that ensure
that different job or flow types receive a fair share of system resources, e.g., CPU, memory, etc.
Tackling the challenges raised by environmental inequity in modern planet-scale AI systems re-
quires a revisit to the algorithmic foundations and the development of new theoretical tools, which
can systematically capture the conflicts between traditional measures of performance, such as ac-
curacy and latency, with measures of emerging importance, such as environmental equity. Thus, it
is crucial to build new theoretical foundations to support the design of environmentally equitable
AI.

4 CONCLUSION

In light of AI’s wildly different environmental costs across different regions, we advocate environ-
mental equity as a priority for the management of future AI systems. We present the potential
opportunities and algorithmic challenges of tapping into AI workloads’ scheduling flexibility and
leveraging equity-aware GLB to mitigate AI’s environmental inequity. Finally, we discuss a few
future directions to unleash the full potential of system knobs for environmentally equitable AI,
including coordinated scheduling of AI training and inference, joint optimization of IT and non-IT
resources, holistic control of system knobs, and building theoretical foundations. Our proposal of
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environmental equity pushes forward the boundaries of existing system management for sustain-
able AI and also adds a unique dimension to AI fairness, collaboratively building equitable and
responsible AI.
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