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Abstract

To facilitate the measurement of representational harms caused by large language
model (LLM)-based systems, the NLP research community has produced and made
publicly available numerous measurement instruments, including tools, datasets,
metrics, benchmarks, annotation instructions, and other techniques. However,
the research community lacks clarity about whether and to what extent these
instruments meet the needs of practitioners tasked with developing and deploying
LLM-based systems in the real world, and how these instruments could be
improved. Via a series of semi-structured interviews with practitioners in a variety
of roles in different organizations, we identify four types of challenges that prevent
practitioners from effectively using publicly available instruments for measuring
representational harms caused by LLM-based systems: (1) challenges related to
using publicly available measurement instruments; (2) challenges related to doing
measurement in practice; (3) challenges arising from measurement tasks involving
LLM-based systems; and (4) challenges specific to measuring representational
harms. Our goal is to advance the development of instruments for measuring
representational harms that are well-suited to practitioner needs, thus better
facilitating the responsible development and deployment of LLM-based systems.

1 Introduction

As large language model (LLM)-based systems become increasingly widespread, so too has their
potential to cause representational harms [3, 18], which occur when a system “represents some social
groups in a less favorable light than others, demeans them, or fails to recognize their existence alto-
gether” [8]. Representational harms are abstract concepts that cannot be measured directly [38]—yet
measuring such harms is important, as they can cause tangible negative outcomes, e.g., through the en-
trenchment of harmful social hierarchies, which may affect people’s belief systems and psychological
states [17, 62, 16]. To facilitate the measurement of representational harms, the NLP research commu-
nity has produced and made publicly available numerous measurement instruments,1 including tools
[e.g., 40, 14], datasets [e.g., 64, 28, 32, 34, 56], metrics [e.g., 11, 15, 10, 58, 43], benchmarks (consist-
ing of both datasets and metrics) [e.g., 23, 48, 45, 46, 55, 63, 22, 24, 26, 27, 31], annotation instruc-
tions [e.g., 42], and other techniques [e.g., 36, 52, 61]. However, the research community lacks clarity
about whether and to what extent these instruments meet the needs of practitioners tasked with develop-
ing and deploying LLM-based systems in the real world, and how the instruments could be improved.

∗Work conducted during an internship at Microsoft Research
1By publicly available, we mean that a measurement instrument has been made available on the internet or

via an academic publication for others to use or adapt, potentially subject to licensing considerations.

NeurIPS 2024 Workshop on Evaluating Evaluations (EvalEval).
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Via a series of semi-structured interviews with practitioners (N = 12) in a variety of roles in different
organizations, we identify four types of challenges that prevent practitioners from effectively using
publicly available instruments for measuring representational harms caused by LLM-based systems:
(1) challenges related to using publicly available measurement instruments; (2) challenges related to
doing measurement in practice; (3) challenges arising from measurement tasks involving LLM-based
systems; and (4) challenges specific to measuring representational harms. Our goal is to advance the
development of instruments for measuring representational harms that are well-suited to practitioner
needs, thus better facilitating the responsible development and deployment of LLM-based systems.

2 Methods

We conducted 12 semi-structured interviews with practitioners who reported that their work involved
measuring representational harms caused by LLM-based systems. We recruited participants through
our professional networks, social media, cold emails to individuals identified through LinkedIn and
conference proceedings, and snowball sampling [44]. All interviews were one-hour long and were con-
ducted virtually between June and August 2024. Participants provided informed consent before their
interviews and received $75 gift cards afterwards. The study was approved by our institution’s IRB.

Participants. Participants held research (7/12), applied science (2/12), engineering (2/12), and
consulting (1/12) roles at large tech companies (6/12), AI-focused startups (3/12), large non-tech com-
panies (2/12), and AI-focused nonprofits (1/12). They described working on a variety of LLM-based
systems, including search engines and chatbots, as well as on content moderation tools for LLMs.

Interviews and analysis. We asked participants to describe their roles and the LLM-based systems they
worked on. We also asked them to walk us through an example of how they measured representational
harms, noting the publicly available measurement instruments they used or considered using. We
then asked them to reflect on their experiences with those instruments and to discuss any challenges.
Although our sample size is relatively small (a common problem when conducting research on AI
practitioners [57]), we conducted interviews until we reached saturation, i.e., until multiple consec-
utive interviews did not uncover any new perspectives [59, 35]. Finally, we analyzed the resulting
interview transcripts using a thematic analysis with an inductive–deductive coding approach [12, 13].

3 Results

We identified four types of challenges that prevent practitioners from effectively using publicly
available instruments for measuring representational harms caused by LLM-based systems.

Challenges related to using publicly available measurement instruments. Although prior work has
identified a range of challenges related to using publicly available measurement instruments [e.g.,
9, 60], participants primarily reported challenges related to validity and specificity. Almost all par-
ticipants (11/12) mentioned issues of validity—i.e., whether a measurement instrument meaningfully
measures what stakeholders think it measures [38]—related to correctness (e.g., tools produce inaccu-
rate outputs, datasets contain mislabeled instances) and contestedness (e.g., different instruments use
different definitions of representational harms). Similarly, almost all participants (11/12) mentioned
issues of specificity—i.e., whether a measurement instrument is sufficiently specific to a system,
its use case(s), and its deployment context(s). Examples included datasets that are too generic to
align with relevant use cases like customer service chats, and labels that are not sufficiently detailed
(e.g., categories like “hate speech” are labeled, but details like the targeted social group are missing).

Challenges related to doing measurement in practice. Particularly salient to our participants (and
in line with considerable prior work [e.g., 2, 6, 7, 19–21, 29, 37, 39, 41, 47, 49–51, 53]) were
challenges related to doing measurement in practice—i.e., when working within the constraints
surrounding products and services that are deployed to real users. Some participants (4/12) felt that
their measurements needed to produce specific quality assurances, and suggested that those assurances
might be better achieved through software testing practices. They also pointed to data licensing and
security issues (3/12), the need to align with company-specific policies (2/12), a lack of time to find
publicly available measurement instruments in the first place (2/12), and competitive pressures2 (1/12)
as factors incentivizing them to build new measurement instruments rather than adopting existing ones.

2Specifically, pressures to develop new measurement instruments in order to claim proprietary capabilities.
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Challenges arising from measurement tasks involving LLM-based systems. Because the datasets that
are used to train LLMs are often unknown, it can be difficult to tell whether an LLM-based system
that performs well on a benchmark has simply been trained using the benchmark data. Multiple par-
ticipants (6/12) therefore expressed discomfort with using publicly available benchmarks and datasets,
even if they are valid and specific to their needs. Some reported finding suitable publicly available
benchmarks, but then using them only as inspiration to create new, internal benchmarks from scratch.

Challenges specific to measuring representational harms. Finally, participants distinguished represen-
tational harms from other types of harms. Specifically, many (9/12) felt that compared to other types
of harms (e.g., privacy violations), representational harms required more and different information to
measure. Participants felt that measuring representational harms required context (6/12), alignment
on essentially constructed constructs (2/12), and social science expertise (2/12) that measuring
other types of harms did not. Some participants (2/12) also felt that they faced less commercial
incentive to measure representational harms compared to other types of harms (e.g., quality of service
harms), causing them to limit their measurement efforts. For example, some participants reported
that relevant stakeholders felt that aligned models were so unlikely to generate outright demeaning
content that it was not worth measuring in the first place. Others found that if they did not know how
to mitigate certain representational harms, relevant stakeholders would not value the measurement.

4 Discussion

The four types of challenges described above shed light on whether and to what extent publicly
available instruments for measuring representational harms meet the needs of practitioners tasked with
developing and deploying LLM-based systems in the real world. Future work should further investi-
gate these types of challenges and take steps to address them by, for example, drawing on measurement
theory from the social sciences [e.g., 1, 38] and pragmatic measurement [30, 33] to improve instru-
ments for measuring representational harms, and on other fields like implementation science [e.g., 5,
4, 25, 54] to improve the uptake of publicly available measurement instruments among practitioners.

5 Broader Impacts

By making explicit the key challenges that prevent practitioners from effectively using publicly
available instruments for measuring representational harms caused by LLM-based systems, our work
is intended to serve as a starting point to bridge gaps between research and practice. We hope that our
findings will serve as a foundation for future work on measurement instruments that are better suited to
practitioners’ needs, as well as work on the adoption of publicly available measurement instruments.

6 Limitations

The primary limitation of our study is our small sample size. As is the case with many studies
targeting technology workers [57], it was challenging to identify and recruit potential participants.
Practitioners who held relevant roles often declined to speak with us due to NDAs or other
confidentiality concerns. As a result, we were only able to interview 12 practitioners, some of whom
declined to answer certain questions in order to remain in compliance with their employers’ NDAs.

A Appendix

Our semi-structured interview guide is shown below. As is typical of a semi-structured interview
process, not every participant was asked exactly the same questions in exactly the same order, and
some participants were asked additional follow-up or clarifying questions based on the answers they
provided. The interview questions were supplemented with a set of slides containing definitions of
key terms that we screenshared with participants. The definitions are included in the script below.

A.1 Introductions [5 min]

Welcome! Thank you so much for taking the time for this interview. Before we get started, I just
want to quickly introduce myself, talk about the goals of this study, and give you a chance to ask
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any questions you might have. This research study is intended to understand gaps between research
and practice in evaluating large language model (LLM)-based systems, with a focus on measuring
harms, adverse impacts, or other undesirable behaviors. In this interview, I’ll ask you to share your
experiences with and opinions on such evaluations, without discussing confidential information. I
will also record this interview for the purpose of creating a deidentified transcript. If you prefer that
your video not be recorded, please feel free to turn your camera off at this time. In addition, if at any
point you would like to skip a question, take a break, or end the interview, please feel free to do so.

Do you have any questions before we get started?

A.2 Background [5 min]

[IQ1] To start, please briefly describe your role, focusing on your professional experience as it relates
to LLM-based systems.

[IQ2] Can you briefly describe the LLM-based system(s) that you have previously evaluated, cur-
rently evaluate, or plan to evaluate?

A.3 Experience with measurement instruments for representational harms [15 min]

[IQ3] Throughout this interview, I will be focusing primarily on representational harms, which
occur when “a system represents some social groups in a less favorable light than it represents
other groups by stereotyping them, demeaning them, or failing to recognize their existence
altogether.”

What examples of representational harms caused by LLM-based systems are you aware of?

If interviewee was not familiar with representational harms, we provided the following exam-
ples:

– LLMs might reinforce stereotypes, for example, by using the word “nurse” to refer to a
female healthcare provider and the word “doctor” to refer to a male healthcare provider in
otherwise identical contexts.

– LLMs might generate slurs or derogatory language about a social group.
– LLMs might erase a social group, for example, by only listing male athletes when a user

asks for examples of talented soccer players, thus failing to recognize the existence of
non-male soccer players.

[IQ4] Do your previous, current, or planned evaluation(s) of LLM-based system(s) involve measuring
representational harms?

[IQ5] What types of representational harms are you measuring?

[IQ6] Can you walk me through, from start to finish, an example of how you measure representational
harms? I’m especially interested in hearing about how you decided on your approach, whether
you relied on existing, publicly available tools, benchmarks, datasets, metrics, annotation
guidelines, and so on, or whether you decided to develop your own.

To allow for open-ended discussion, we did not provide participants with a specific definition
of ‘measurement instruments’; rather, we provided the following examples of instruments:

– An example of a tool is Perspective API.
– An example of a benchmark is StereoSet, which includes a dataset of prompts that could

elicit stereotyping content with corresponding metrics that measure the extent to which a
language model produces stereotypes.

– An example of a dataset is WildChat, which is a corpus of 1 million real user-ChatGPT
interactions.

– Examples of metrics are the Word and Sentence Embedding Association Tests (WEAT and
SEAT), which measure whether “attribute words” (e.g. male, female) are disproportionately
associated with a set of “target words” (e.g. different professions).

– Annotation instructions are sets of instructions and examples for humans to use when
annotating system outputs for particular properties.

– An example of another type of instrument is Matched Guide Probing, a method adapted
from sociolinguistics.
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For each instrument mentioned, we asked the following questions:

[IQ7] What type(s) of representational harms are you measuring with [this instrument]?

[IQ8] How did you decide to use [this instrument]?

[IQ9] How do you use [this instrument] in your evaluation(s)?

[IQ10] Where did [this instrument] come from? Did you develop it yourself, modify an existing
[instrument], or use an existing [instrument] as-is?

If applicable, for one instrument that the interviewee developed themselves, we asked the following
questions:

[IQ11] Why did you decide to develop [this instrument] yourself?

[IQ12] What, if any, actions have you taken or plan to take upon seeing the measurements obtained
using [this instrument]?

If applicable, for one instrument that the interviewee adapted from an existing instrument, we asked
the following questions:

[IQ13] Why did you decide to start with this existing [instrument]?

[IQ14] Why did you decide to modify [this instrument] rather than using it as-is?

[IQ15] What, if any, actions have you taken or plan to take upon seeing the measurements obtained
using [this instrument]?

If applicable, for one instrument that the interviewee used as-is, we asked the following questions:

[IQ16] Why did you decide to use this existing [instrument] as-is?

[IQ17] What, if any, actions have you taken or plan to take upon seeing the measurements obtained
using [this instrument]?

A.4 Challenges with measurement instruments for representational harms [15 min]

[IQ18] Were there any other existing, publicly available [instruments] that you investigated using
instead?

[IQ19] For each instrument mentioned: Why did you decide not to use [this instrument]?

[IQ20] For each of the challenges defined below, say either:

“It sounds like you mentioned an issue to do with [challenge]. Is that correct?”, or

“I don’t think you mentioned [challenge]. Did you experience any issues with this?”

We provided interviewees with the following set of challenges related to measurement instru-
ments:

– Whether it is sufficiently specific to the system being evaluated and its particular use cases
and deployment contexts

– Whether it can be adapted for different systems, use cases, and deployment contexts
– Whether it results in valid measurements – i.e., meaningfully measures what stakeholders

think it measures
– Whether it results in similar measurements when used in similar ways, especially over time
– Whether its resulting measurements can be understood by stakeholders
– Whether its resulting measurements can be acted upon by stakeholders
– Whether it can scale to increasing workloads

[IQ21] For each challenge experienced: What, if anything, did you do to address this issue?

[IQ22] Did you experience any other issues that we haven’t discussed?

[IQ23] If applicable: What, if anything, did you do to address this issue?
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A.5 Comparing measurement of representational harms to other harms [5 min]

[IQ24] Do your previous, current, or planned evaluation(s) of LLM-based system(s) involve measuring
harms, adverse impacts, or other undesirable behaviors other than representational harms?

[IQ25] If yes: What types of harms, adverse impacts, or other undesirable behaviors?
[IQ26] If yes: Are your experiences measuring these types of harms, adverse impacts, or other un-

desirable behaviors similar to your experiences measuring representational harms? What, if
anything, is similar and what, if anything, is different about your experiences? I’m especially
interested in hearing about how the [instruments] you use to measure these types of harms, ad-
verse impacts, or other undesirable behaviors are similar to or different from the [instruments]
you use to measure representational harms.

A.6 Desired improvements to measuring representational harms [5 min]

[IQ27] Putting aside any time or budget constraints, what, if anything, would you improve about the
way that you previously, currently, or plan to measure representational harms?

[IQ28] What do you need, that you don’t currently have, in order to make those improvements?

A.7 Closing [5 min]

[IQ29] Is there anything else you would like to tell us about your previous, current, or planned
evaluation(s) of LLM-based system(s)?
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