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Abstract
Detecting and mitigating bias in speaker verification systems
is important, as datasets, processing choices and algorithms can
lead to performance differences that systematically favour some
groups of people while disadvantaging others. Prior studies
have thus measured performance differences across groups to
evaluate bias. However, when comparing results across studies,
it becomes apparent that they draw contradictory conclusions,
hindering progress in this area. In this paper we investigate how
measurement impacts the outcomes of bias evaluations. We
show empirically that bias evaluations are strongly influenced
by base metrics that measure performance, by the choice of ra-
tio or difference-based bias measure, and by the aggregation of
bias measures into meta-measures. Based on our findings, we
recommend the use of ratio-based bias measures, in particular
when the values of base metrics are small, or when base metrics
with different orders of magnitude need to be compared.
Index Terms: speaker verification, speaker recognition, bias,
fairness, evaluation, metrics

1. Introduction
Speech technologies are increasingly integrated into services
where reliable performance is key for human well-being and
safety. One such example is speaker verification, which is used
for proof-of-life verification of pensioners [1] and authentica-
tion of financial transactions [2]. In these social-security and
safety-critical applications, prediction errors can lead to tech-
nology failures that cause harms to individuals [3]. In many
domains that use machine learning, prediction errors have been
found to be systematic, correlating with personal and demo-
graphic attributes (e.g. age, gender, accent) [4]. The algorith-
mic fairness and legal communities refer to this phenomenon
as bias. Biased speech technologies can carry significant social
consequences if they assign undesirable outcomes or deny op-
portunities to people without reason [5]. New regulations, like
the EU AI Act, thus place increasing pressure on technology
developers and providers to detect and mitigate bias [6].

Several recent studies have found evidence of bias in
speaker recognition systems, for example models that are bi-
ased by speakers’ gender [7, 8, 9, 10, 11], nationality [7, 8, 12],
race [11], accent [13] and age [10, 9]. However, despite having
similar experimental setups, the studies draw varying conclu-
sions on which groups are favoured and which are prejudiced
against. For example, while one study found systems to per-
form worse for female speakers and non-US nationals [7], an-
other study that trained and evaluated on the same dataset found
the opposite; that models perform better for females, and better
for UK nationals than for US nationals [8]. One reason for these
divergent claims is that studies use different metrics and mea-

sures to compare performance errors across groups of people.
In this paper we study how the metrics and measures used to

quantify bias impact the validity of bias evaluations of speaker
verification systems. First, we introduce terminology to dis-
tinguish base metrics from bias measures and meta-measures.
We then compare three bias measures and two meta-measures
from the literature, showing empirically how they lead to dif-
ferent bias evaluation outcomes. Finally, we demonstrate with
a thought experiment how biased speaker verification systems
can impact people in a real-world application, and why reli-
able bias evaluations are important to prevent this. Based on
these insights we make recommendations for more reliable bias
evaluations that can lead to fairer and more inclusive speaker
verification systems.

2. Background and Related Work
Base metrics, bias measures and meta-measures are essential
components of bias evaluations [14]. Bias measures quantify
and thus measure bias for the purpose of bias detection (or di-
agnosis) and mitigation (or intervention) [15]. This paper fo-
cuses on the former. When used for detection purposes, bias
measures can be applied during model development or post-hoc
to test models and applications in order to gain insights into
the limits of their performance. Most bias measures are calcu-
lated from statistical base metrics that quantify model perfor-
mance or prediction error rates. Common base metrics used in
speaker recognition are the false positive (FPR) and false nega-
tive (FNR) error rates, equal error rate (EER) and the minimum
detection cost (minCDet) [16]. Base metrics can be disaggre-
gated across groups of people to evaluate model performance
across demographic or other protected attributes [17]. To com-
pare model performance across groups, bias measures calculate
ratios or differences between the base metrics of a group and
a reference group, or overall performance. Meta-measures ag-
gregate bias measures across groups into a single score for a
model [18] to support the comparison of bias across different
models. Like bias measures, meta-measures can be computed
for different base metrics.

The most common base metric used to measure perfor-
mance in studies that investigate bias in speaker recognition
is the EER [19, 8, 9, 21, 22]. Other base metrics that have
been considered are the minCDet [7], the log likelihood-ratio
cost function (Cllr) [13], the FNR at a FPR of 1% [21] the
false accept rate (same as FPR) and the false reject rate (same
as FNR) [22]. Bias measures can be classified broadly as
difference-based and ratio-based measures. Most studies use
difference-based measures calculated either from the EER [19,
8, 9] or from statistical fairness measures in ML [21, 12]. How-
ever, with the exception of the equalized odds ratio, most statis-
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Table 1: Bias measures evaluated in this study
Name Description Equation Reference In meta-

measure

Group-to-min
Difference

Distance between the base metric (b) of a
group (g) and the base metric of the best per-
forming group (m)

G2min diff(b)g = bg − bm [19, 8, 9] FDR

Group-to-average
Ratio

Ratio between a group’s base metric and the
average base metric value across all groups

G2avg ratio(b)g =
bg

baverage
[7] -

Group-to-average
log Ratio

Negative log of the Group-to-average Ratio G2avg log ratio(b)g = −ln (G2avg ratio(b)g) [20] NRB

tical fairness measures consider performance disparities either
due to false positive or due to false negative errors. As speaker
verification systems trade off the FPR and FNR, this limits the
utility of statistical fairness measures for bias evaluations in the
speaker verification domain. Only one study used a ratio-based
bias measure with the EER and minCDet base metrics [7]. Stud-
ies that use a meta-measure have adopted the Fairness Discrep-
ancy Rate (FDR) [13, 22], which was first proposed to assess
fairness in biometric verification systems [23].

3. Method
This section defines the bias and meta-measures that we com-
pare, and describes the experimental setup. The software used
for the analysis has been released as a package on PyPI1.

3.1. Bias and Meta-measures

Table 1 defines three bias measures from the literature that we
compare in this study: the Group-to-min (G2min) Difference,
the Group-to-average (G2avg) Ratio and the G2avg log Ratio.
They can be used with any base metric. In addition we compare
two meta-measures, the Fairness Discrepancy Rate (FDR) and
the Normalised Reliability Bias (NRB), which we define below.

The FDR [23] performs a pairwise comparison of the FPR
and FNR differences across groups at a threshold τ . For each
error rate it selects the pair with the maximum difference (i.e.
the maximum value of the G2min Difference bias measure). The
maximum differences are then weighted by α, and combined
into a joint measure, the FDR.

max∆FPR(τ) = max (G2min diff(FPR(τ))G)

max∆FNR(τ) = max (G2min diff(FNR(τ))G)

FDR(τ) = 1− (α×max∆FPR(τ)

+ (1− α)×max∆FNR(τ)); 0 <= α <= 1

(1)

The FDR ranges from 0 (most biased) to 1 (least biased). It
can be evaluated at different thresholds τ , which produce dif-
ferent design error rates FPRavg . Choosing τ is a form of
choosing a base metric, as each threshold produces a unique
(FPRavg, FNRavg) pair. The FPRs and FNRs of groups
will deviate from those of the system average, unless the system
is unbiased. The system can further be evaluated for different
weights α. When α = 0 the FDR only accounts for FN errors.
When α = 1, only FP errors are evaluated.

As a second meta-measure we consider Reliability Bias,
which was proposed to measure quality-of-service harms in on-
device keyword spotting systems [20]. The measure calculates
the sum of the absolute values of the G2avg log Ratio. To make
the Reliability Bias meta-measure comparable across variable
numbers of groups, we normalise it by dividing by the number
of groups (G). The Normalised Reliability Bias (NRB) in Equa-
tion 2 has a lower bound of 0 when the performance across all

1https://pypi.org/project/bt4vt/

groups is equal and the model is unbiased. The upper limit is
infinite. The higher the score, the greater the difference between
group and average performance, and the more biased the model.
Note that this interpretation is opposite to that of the FDR.

NRB(b) = 1/G

G∑
g=1

|G2avg log ratio(b)g| (2)

3.2. Experiment Setup

To investigate the bias and meta-measures, we use a pre-
trained end-to-end ResNet-34 speaker verification model from
the Clova baseline2 [24], trained on the VoxCeleb2 dataset [25]
as a black-box predictor. The model is evaluated on two evalu-
ation sets constructed from trial pairs in the VoxCeleb1 dataset:
VoxCeleb1-H and VoxCeleb1-I. VoxCeleb1-H consists exclu-
sively of trial pairs where speakers have the same nationality
and gender. However, prior research showed that across nation-
alities 8% - 17% of same speaker pairs in VoxCeleb1-H use trial
pairs that come from the same voice recording, making these
comparisons trivial [26]. Moreover, the proportion of trivial
same speaker pairs is not the same across nationalities, which
results in a skewed evaluation setup. We thus also evaluate on
the VoxCeleb1-I trial pairs proposed in [26].

We limit our bias evaluation to groups that can be con-
structed from demographic metadata released with VoxCeleb1,
namely binary gender (male, female) and the intersection of
gender and nationality, for the following nationalities: Ireland,
India (IN), USA (US), Australia (AUS), Canada, UK, Norway
(NO) and Germany (DE).

4. Results
We now present our results, starting with an overview of model
performance and disaggregated base metrics across groups.
Next, we anaylse how the base metrics and bias measures, and
then the meta-measures impact the outcomes of the bias evalu-
ation. Our analysis is available as a jupyter notebook3.

The average EER and minCDet values of the speaker
verification model are (2.402, 0.008) and (3.657, 0.012) for
VoxCeleb1-H and -I respectively. While the performance
measures are 50% greater (i.e. the model performs worse)
when evaluating on the more challenging conditions of the
VoxCeleb1-I set, the overarching trends are similar. We present
our analysis on VoxCeleb1-I going forward. Table 2 shows dis-
aggregated base metrics for gender groups in the left column la-
belled ‘All’, and for intersectional gender + nationality groups
in the remaining columns. Due to space constraints we only
show results for the best and worst performing nationalities (IN,
US, AUS, NO, DE).

2We use the “performance-optimized” model.
3https://github.com/wiebket/

measuring bias speech/



Table 2: Disaggregated EER and minCDet base metrics on
VoxCeleb1-I for gender (col. ‘All’) and gender + nationality
groups (bold is best performing base metric in group).

Male

Base metric All IN US AUS NO DE

EER 3.581 3.218 2.999 4.362 8.210 3.013
minCDet 0.011 0.018 0.010 0.012 0.025 0.009

Female

EER 3.757 7.028 3.250 2.788 4.588 10.641
minCDet 0.012 0.023 0.011 0.011 0.014 0.019

For gender groups, the model performs better for males than fe-
males for both base metrics. For gender + nationality groups,
the EER is lowest for Australian females, and the minCDet
lowest for German males. For male and female gender + na-
tionality groups there are groups with substantially worse than
average performance. For example, Norwegian males have an
EER that is 2.7 times that of US males. Similarly, German fe-
males have 3.8 times the EER of Australian females, but only
1.7 times the minCDet. These results show that the performance
of the model varies significantly across genders and nationali-
ties, implying that it is biased. However, the results also suggest
that the extent of bias depends on the base metric.

4.1. Impact of Base Metrics and Bias Measures

Table 3 shows the bias measures evaluated for the EER and
minCDet base metrics across gender and best and worst per-
forming gender + nationality groups. For gender groups (i.e.
column ‘All’) the model shows preference for the male group
across all base metrics and bias measures. The ratio-based bias
measures for males have a G2avg Ratio less than 1 and a posi-
tive G2avg log Ratio, indicating that performance for this group
is always better than average. For the female group the inverse
is true: the G2avg Ratio is greater than 1 and the G2avg log
Ratio is negative, indicating that performance is always worse
than average. The difference-based G2min Difference evaluates
to 0 for the male group, which has the smaller error rates and
is thus used as reference. For the female group, the EER and
minCDet base metrics are two orders of magnitude apart. This
makes it difficult to compare the G2min Difference across the
base metrics to establish their impact on the measure. The two
ratio-based bias measures, by contrast, are invariant to the or-
der of magnitude of the base metric. We can thus compare the
bias measures for the EER and minCDet base metrics to con-
firm what we observed in Table 2, namely that the extent of bias
depends on the base metric used to measure performance.

The impact of the bias measures on bias evaluations be-
comes more evident for the multicategory gender + nationality
groups (cols IN, US, AUS, DE). Firstly, we observe that bias
measures preserve the ranking of groups by performance
for a particular base metric, but can change it across base
metrics. For example, Australian females have the lowest EER
and are used as reference for the G2min Difference. This group
also has the lowest G2avg Ratio of 0.762 and the highest G2avg
log Ratio of 0.271. All bias measures thus show that this group
is strongly favoured when using the EER base metric. However,
when computing bias measures with the minCDet, the reference
for the G2min Difference changes to German males, who have
the lowest minCDet value. When analysing the G2avg Ratio
and G2avg log Ratio, German males are now the most favoured
group, followed by US males, US females and only then Aus-
tralian females. In addition to changing the order of preference,

Table 3: Bias measures for gender (‘All’), best and worst per-
forming gender + nationality groups (bold is most favoured).

Male

Bias meas. Base All IN US AUS DE

G2min Diff. EER 0.000 0.429 0.211 1.573 0.224
minCDet 0.000 0.010 0.001 0.003 0.000

G2avg Ratio EER 0.979 0.880 0.820 1.193 0.824
minCDet 0.954 1.571 0.863 1.046 0.749

G2avg EER 0.021 0.128 0.198 -0.176 0.194
log Ratio minCDet 0.047 -0.452 0.148 -0.045 0.289

Female

G2min Diff. EER 0.176 4.240 0.462 0.000 7.853
minCDet 0.001 0.015 0.002 0.002 0.011

G2avg Ratio EER 1.027 1.922 0.889 0.762 2.909
minCDet 1.059 1.986 0.937 0.945 1.662

G2avg EER -0.027 -0.653 0.118 0.271 -1.068
log Ratio minCDet -0.057 -0.686 0.065 0.056 -0.508

a change in base metric can also lead to a different conclu-
sion about bias, as is the case with Indian males who change
from being favoured to being prejudiced against when the base
metric changes from the EER to the minCDet.

4.2. Impact of Meta-measures

We now compare the FDR and NRB meta-measures to consider
how aggregating bias measures into a single meta-measure fur-
ther impacts bias evaluations. We show results for gender +
nationality groups. Gender groups, which are not shown, fol-
low a similar but weaker trend. Figure 1 visualises the results
of a bias evaluation using the FDR from Equation 1 with dif-
ferent α and τ . We selected τ that calibrate the system to
FPRavg = {0.001, 0.01, 0.025, 0.05, 0.1}, and evaluated the
FDR at α = {0, 0.25, 0.5, 0.75, 1}. The figure shows that at a
small FPRavg (e.g. 0.001) the FDR approaches 1 (i.e. least
bias) as α, which increases the weight of the FPR, increases.
This implies that the FNR determines the FDR bias value at
small FPRavg . This trend is reversed for systems calibrated
to larger FPRavg (e.g. 0.1), where larger α reduce the FDR,
implying that the FPR determines bias.

Next, we conduct a similar evaluation for the NRB from
Equation 2, testing it with a range of base metrics; the
EER, minCDet, and FPRs and FNRs at systems calibrated to
FPRavg = {0.001, 0.01, 0.025, 0.05, 0.1}. These FPRavg

values have been chosen to correspond with those evaluated for
the FDR. Figure 2 shows the NRB values for each base metric.
Moving from left to right, FPRavg decreases and the NRB in-
creases (i.e. shows greater bias) for the FPRs (green). For the
FNRs (blue-grey) the opposite is true: the NRB decreases as
FPRavg decreases. For example, at FPRavg = 0.1 (i.e. left

Figure 1: FDR meta-measure for gender + nationality groups.
The FDR is calculated for different α and for systems calibrated
to thresholds that produce pre-determined FPRavg . α = 0
only considers the FNR, while α = 1 only considers the FPR.



Figure 2: NRB meta-measure for gender + nationality groups.
The meta-measure is calculated for different base metrics.

side of the chart), the NRB is lower when calculated with the
FPR than with the FNR. However, at FPRavg = 0.001 (i.e.
right side of the chart), the NRB is substantially greater when
calculated with the FPR than the FNR.

The bias evaluations with the FDR and NRB thus lead to
contradictory conclusions. To illustrate this, consider a hypo-
thetical system that will be used in an application that requires
high security. This necessitates a low FPR, and the system is
thus calibrated to FPRavg = 0.001. Bias is then evaluated
specifically for the FPR base metric, given its importance to the
use case. We obtain the FDR at α = 1, which weights the
meta-measure to only consider bias due to the FPR. From Fig-
ure 1 we estimate a bias value of ∼0.99, which suggests that the
model contains minimal bias and is safe to use. Next, from Fig-
ure 2 we estimate the NRB of this system as ∼0.65 (green bar
on the right). This value indicates that substantial performance
discrepancies exist across speakers with different genders and
nationalities. The system should not be used, as the security of
some groups will be severely jeopardised.

4.3. Which meta-measure is correct?

How can these two meta-measures lead to opposite conclu-
sions about bias? To investigate this, we decompose the meta-
measures into their constituent bias measures and base metric in
Table 4. Given the small FPR values, the G2min Difference val-
ues, which contribute to the calculation of the FDR, are equally
small and therefore insensitive to small performance differences
across groups. This observation is affirmed by Equation 1,
which shows that the FDR is primarily influenced by the order
of magnitude of the base metric, and secondly by the value of
alpha. When the base metric is small, the FDR is thus prone to
underestimate performance differences across groups. By con-
trast, the G2avg log Ratio, which is used to calculate the NRB,
captures a relative relationship and is unaffected by the order
of magnitude of the base metric. The high bias value of the
NRB thus reflects the disparity in FPRs across groups shown in
Table 4 and correctly identifies the system as biased.

While we have demonstrated that the NRB correctly iden-
tifies bias, it remains important to assess if the seemingly small
differences in FPR that we observe in Table 4 matter. To explore
this, we consider a scenario where an attacker gains access to a
device with the previously described speaker verification sys-
tem. They attempt to access sensitive information on the device
by invoking the speaker verification system once a minute (i.e.
60 times / hour). At the design FPR of 0.001 they have a 1 in
a 1000 chance of gaining access to the system. After 17 hours
(i.e. 1020 attempts), they are likely to succeed. If the device
belonged to an Indian male, the FPR of 0.005 would now grant
the attackers a 1 in 200 chance of success. This means that they

Table 4: Disaggregated FPR, G2min Difference and G2avg log
Ratio at design FPRavg = 0.001 (bold > 0.001).

Male

Base metric / Bias measure IN US AUS DE

FPR@fpr0.001 0.005 0.000 0.001 0.002

G2min Difference 0.005 0.000 0.001 0.002
G2avg log Ratio 1.659 -0.912 0.000 0.654

Female

FPR@fpr0.001 0.003 0.001 0.002 0.001

G2min Diff 0.003 0.000 0.001 0.001
G2avg log Ratio 1.201 -0.475 0.472 0.249

only need to attack the system for 3.5 hours to gain access. This
increased exposure to successful attacks presents greater risk of
harm to groups that have worse than average performance. The
NRB thus correctly identifies this system as biased, while the
FDR misrepresents the potential risk.

5. Discussion and Limitations
The results in this paper demonstrate that bias evaluations are
important to prevent unfair speaker verification systems. How-
ever, they also show that evaluations are highly influenced by
the choice of base metrics, bias measures and meta-measures.
We highlight that the performance ranking of groups depends
on the base metric used to measure performance. We further
show that bias measures, which are calculated from base met-
rics, are affected by the order of magnitude of base metrics.
Importantly, difference-based measures such as the G2min Dif-
ference cannot be compared across base metrics with different
orders of magnitude, and lack sensitivity when base metrics
are small. These shortcomings affect meta-measures based on
difference-based bias measures, such as the FDR. We thus rec-
ommend the use of ratio-based measures, which are invariant to
the magnitude of the base metric, and meta-measures like the
NRB that are calculated from ratio-based bias measures. We
find the G2avg log Ratio, which is centered around 0, easier to
compare across multiple groups than the G2avg Ratio.

The base metrics and bias measures that we investigate in
our empirical study are those that are most frequently used in
speaker verification bias evaluations. However, they are not the
only metrics and measures that can be used. As our insights
pertain to the impact that the magnitude of numbers has on ba-
sic arithmetic operations (subtraction and division), our results
are broadly applicable to any difference- and ratio-based bias
measures, and also do not depend on the model or dataset used
for evaluation. Our experimental setup resembles the evaluation
scenarios of many prior studies. This made it suitable for our
analysis of bias measures used in prior research. However, the
VoxCeleb datasets, which have now been retracted by the au-
thors, present numerous ethical and privacy concerns [27]. We
thus do not recommend them for evaluation.

6. Conclusion
This paper studied the impact of base metrics, bias measures
and meta-measures on the outcomes of speaker verification bias
evaluations. Our empirical analysis demonstrates that metrics
and measures significantly impact evaluation outcomes. We
recommend the use of ratio-based bias measures, in particular
when the values of base metrics are small, or when base metrics
with different orders of magnitude need to be compared.
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