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Power‑law scaling to assist with key 
challenges in artificial intelligence
Yuval Meir1,3, Shira Sardi1,3, Shiri Hodassman1,3, Karin Kisos1, Itamar Ben‑Noam1, 
Amir Goldental1 & Ido Kanter1,2*

Power-law scaling, a central concept in critical phenomena, is found to be useful in deep learning, 
where optimized test errors on handwritten digit examples converge as a power-law to zero with 
database size. For rapid decision making with one training epoch, each example is presented only 
once to the trained network, the power-law exponent increased with the number of hidden layers. 
For the largest dataset, the obtained test error was estimated to be in the proximity of state-of-
the-art algorithms for large epoch numbers. Power-law scaling assists with key challenges found in 
current artificial intelligence applications and facilitates an a priori dataset size estimation to achieve a 
desired test accuracy. It establishes a benchmark for measuring training complexity and a quantitative 
hierarchy of machine learning tasks and algorithms.

Phase transition and critical phenomena have been the central focus of statistical mechanics, since the beginning 
of the second half of twentieth century. The thermodynamic properties near the critical point of second-order 
phase transitions were explained using power-law scaling and hyperscaling relations, depending on the dimen-
sionality of the system1,2. The concept of power-law implies a linear relationship between the logarithms of two 
quantities, that is, a straight line on a log–log plot. It arises from diverse phenomena including the timing and 
magnitude of earthquakes3, internet topology and social networks4–6, turbulence7, stock price fluctuations8, word 
frequencies in linguistics9 and signal amplitudes in brain activity10.

Deep learning algorithms are found to be useful in an ever-increasing number of applications, including the 
analysis of experimental data in physics, ranging from classification problems in astrophysics11 and high-energy 
physics data analysis12 to imaging in noise optics13 and learning properties of phase transitions14. This work 
indicates that deep learning algorithms behave asymptotically similar to critical physical systems. A basic task 
in deep learning is supervised learning, where a multilayer network (e.g. Fig. 1a) learns to produce the correct 
output labels to the input data based on a training database of examples, input–output pairs. A simple example 
of this is the large Modified National Institute of Standards and Technology (MNIST) database consisting of 
60,000 training handwritten digits and 10,000 test digits15, without any data extension16,17. The weights of the 
selected feedforward network are adjusted using back-propagation algorithm, which is a gradient-descent-based 
algorithm, to minimize the cost function, thereby, quantifying the mismatch between the current and desired 
outputs15.

The performance of the algorithm is estimated using test error, measured on a dataset that was not observed 
during the training. The test error is expected to decrease with increasing information and increasing dataset size, 
and to vanish asymptotically in a sufficiently complex network, e.g. enough number of weights, hidden layers and 
units. The disappearance of the test error with a power-law scaling is the focus of our study, which sets a priori 
estimation of the required dataset size to achieve the desired test accuracies. The robustness of the power-law 
scaling phenomenon is examined for training with one and many epochs, that is, for the number of times each 
example is presented to the trained network, as well as for several feedforward network architectures consisting 
of a few hidden layers and hyper-weights18, that is, input crosses. The result of the optimized test errors with one 
training epoch is in the proximity of state-of-the-art algorithms consisting of a large number of epochs, which 
has an important implication on the rapid decision making under limited numbers of examples19,20, which is 
representative of many aspects of human activity, robotic control21, and network optimization22. The current 
applicability of the asymptotic test accuracy to such realities using an extremely large number of epochs is 
questionable. This large gap between advanced learning algorithms and their real-time implementation can be 
addressed by achieving optimal performance based on only one epoch. Finally, the comparison of the power-law 
scaling, exponents and constant factors, stem from various learning tasks, datasets, and algorithms is expected 
to establish a benchmark for a quantitative theoretical framework to measure their complexity23.
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The first trained network that is employed comprises 784 inputs representing 28 × 28 pixels of a handwritten 
digit in the range [0, 255] with additional 10,000 input crosses per hidden unit (see Supplementary Appendix 
A), two hidden layers comprising 100 units each, and 10 outputs representing the labels (Fig. 1a). The presented 
dataset of examples for the algorithm involves the following initial preprocessing and steps (see Supplementary 
Appendix A): (a) Balanced set of examples: The small dataset consists of an equal number of random examples 
per label24. (b) Input bias: The bias of each example is subtracted and the standard deviation of its 784 pixels is 
normalized to unity. (c) Fixed order of trained labels: In each epoch, examples are ordered at random, conditioned 
to the fixed order of the labels. (d) Microcanonical set of input crosses: Each hidden unit in the first layer receives 
the same number of input crosses, in which each cross comprises two input pixels. (e) Forward propagation: A 
standard sigmoid activation function is attributed to each node25 and in the forward propagation the accumula-
tive average field is dynamically subtracted from the induced field on each node of the hidden layers.

Results
Momentum strategy: power‑law with many epochs.  The commonly used learning approach is the 
backpropagation (BP) strategy given by:

where a weight at discrete time-step t, Wt, is modified with a step-size η towards the minus sign of the gradient 
of the cross entropy cost function, C,

where ym stands for the desired labels of the mth examples, aLm stands for the current 10 outputs of the output 
layer L, and the first summation is over all M training examples. The second summation is the overall weights 
of the network, and η and α are constants defined in Eqs. (1) and (3), respectively. Here we used the momentum 
strategy26:
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Figure 1.   Power-law scaling for the test error with many epochs. (a) Scheme of MNIST handwritten digit, 
which is digitized and fed into the trained network including input crosses (red background). (b) Optimized 
test error, ǫ, using the architecture in (a), for limited datasets comprising 9, 15, 30 and 60 examples/label and 
their standard deviations obtained from 50 samples. Momentum strategy (light-blue circles) and advanced, 
i.e. accelerated, strategy (black triangles). (c) Test error for soft committee decision with Nc = 50 (Eq. 8). (For 
details of the parameters, see Supplementary Appendix B).
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where the friction, μ, and the regularization of the weights, 1-α, are global constants in the region [0, 1] and η 
is a constant representing the learning rate. In addition there are biases per node associated with the induced 
field on each node

We minimize the test error for each dataset size over the five parameters of the algorithm ( µ,α, η,Amp1,Amp2) 
(where Ampi are the amplitudes associated with each hidden layer in the forward propagation, see Supplemen-
tary Appendix A). The minimized averaged test error, ǫ , for number of examples per label in the range [9,120] 
indicates a power-law scaling

with c0 ∼ 0.65, ρ ∼ 0.50 (Fig. 1b), and its extrapolation to the maximal dataset, 6,000 examples per label, indicates 
a test error of ǫ ∼ 0.008 . Note that the saturation of the minimal test error is achieved after at least 150 epochs 
(see Supplementary Appendix B).

Accelerated strategy: power‑law with many epochs.  An accelerated BP method is based on a recent 
new bridge between experimental neuroscience and advanced artificial intelligence learning algorithms, in 
which an increased training frequency has been able to significantly accelerate neuronal adaptation processes24. 
This accelerated brain-inspired mechanism involves time-dependent step-size, ηt , associated with each weight, 
such that coherent consecutive gradients of weight, that is, with the same sign, increase the conjugate η . The 
discrete time BP of this accelerated method is summarized for each weight by

where A and β are constants, different for each layer, representing the amplitude and gain, respectively. In addi-
tion, there are biases per node similar to Eq. (4) where η0 is replaced by time-dependent ηtb

The minimization of the test error of this accelerated method over its 11 parameters 
(A1,A2,A3,β1,β2,β3,µ,α, τ ,Amp1,Amp2) (see Supplementary Appendix A) is a computational heavy task. It 
results in the same saturated test error as that for the momentum strategy (Fig. 1b), however, with only 30–50 
epochs owing to its accelerated nature.

The test error is further minimized using a soft committee decision based on several replicas, Nc, of the 
network, which are trained on the same set of examples but with different initial weights. The result label, j, for 
the test accuracy is given by

where aLj,s stands for the value of the output label j in output layer L and in replica s (j = 0, 1, …0.9). The minimized 
test error of the soft committee of the momentum strategy is ǫ ∼ 0.007 with ρ ∼ 0.52(Fig. 1c), which is in close 
agreement with state-of-the-art achievements obtained using deep neural networks27.

Power‑law with one epoch.  A similar minimization of the test error, ǫ, is repeated for one epoch, where 
each example in the training set is presented only once as an input to the feedforward network (Fig. 1a). For the 
momentum strategy it is found that ρ ∼ 0.49 and its extrapolation to the maximal dataset (i.e., 6,000 examples 
per label) results in ǫ ∼ 0.021 (Fig. 2a), and for the brain-inspired accelerated strategy in ǫ ∼ 0.017 and ρ ∼ 0.49 
(Fig.  2b). For the soft committee of the momentum strategy it is found that ǫ ∼ 0.015 with slope, ρ ∼ 0.48 
(Fig. 2a). The test error is reduced even further using soft committee of the accelerated strategy, where ǫ ∼ 0.013 
with slope, ρ ∼ 0.49 for 6,000 examples per label (Fig. 2b). Results of one epoch are in the proximity of the 
test error using many epochs, where the best test error for many epochs ǫ ∼ 0.007 has to be compared with 
ǫ ∼ 0.013 for one epoch. These results strongly indicate that rapid decision making, which is representative of 
many aspects of human activity, robotic control28, and network optimization22, is feasible.

Power‑law with several hidden layers.  The robustness of the power-law phenomenon for the test error 
as a function of dataset size (Figs. 1, 2) is examined for similar feedforward networks without input crosses, and 
with up to three hidden layers with 100 hidden units each (Fig. 3a). For one hidden layer, the minimization of 
ǫ for one epoch and for the momentum strategy indicates ρ ∼ 0.3, and its extrapolation to 6,000 examples per 
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label results in ǫ = 0.053 (Fig. 3b). Using two layers the exponent increases to ρ ∼ 0.34 with ǫ = 0.049 (Fig. 3c), 
and for three layers to ρ = 0.385 with ǫ = 0.048 (Fig. 3d). These results confirm the existence of the power-law 
phenomenon in a larger class of feedforward networks and different learning rules as well as the possible increase 
of the power-law exponent with increasing number of hidden layers (Fig. 3b–d). Asymptotically for very large 
datasets, increasing the number of hidden layers is expected to minimize ǫ , since ρ increases. However, for a lim-
ited number of examples, one layer minimizes ǫ (Fig. 3b–d), as the constant c0 in Eq. (5) is smaller for one layer. 
Particularly, the power-law scaling indicates that the crossing of ǫ between one and two layers occurs at ∼ 480 
examples per label, whereas the crossing between two and three layers occurs at ∼ 4100 examples per label. This 
trend stems from the limit of small training datasets and one training epoch, which prevents enhanced optimi-
zation of the many more weights of networks with more hidden layers. The asymptotic test error, ǫ = 0.049, of 
a network with two hidden layers (Fig. 3c) has to be compared with ǫ ∼ 0.021 which is achieved for the same 
architecture with additional input crosses (Fig. 2a). The significant improvement of ∼ 0.028 is attributed to the 
additional input crosses. This gap also remains under soft committee decision where for two layers without 
input crosses and the maximal dataset, 6,000 examples per label, ǫ ∼ 0.038 (Fig. 4a), which is much greater than 
ǫ ∼ 0.015 (Fig. 2a). We note that ρ ∼ 0.31 (Fig. 4a) is expected to slightly increase beyond ρ ∼ 0.34 (Fig. 3c) 
using better statistics. 

Discussion
The power-law scaling enables the building of an initial step for theoretical framework for deep learning by feed-
forward neural networks. A classification task, which is characterized by a much smaller power-law exponent, 
ρ, is categorized as a much harder classification problem. It demands a much larger dataset size to achieve the 
same test error, as long as the constant c0 (Eq. (5)) is similar. Similarly, one can compare the efficiency of optimal 
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Figure 2.   Power-law scaling for the test error with one epoch. (a) Test error and its standard deviation as a 
function of number of examples per label for one epoch only where the trained network is the same as in Fig. 1a. 
Results for the momentum strategy (orange) and for the soft committee, Nc = 50 , (blue), where each point is 
averaged over at least 100 samples. (b) Similar to (a) using the accelerated BP strategy, Eqs. (6) and (7). (For 
details of the parameters, see Supplementary Appendix C).
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learning strategy by two different architectures for the same dataset and number of epochs (Figs. 2, 3) or a com-
parison of two different BP strategies for the same architecture (Fig. 1). Our work calls for the extension and the 
confirmation of the power-law scaling phenomenon in other datasets23,29–32, which will enable to build a hierarchy 
among their learning complexities. It is especially interesting to observe whether the power-law scaling will lead 
to a test error in the proximity of state-of-the-art algorithms for other classification and decision problems as well.

The observation in which the test error with one training epoch is in the proximity of the minimized test 
error using a very large number of epochs paves way for the realization of deep learning algorithms in real-time 
environments, such as tasks in robotics and network control. A relatively small test error, for instance less than 
0.1, can be achieved for a small datasets consisting of only a few tens of examples per label only.

Finally, under the momentum strategy and many training epochs, the minimal saturated test errors of one, 
two, and three hidden layers and without input crosses are found to be very similar (Fig. 4b). The test error, 
ǫ ∼ 0.017 , at the maximal dataset size and ρ ~ 0.4 has to be compared to 0.008 with additional input crosses 
and ρ ∼ 0.5 (Fig. 1b). For three layers, ǫ is slightly greater than for one or two layers, but within the error bars. 
This gap diminishes when the optimized test error for the three layers is obtained under an increased number 
of epochs, and through the construction of weighs one can show that ǫ of two layers is achievable with three 
layers(see Supplementary Appendix F). Furthermore, the similarity of ǫ , independent of the number of hidden 
layers and for many training epochs (Fig. 4b), is supported by our preliminary results, wherein the average ǫ of 
one hidden layer with input crosses and many training epochs is comparable with the one obtained with two 
hidden layers (Fig. 1b). These results may question the advantage of deep learning based on many hidden lay-
ers in comparison to shallow architectures. It is possible that this similarity in the test errors, independent of 
the number of hidden layers, is either an exceptional case or a larger number of hidden layers enables an easier 
search in the BP parameters space, which achieves proximity solutions of the minimal test error. However, for 
the same examined architectures and for one epoch only, the test error and the exponent of the power-law are 
strongly dependent on the number of hidden layers (Fig. 3).
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Figure 3.   Power-law scaling for the test error with several hidden layers and one epoch. (a) Scheme of the 
trained network on the MNIST examples consisting of three hidden layers having each 100 units and an output 
layer. In the case of one/two hidden layers only, two/one hidden layers are removed. (b) Minimized test error for 
30, 60, 120, and 240 examples/label for one hidden layer (a) using the momentum strategy and one epoch only. 
The average of each point and its standard deviation are obtained from at least 100 samples. (c) Similar to (b) 
with two hidden layers in (a). (d) Similar to (b) with three hidden layers in (a). (For details of the parameters, 
see Supplementary Appendix D).
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