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Abstract: Usage of multispectral satellite imaging data opens vast possibilities for monitoring and
quantitatively assessing properties or objects of interest on a global scale. Machine learning and
computer vision (CV) approaches show themselves as promising tools for automatizing satellite
image analysis. However, there are limitations in using CV for satellite data. Mainly, the crucial one
is the amount of data available for model training. This paper presents a novel image augmentation
approach called MixChannel that helps to address this limitation and improve the accuracy of solving
segmentation and classification tasks with multispectral satellite images. The core idea is to utilize
the fact that there is usually more than one image for each location in remote sensing tasks, and this
extra data can be mixed to achieve the more robust performance of the trained models. The proposed
approach substitutes some channels of the original training image with channels from other images
of the exact location to mix auxiliary data. This augmentation technique preserves the spatial features
of the original image and adds natural color variability with some probability. We also show an
efficient algorithm to tune channel substitution probabilities. We report that the MixChannel image
augmentation method provides a noticeable increase in performance of all the considered models in
the studied forest types classification problem.

Keywords: image augmentation; remote sensing; multispectral imagery; forest inventory

1. Introduction

Freely available remote sensing images with medium spatial resolution allow solving
various environmental tasks using advanced computer vision tools such as convolutional
neural networks (CNN) [1]. In comparison with ordinary RGB images, satellite data
usually consist of multispectral bands. Larger feature dimensionality ensures solving more
complicated tasks [2] that would not be possible to solve just by using the RGB spectrum in
case of medium spatial resolution (such as 10 m per pixel) [3]. Therefore, the lack of texture
information can be efficiently compensated by a wide spectral range. However, larger
feature space poses extra complexity to features connection that describes target objects.
Changes in this relationship can lead to a severe CNN model deterioration for new images.

In most works for relatively small remote sensing datasets, model robustness to new
territories and images is still beyond the study’s scope. Splitting into training and testing
objects is conducted within the same images, and only objects’ locations vary. For instance,
in [3], they used just a single image from WorldView-2 for tropical seagrass classification.
In [4], they also used a single WorldView-2 image both for training and validation in
the task of land cover semantic segmentation. The same imagery limitations were faced
in [5] (two Sentinel-2 images were considered). It can lead to particular challenges trying
to implement the trained models on new data. For instance, when the target territory
for prediction does not have cloud-free images for the exact dates used during model
training. One of the approaches to overcome this problem is discussed in [6] where authors
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developed the spatiotemporal image fusion approach based on pixels replacement for
cloudy image reconstruction. However, computer vision (CV) model generalization in
such cases is usually not studied.

In remote sensing tasks, more than one image covering the same area for different dates
is usually available. Therefore, we provide a brief overview of this topic. Additional satellite
images complement the spectral information, and a multi-temporal dataset increases a
model’s predictive power [7]. Combining multi-year imagery observed from a single
sensor during different parts of the growing season allows one to evaluate a complete
vegetation growth trajectory. However, in practice, time series can be boisterous due to the
incomplete recording of the vegetation life cycle [8]. Therefore, the main approaches for
multi-temporal data leveraging are: find optimal observation dates for a particular study
case and available images [9]; aggregate images for different dates by averaging [10].

In [10], they proposed a method for agricultural field classification that relies on
multi-temporal properties of Sentinel-2A and Sentinel-2B satellite images. A sequence
of images during the year was collected and aggregated by averaging pixel values with
the exact location for each band. Then, standard vegetation indices were computed to
train classification models. The specificity of the study region, namely California, is a vast
amount of cloudless images per year (24 to 37 images, depending on a geographical area)
that would not be available for boreal territories. Thus, the described approach should be
verified in the case of minimal satellite observations. In [11], they used seven cloud-free
Sentinel-2 images for agriculture field boundary delineation. The edge detection algorithm
was implemented for red, blue, green, and near infrared (NIR) bands and resulted in an
individual edge layer for each band. Then, the same as in [10], multi-temporal properties
were used, combining edge images for different dates into one composite.

To overcome the limitation in the number of available training images, it is common to
use image augmentation. It adds variability to the data and therefore makes a model more
robust [12]. Among popular image augmentations, there exist basic geometrical transfor-
mations and color transformations that applied to the original image. Another approach is
to generate new training samples with generative adversarial networks (GANs) [13]. All of
the listed approaches are successfully applied for RGB images in various fields, including
remote sensing [14]. However, they should be additionally studied for multispectral data
for the following reasons. Geometrical transformations do not provide enough variability
for satellite images with medium spatial resolution (such as 10 meters per pixel). It is com-
plicated to apply color transformations for such multispectral data in the environmental
domain, where dependencies between channels are more crucial than in general CV tasks
with high-resolution RGB data. No works successfully use GANs for multispectral satellite
image augmentation to the best of our knowledge. This work presents an augmentation
approach that targets multispectral images and does not require training auxiliary models
to generate samples.

In this paper, we explore the efficiency of CNNs to learn spectral characteristics in
the case study of conifer and deciduous boreal forests classification using Sentinel-2 [15]
images. A straightforward approach for training a CNN classification model is to take a
set of available satellite images for a given territory during a period of active vegetation.
The training set is constructed by taking a random patch of a large image, see Section 2.3
for details. However, if we test the obtained model for the image, taken on the date that
was not included in the training set, the accuracy can drop dramatically. This situation gets
even worse when the model is tested on new territory. It is supposed that the accuracy drop
mentioned above happened due to changes in the characteristics of the distribution (see
Section 2.2 for examples).

This paper proposes a novel MixChannel augmentation method aiming to address
robustness for multispectral satellite (Sentinel) images. We enlarge the training dataset
generating new samples artificially with the following procedure. The method is based
on substituting bands from original images with the same bands from images of another
date covering the same area. While all available images are used during training, only
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a single image is required for inference time. For this study, only summer images of
the active vegetation period are used for conifer and deciduous species classification.
We trained CNN models with different architectures to compare the proposed method
with the standard augmentation techniques. The result of our MixChannel augmentation
consistently outperforms commonly used normalization and augmentation strategies.

The main contributions of this paper are:

• We showcase the problem of poor generalization of CNNs for multispectral satellite
images of middle resolution.

• We propose a simple and efficient augmentation scheme that improves CNN model
generalization for multispectral satellite images.

• We test the proposed method on conifer and deciduous forest types classification and
show that our approach outperforms state-of-the-art solutions.

• We show that the MixChannel approach can be efficiently combined with other
methods to achieve the synergy effect.

2. Materials and Methods
2.1. Study Area and Dataset

The study area is located in the Arkhangelsk region of northern European Russia with
coordinates between 45◦16′ and 45◦89′ longitude and between 61◦31′ and 61◦57′ latitude
that belongs to the middle boreal zone (Figure 1). The total area is about 200.000 hectares.
The climate in the region is humid. The warmest month with a temperature of 17 ◦C is July.
The region’s topography is flat, with a height difference between 170 and 215 m above sea
level [16]. The main species present in the region are spruce, aspen, and birch.

Figure 1. Investigated region. Selected train, validation, and test sub-areas with available ground
truth labels used for image data samples creation.

For the study, we used forest inventory data collected according to the official Russian
inventory regulation [17]. These data were organized as a set of individual stands with
appropriate characteristics based on the assumption that the stand was homogeneous.
We used such a characteristic as dominant species and canopy height for an additional
experiment. Thus, inventory data were converted in a raster map of dominant conifer
and deciduous classes and a raster with height values. The statistics of the markup data
are presented in Table 1. The assumption on homogeneous means that for particular
stands defined as conifer or deciduous dominant types, these individual stands can contain
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another class representative (but less than 50%). We excluded from the study non-forest
areas and areas with the equivalent conifer and deciduous composition.

Table 1. Dataset statistical characteristics for conifer and deciduous classification in hectares.

Training Validation Testing Full Dataset

Conifer 10,000 5000 14,000 29,000
Deciduous 10,000 5000 14,000 29,000

2.2. Satellite Data

The data source used in this paper is Sentinel-2 satellite multispectral images. Sentinel-
2 satellite is a part of the Sentinel program with a mission focusing on high-resolution
landcover monitoring. It was launched in 2015. Sentinel includes 13 spectral bands with a
spatial resolution of 10, 20, and 60 m.

For the forest classification task, we selected images over the vegetation period be-
tween the years 2016 and 2019 close to the date of taxation. The study region is boreal
forests with high cloud coverage during a year; therefore, the number of appropriate im-
ageries was severely limited. The available image IDs selected for the study are presented
in Table 2.

Table 2. Sentinel images used in this study. Date format is: month, day, year.

Image ID Date (Month.Day.Year)

0 L2A_T38VNP_A016606_20180827T083208 08.27.18
1 L2A_T38VNP_A010986_20170730T082009 07.30.17
2 L2A_T38VNP_A005695_20160725T082012 07.25.16
3 L2A_T38VNP_A007297_20180730T081559 07.30.18
4 L2A_T38VNP_A015748_20180628T082602 06.28.18
5 L2A_T38VNP_A013017_20190903T081606 09.03.19

We downloaded Sentinel data in L1C format from EarthExplorer USGS [18] and
preprocessed them using Sen2Cor [19] to level L2A Bottom of Atmosphere (BoA) reflectance.
The pixel values were in the range [0, 10,000]. We used the B02, B03, B04, B05, B06, B07, B08,
B11, B12, and B8A bands [15]. The bands at 20 m resolution were resampled to 10 m
resolution before classification using the same procedure discussed in [5].

The average values for each channel and each image within forested areas are pre-
sented in Figure 2. Here, in the plot for the entire study area, it is shown that the distribution
of the mean values for images changes drastically. Even images of the same day but one
year apart (images with IDs 1 and 2 for the 30 July 2017, and 2018 respectively) have
markedly different mean spectral values. Moreover, for each band, changes are not equiv-
alent. Figure 2 also presents three random crops 200× 200 pixels each. It is shown that
depending on a particular area, the mean values for each band change. Therefore, it is
impossible to bring auxiliary training data within the same image distribution using linear
transformations or noise.

For classification tasks using CNN, image values are often brought to the interval from
0 to 1 [20,21]. It can be done using different approaches. The first approach is to divided
by the maximum value such as in [22]. In our case, this values is 10,000 (the maximum
physical surface reflectance value for Sentinel-2 in level L2A):

I′ = I/10,000. (1)

Another way is to normalize data by the min–max normalization technique. In satellite
remote sensing domain, it was used in [23] and aims to reduce noise of each channel:

m = max(0, mean(I)− 2 ∗ std(I)), (2)
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M = min(max(I), mean(I) + 2 ∗ std(I)), (3)

I′ = (I −m)/(M−m), (4)

where mean, std are the mean and standard deviation of the image. In Equations (2) and
(3), we calculate m and M (minimum and maximum of the preserved dynamic range).
In Equation (4), values are scaled to 0 and 1 linearly.

We used both normalization techniques for evaluating our proposed approach (see
Section 2.4).

Figure 2. Example for mean values for each channel for entire study area and for random image crops (the crop size is
200× 200 pixels). The mean values are calculated from the extracted spectral information in the forested areas.

2.3. Baseline Description

We solve the image semantic segmentation task where a CNN model is trained to
create an output map with target classes for each pixel by processing a multispectral
input image. Therefore, the output consists of pixels for which forest types are assigned.
The batch for model training is formed as follows. For each patch in a batch, one image is
chosen from the image set, and a patch of predefined size is cropped randomly. The batch
and the patch sizes are presented in Section 2.6. A patch consists of 10 multispectral
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normalized bands, and it is used as a ten-layer input for a CNN model instead of the
usually used three-layer input tensor. For model training, namely model loss function
computing, masks with target values are given for each patch. The CNN architecture for
the baseline model is U-Net [24].

2.4. MixChannel Augmentation

The proposed MixChannel augmentation algorithm operates by substituting some
channels of the original image by channels from the other images that cover the same
territory (Algorithm 1). MixChannel takes the set of images of the exact location, chooses
one as an anchor image, and with the predefined probability substitutes some channels of
the anchor image with the matching channels from non-anchor images from the same set.
The workflow of the developed augmentation algorithm, in particular, the creation of the
new data sample, is schematically presented in Figure 3.

Algorithm 1: MixChannel T (S, Ṕ)
Input: S, P
Output: I
I ⊆ S, #I = 1
Ś = S \ I
for c ∈ {0, 1, . . . , C− 1} do

if PC > R then
Í ⊆ Ś, # Í = 1
IC = ÍC

end if
end

T () is the MixChannel algorithm; S, #S ≥ 1 is the set of images covering the same area;
P = {p0, p1, . . . , pC−1}, p ∼ U ([0, 1]) is the set of probabilities to substitute each channel;
I, I ∈ S is the anchor image; C—is the number of channels in images; R ∼ U ([0, 1]) is a
random variable from the uniform distribution; IC is the c-th channel of the image I; letters
with the stroke sign denote temporal variables.

The probability choice of channel substituting is an essential parameter of the algo-
rithm to be studied. Therefore, we considered different probabilities with the step of 0.1.
The range was set from 0 to 0.7 where 0 probability is equal to the absence of the Mix-
Channel augmentation and defined as a baseline. To compare the proposed augmentation
with other approaches, we conducted the following experiments (see the short summary of
experiments in the Table 3):

• Average-channel. This experiment is based on the approach proposed for multispec-
tral Sentinel data in [10]. The idea of the method is described in Section 1. For each
pixel of the particular band, the corresponding value is averaged within all images
that cover the same territory.

• Channel-dropout. In this experiment, we used augmentation described in [25] where
it was proposed for RGB images. It aims to prevent a CNN model from overfitting for
particular data. Our study implemented this approach by substituting each channel
with the predefined probability by zero values. We investigated different probabilities
in the range from 0 to 0.5 with the step of 0.1.

• Color jittering. Color jittering [26] is commonly used for RGB image augmentation.
In the color jittering experiment, we multiply values in each band by the random
value (fixed within each band) in the range of 0.8–1.2. The approach aims to add
variability to the initial data.

• Patching. As an additional experiment, we implemented MixChannel augmentation
for patch parts independently. The patch was divided into four equal parts; for each
part, channels can be substituted by bands from different images.
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• Optimization. In this experiment, we search for the optimal probabilities for band
substitution using a greedy optimization approach. The detailed description of the
MixChannel optimization procedure is presented in Section 2.8.

• Height adding. In this experiment, we complemented the spectral data with height
data and used them both as input data for CNNs. Experiments MixChannel augmen-
tation for data that include height and Baseline + height are described in details in
Section 2.5.

For all experiments except channel-normalization, data were normalized using the
Equation (1) described in Section 2.2. In the Channel-normalization experiment, we used
Equation (4) for data preprocessing. In all experiments, geometrical transformations such
as rotation and random flip were applied.

Figure 3. MixChannel algorithm. Schematic workflow of new image sample creation using spectral
channels from other images in the investigated region with certain probabilities.

Table 3. Experiments description.

No. Method Description

1 Baseline Without any data transformations or aggregations (except geometrical).
2 Baseline + height Add extra input layer with height values.

3 Channel normalization Use normalization defined in Equation (4).
4 Average-channel Aggregate images for various dates by averaging.
5 Channel-dropout Substitute random channels with zero values.
6 Color jittering Multiply each channel by a random value.

7 MixChannel Our approach.
8 MixChannel + height Add extra input layer with height values.

2.5. Height Data for Stronger Robustness

As was previously shown in [22], additional height data can significantly improve
model performance in the forest species classification task. Therefore, we conduct further
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experiments to evaluate extra height data importance for model robustness in new images
and territory. We also check the assumption that MixChannel can be efficiently combined
with other techniques to achieve the so-called synergistic effect.

For this experiment, height measurements from inventory data were converted into
raster by assigning the same height value to each pixel within an individual stand. This
layer was normalized by dividing by 100 and clipping into [0, 1] range to have the same
range as multispectral input data for a CNN model. The obtained layer was stacked to
initial input layers to add additional information to our model.

2.6. Neural Networks Models and Training Details

To evaluate the MixChannel approach on different CNN architectures, we considered
U-Net [24], U-Net++ [27], and DeeplLab [28]. For all mentioned architectures, we use
ResNet-34 [29] encoder. As a base architecture, we choose U-Net. The models’ architecture
implementation was based on opensource library [30] and used PyTorch framework [31].

For each model, we set the following training parameters. There were 50 epochs with
32 training steps per epoch and the same for validation. An Adam optimizer [32] with
a learning rate of 0.001, which was reduced after 25 epochs. Early stopping was chosen
with the patience of 10. The best model according to the validation score was considered.
The batch size was specified to be 16 with a patch size of 256× 256 pixels. These sizes
were chosen to meet memory restrictions for computing using one GPU. For each model,
the activation function for the last layer was Softmax [33]. As a loss function, categorical
cross entropy (5) was used such as in [4].

L(Xi, Yi) = −
C

∑
j=1

yij ∗ log(pij), (5)

where:
Xi is an input vector, and Yi is a corresponding categorical vector with the ground truth;
C is the number of target classes;
yij equals 1 if ith element is in jth class, and 0 otherwise;
pij is probability that ith element belongs to jth class.

The training of all the neural network models was performed at Zhores [34] super-
computer with 16Gb Tesla V100-SXM2 GPUs.

2.7. Evaluation

Cross-validation is an effective technique for machine learning model assessment [35].
It makes model evaluation more reliable. However, in most works for relatively small
datasets (where the study area can be covered by a single satellite tile), splitting for testing
and training samples is performed only within the same images. Moreover, the cross-
validation technique is not so popular for CNN tasks because it requires extra computa-
tional resources. In cases of CNN, fixed splitting into testing and training areas is often
used [36]. This study implements an image-based cross-validation approach to evaluate
CNN model robustness both for new images and territory for a relatively small dataset.

Splitting into folds for cross-validation was organized as follows (Figure 4). Test,
train, and validation territories are shown in Figure 1. Six images were used (see Table 2).
For each fold, one image was set aside for testing, while the other five images were
leveraged to train a model in only the training territory (see Figure 1). Validation was
conducted using the same five images but for the validation territory. Thus, the reported
result is reliable because it was obtained on unseen images and territories and aggregated
across five cross-validation folds.
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Figure 4. Cross-validation scheme. Each experiment (Exp) in the cross-validation procedure itera-
tively uses one image (Img) that represents the whole study area at the certain time as the test (only
test sub-area according to Figure 1). Training data for CNNs is generated from the train sub-area (see
Figure 1) of the rest images.

The model outputs masks of two target classes, which are compared with the ground
truth by pixel-wise F1-score (6). It is commonly used in remote sensing tasks [37,38]. F1-
score ranges from zero to one, where the higher value represents the better result. For each
experiment, a model was trained three times with different random seeds for averaging
model performance on different initialization of trained parameters.

F1 =
2 ∗ precision ∗ recall

precision + recall
, (6)

precision =
TP

TP + FP
, (7)

recall =
TP

TP + FN
(8)

where precision and recall are calculated according to Equations (7) and (8), respectively. TP
is True Positive (number of correctly classified pixels of the given class), FP represents False
Positives (number of pixels classified as the given class while in fact being of other class,
and FN is False Negatives (number of pixels of the given class, missed by the method).

2.8. Optimization

The MixChannel algorithm supports changing the probabilities to substitute image
channels (see Algorithm 1). Different values of probability have various effects on the
final accuracy and robustness of the trained model. Thus, a task of channel substitution
probabilities optimization appears. Optimization of these probabilities leads to better
results and will be shown in Section 3. However, it should be noted that performance
evaluation using each selected probability set requires a full model training cycle. Therefore,
it is very computation-intensive to iterate over all possible options. More precisely, it would
have exponential complexity with respect to the number of channels.

When computational resources are minimal, the baseline approach assumes that the
optimal values for all channels are the same. Then, it is possible to iterate over several
probability values and set a single global substitution probability to each channel. The ad-
vantage of this approach is that it has constant complexity with respect to the number of
image channels because it iterates only over substitution probabilities and does not explore
interactions between channels. It allows finding suboptimal probabilities but does not con-
sider that optimal probability may vary severely for some channels. This section proposes a
greedy optimization scheme that aims at finding optimal channel substitution probabilities.

Let J : H −→ R be the objective function. J maps hyperparameters H that include
model, MixChannel parameters and dataset to the resulting F1-score value.
Then, the optimization problem formulates as P? = argmax

P
J (θ?|T (S, P)).
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The greedy optimization algorithm for MixChannel probabilities tuning operates by
iteratively searching for the optimal substitution probability for each channel with other
channels’ probabilities fixed to sub-optimal values (Algorithm 2).

Algorithm 2: Greedy MixChannel Optimization
Input: S, q, n, pmax
Output: θ?, P, r
P = {0, 0, . . . , 0}, #P = C
r = 0
for iter ∈ {0, 1, . . . , n− 1} do

for c ∈ {0, 1, . . . , C− 1} do
for p ∈ {0, pmax/q, 2pmax/q, . . . , pmax} do

Ṕ = P
ṔC ←− P
ŕ = J (θ?|T (S, Ṕ))

if ŕ > r then
P = Ṕ

else
P = P

end if
r = max(r, ŕ)

end
end

end

θ?—optimal model weights found via the gradient descent algorithm for the defined
hyperparameters; q is the the number of probability quantization levels; n is the number of
iterations; pmax ≤ 1 is the is the highest considered value of probability; r is the the F1-score
of the trained model with the considered hyperparameters; v is the the number of images
in the dataset covering the same area.

The described optimization algorithm considers the effect of each channel on every
other channel. It can be efficiently applied because it has linear complexity with respect to
the number of image channels.

3. Results

This section describes the results of the experiments with MixChannel and compares
them with other approaches.

MixChannel Augmentation

Table 4 presents details of MixChannel performance. Considering the small number
of available training samples, Table 4 shows cross-validation results to increase the relia-
bility of the score. Each model is trained on five training images and is validated on the
remaining one image. Columns represent a single global substitution probability, set to
each channel. Zero probability means that the MixChannel algorithm is not applied. For a
more straightforward interpretation, results for each model aggregated to show average
and standard deviation. Bold font highlights the best result for each model. It should be
noted that a better model must have a higher F1-score but a lower standard deviation.
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Table 4. Mix-channel predictions with different channels replacing probabilities (F1-score). Bold text in each row indicates
the best result for the model.

Model Probabilities 0 (Baseline) 0.1 0.2 0.3 0.4 0.5 0.6 0.7

U-Net

Test image 0 0.8 0.762 0.79 0.8 0.77 0.813 0.815 0.795
Test image 1 0.607 0.606 0.59 0.605 0.58 0.611 0.625 0.59
Test image 2 0.86 0.829 0.83 0.81 0.835 0.84 0.826 0.825
Test image 3 0.849 0.814 0.825 0.82 0.815 0.83 0.825 0.83
Test image 4 0.675 0.733 0.76 0.745 0.725 0.771 0.775 0.77
Test image 5 0.381 0.72 0.71 0.685 0.685 0.77 0.775 0.655

Average 0.696 0.744 0.75 0.744 0.735 0.77 0.77 0.74

Standard deviation 0.17 0.073 0.082 0.076 0.086 0.077 0.069 0.09

Deeplab

Test image 0 0.804 0.793 0.784 0.803 0.817 0.805 0.806 0.813
Test image 1 0.614 0.631 0.615 0.633 0.633 0.636 0.615 0.596
Test image 2 0.855 0.811 0.824 0.829 0.832 0.833 0.829 0.828
Test image 3 0.851 0.834 0.82 0.824 0.812 0.809 0.821 0.823
Test image 4 0.697 0.76 0.761 0.789 0.774 0.771 0.777 0.771
Test image 5 0.38 0.664 0.758 0.784 0.722 0.742 0.759 0.736

Average 0.7 0.749 0.76 0.777 0.765 0.766 0.768 0.761

Standard deviation 0.167 0.076 0.069 0.066 0.069 0.066 0.0725 0.08

U-Net++

Test image 0 0.79 0.803 0.819 0.824 0.825 0.814 0.817 0.793
Test image 1 0.49 0.639 0.61 0.618 0.64 0.648 0.605 0.609
Test image 2 0.861 0.837 0.832 0.811 0.837 0.834 0.837 0.821
Test image 3 0.851 0.826 0.823 0.822 0.809 0.83 0.828 0.814
Test image 4 0.6 0.795 0.795 0.765 0.739 0.789 0.775 0.778
Test image 5 0.38 0.761 0.64 0.735 0.768 0.719 0.774 0.7

Average 0.66 0.777 0.753 0.762 0.769 0.772 0.773 0.752

Standard deviation 0.185 0.066 0.091 0.072 0.067 0.069 0.079 0.075

The baseline model shows poor performance for particular images (Figure 5). It leads
to a low average score (0.696) and a high standard deviation (0.17) (see Table 4). The model
with the same CNN architecture, namely U-Net, but trained using the proposed Mix-
Channel augmentation, beats the baseline approach confidently. For the best substituting
probability, it achieves an F1-score of 0.77 for U-Net architecture. Moreover, the model
performance for each test image became more stable. One of the outstanding results is
that, for some cases, by using MixChannel augmentation we were able to double the scores.
For example, an image with ID 5 was complex for the baseline approach (F1-score 0.381)
and after application of MixChannel augmentation the F1-score doubled and reached 0.775.
The drop of the average standard deviation from 0.17 to 0.069 proves that MixChannel
enables better model generalization. We compared different probabilities for channel sub-
stituting. For the U-Net model, the best one is 0.6. However, it is clear that the proposed
approach leads to higher results even with not the optimal substitution probability.

To evaluate the MixChannel augmentation for different CNN architectures, we con-
ducted experiments with U-Net (as the base model), DeepLab, and U-Net++. Our approach
confirms to be preferable for each architecture choice than the baseline approach trained
for the same architecture. Moreover, as shown in Table 4 the best score for each architecture
is approximately equals to 0.77. However, the best probability for channel substituting
differs: for U-Net, it is 0.6, for U-Net++ 0.1, and for DeepLab, it is 0.3. Unfortunately, we
cannot expect the optimal substitution probability to be the same for each model because
it is a hyperparameter, and therefore should be tuned for each new case. Every model
represents features differently, and augmentation affects these representations differently.
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We compared MixChannel performance with the popular solutions for multispectral
data. The first experiment was focused on the standard normalization techniques imple-
mented to enhance image spectral properties. As presented in Table 5, image normalization
did not lead to F1-score improvement (0.678) compared to the baseline (0.696) where spec-
tral values were dividing by the max possible value. Another considered approach for
multispectral augmentation was Channel-dropout. As shown in Table 6, it outperforms
the baseline model with the best F1-score of 0.753. However, it still does not achieve Mix-
Channel’s results. We also compared our approach with channel averaging. As presented
in Table 5, it did not improve the baseline model results achieved 0.672 F1-score. Color
jittering also did not outperform MixChannel (F1-score 0.685).

Table 5. MixChannel comparison with other approaches. Predictions for U-Net models (F1-score). Results of MixChannel
application are in blue. Bold text indicates the best result that was obtained by application of MixChannel with height.

Image # Baseline Normali- Average Color Channel MixChannel Baseline MixChannel
zation Channel Jittering Dropout with Height with Height

0 0.8 0.839 0.786 0.806 0.809 0.813 0.812 0.845
1 0.607 0.408 0.495 0.551 0.56 0.611 0.605 0.66
2 0.86 0.79 0.844 0.865 0.806 0.84 0.872 0.85
3 0.849 0.859 0.855 0.853 0.816 0.83 0.879 0.865
4 0.675 0.487 0.67 0.579 0.752 0.771 0.73 0.835
5 0.381 0.685 0.38 0.457 0.778 0.77 0.567 0.8

Average 0.696 0.678 0.672 0.685 0.753 0.77 0.74 0.81
(−1.8%) (−2.4%) (−1%) (+5.7%) (+7.5%) (+4.5%) (+11%)

Standard 0.17 0.175 0.179 0.162 0.089 0.077 0.12 0.069
deviation (+0.005) (+0.01) (−0.01) (−0.08) (−0.1) (−0.05) (−0.1)

Experiments with additional height data are presented in Table 5. Both for the baseline
and MixChannel approaches, it leads to the higher results. For MixChannel F1-score
improves from 0.77 to 0.81, while for the baseline, F1-score increases from 0.696 to 0.74.

Table 6. Channel-dropout predictions for U-Net with different channels replacing probabilities
(F1-score). Bold text indicates the best result that was obtained by application of Channel-dropout.

Probabilities 0 (Baseline) 0.1 0.2 0.3 0.4 0.5

Test image 0 0.8 0.802 0.802 0.809 0.794 0.761
Test image 1 0.607 0.57 0.576 0.56 0.504 0.55
Test image 2 0.86 0.814 0.81 0.806 0.791 0.775
Test image 3 0.849 0.804 0.803 0.816 0.791 0.624
Test image 4 0.675 0.752 0.753 0.752 0.756 0.737
Test image 5 0.381 0.689 0.739 0.778 0.766 0.733

Average 0.696 0.738 0.747 0.753 0.733 0.696

Standard deviation 0.17 0.086 0.081 0.089 0.1 0.0816

In this section above, we showed that the MixChannel algorithm consistently improves
model accuracy even with default substitution probabilities. Then, we showed that it is
possible to obtain better results tuning a single global probability for each channel (Table 4).
Our further experiments show that Algorithm 2 allows finding optimal substitution prob-
abilities separately for each channel. Our optimization setup is as follows. We used the
U-Net model; two algorithm iterations n; initial probability values P = {0.5, 0.5, ..., 0, 5};
the highest probability value pmax = 0.7; the number of considered probability values
v = 8. It gives us 160 model training loops in total and increased the previous best result by
1% from 0.777% to 0.791. It is a minor improvement, but it shows that MixChannel can be
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tuned further. However, for the practical application, we suggest using global probability
tuning because it can noticeably increase model accuracy in a few iterations and can be
performed in a parallel fashion.

Figure 5. Baseline prediction.

4. Discussion

Usually, in the remote sensing domain, we do not have a sufficient amount of well-
labeled training data for solving particular tasks. The main limitation in getting more data
for boreal regions is cloud coverage. Obtaining new labeled data is a time-consuming and
costly process because it is often necessary to conduct field-based measurements. Therefore,
it is practically reasonable to find techniques that will allow us to enhance the existing
image datasets in order to obtain better results in CV models with minimal additional
enforces. One of the commonly-used approaches for enhancing the dataset characteristics is
image augmentation. However, as is shown above, the standard augmentation techniques
are not able to principally improve the scores of trained on multispectral data models. Thus,
it is natural to use the distinctive feature of multispectral image data, namely different
spectral channels. We showed that generic image augmentations that include color jittering
and changing brightness do not ensure robustness for new multispectral images (Table 5).
Randomly changing color values in different channels pushes the augmented image out
of the distribution of initial images. It may lead to better model robustness against noise
but does not ensure better model generalization. As shown in [39], image augmentations
that better suit the distribution of the original dataset provide better model performance
than augmentations that push images out of distribution. However, it is challenging to
preserve the same data distribution with multispectral images because the high number of
dimensions makes it difficult to reveal the dependencies between bands.

The MixChannel augmentation algorithm proposed in this paper, in contrast, tries
to preserve the distribution of the original dataset. It cannot save the joint distributions
across all bands, but it saves every separate bands’ distribution. MixChannel substitutes
some channels of the anchor image with channels from other images of the same location.
The enormous number of possible channel mixing combinations ensures the increase of the
number of useful training data images while preserving the distribution characteristics of
the dataset. Our experiments show that MixChannel reduced both bias and variance error
of all the considered models. The results of the comparison of the predictions for testing
and validation areas obtained by baseline models and by using proposed augmentation are
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presented in Figure 6. From Figure 6 we can visually notice that the proposed approach
works better and the prediction results are closer to ground truth. The MixChannel
algorithm gains in model performance utilizing the availability of multiple images of
the exact location. Therefore, the apparent limitation of the method is the need for more
than one image at the same spot. It is suitable in such cases as remote monitoring and
continuous stationary imaging. In our investigations, we mainly focus on some image
channels substitution with channels from other images. More flexible schemes are also
can be considered. It is possible to substitute only some parts (Table 7) or patches in a
channel by mask instead of the entire channel. Substitution masks can be either based on
segmentation masks or random.

Figure 6. Predictions for testing and validation areas obtained by baseline models and by using
proposed augmentation. F1-score for the image with date 2018-08-27 (image0) is 0.8 for the Baseline
and 0.813 for MixChannel approach. F1-score for the image with date 2019-09-03 (image 5) is 0.38 for
the Baseline and 0.77 for MixChannel approach (with the same U-Net architecture).

Table 7. MixChannel for four crop parts (F1-score). Bold text indicates the best result that was
obtained by application of MixChannel for four crop parts.

Probabilities Baseline 0.1 0.2 0.3 0.4 0.5 0.6

Test image 0 0.8 0.798 0.81 0.8 0.798 0.806 0.77
Test image 1 0.607 0.595 0.594 0.624 0.585 0.61 0.616
Test image 2 0.86 0.833 0.83 0.833 0.819 0.835 0.835
Test image 3 0.849 0.828 0.823 0.823 0.82 0.815 0.823
Test image 4 0.675 0.782 0.739 0.77 0.754 0.768 0.77
Test image 5 0.381 0.597 0.674 0.615 0.758 0.71 0.72

Average 0.696 0.738 0.745 0.744 0.756 0.757 0.755

Standard deviation 0.17 0.1 0.0869 0.09 0.08 0.077 0.073

We test the MixChannel algorithm using the images with ten channels as an input
to CNN models for training them in order to distinguish two classes. In further studies,
we will examine the dependency between the number of image channels and the gain
of the MixChannel augmentation. It seems promising to test it with three-channel RGB
images. The other possible future extension of the current research is to try out more
forest species and other classification pipelines (such as a hierarchical approach for species
classification described in [22]). Other target classes of vegetation can be studied (such
as [3]). For instance, it can be applied for solving some tasks in precision agriculture
such as crop boundaries delineation [11]. Such augmentation techniques can be applied
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for hyperspectral data which is widely used for environmental tasks. The MixChannel
algorithm allows for picking different channel substitution probabilities. Our experiments
show that the optimal values are not the same for different models. Moreover, the optimal
values vary from channel to channel. In practical tasks, we suggest starting with channel
substitution probabilities equal to 0.3 for all channels. Then, depending on the available
computational resources, an optimization algorithm can be applied to tune the probabilities
if needed.

In addition to MixChannel, we show other promising ways to achieve more robust
results for CNN model predictions. Channel-dropout demonstrates significantly higher
performance than Baseline approach (Table 6, Figure 7). Although Channel-dropout does
not outperform MixChannel, it can be applied in cases when just a single multispectral
image is available. Both MixChannel and Channel-dropout approaches prevent the model
from overfitting on training images and allows extracting relevant information for better
predictions. The combination of these augmentations should be studied further. Additional
height data is also a powerful way to increase the model robustness (Table 5). It makes
the model less sensitive to shifting in spectral distribution. However, height data are not
often available.

The design of the MixChannel algorithm uses the variability of the spectrum from
image to image. It brings new information when channel values may differ for the target
object within the same part of the year. Therefore, this approach is practical for the
environmental domain where vegetation characteristics correlate in diverse locations and
different years but do not match exactly. In contrast, artificial objects such as buildings
remain the same distribution over time and will not benefit in the same way from the
MixChannel algorithm. Another limitation arises from the assumption that the objects
of interest have no significant changes across the image set. For instance, any crop will
differ too much before and after harvesting. Consequently, it is not recommended to apply
MixChannel when images for the location are spread across the year, and a CNN model is
not supposed to handle such massively different data.

Figure 7. Channel-dropout predictions.

5. Conclusions

This work examines the problem of inconsistency of convolutional neural network
generalization in the remote sensing domain. The problem occurs when the training set
and the test set of images are from different locations or times of the year. Image explo-
ration shows that even the exact locations at similar dates, but different years, can vary
dramatically. It leads to model overfitting on the training set and a drop in performance
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dramatically on the test set. This problem is crucial when the size of the training set is
small. This paper proposes and evaluates a novel image augmentation approach called
MixChannel. MixChannel uses multiple multispectral images of the exact location at vari-
ous dates of the vegetation period to augment the training set. MixChannel was applied
to the task of forest types classification in the Northern regions of Russia. This approach
shows a noticeable increase in performance with all the tested convolutional neural net-
works, namely U-Net, Deeplab, and U-Net++. In comparison with other augmentation and
preprocessing techniques popular for multispectral images, MixChannel provides better
generalization. It is superior in both prediction bias and variance on the unseen test images.
The average gain over the baseline solution is 7.5% from 0.696 F1-score to 0.77, while the
average variance drops more than twice from 0.17 to 0.077. Further improvement was
achieved by adding auxiliary heights data, giving the overall accuracy of 0.81. It proves
that the proposed approach can be combined with other techniques to get the synergy
effect. Our study shows that MixChannel is a promising approach that enables training
more precise models for remote sensing in the environmental domain.
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