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ABSTRACT: Liquid-phase transmission electron microscopy (TEM) has
been recently applied to materials chemistry to gain fundamental under-
standing of various reaction and phase transition dynamics at nanometer
resolution. However, quantitative extraction of physical and chemical
parameters from the liquid-phase TEM videos remains bottlenecked by the
lack of automated analysis methods compatible with the videos’ high noisiness
and spatial heterogeneity. Here, we integrate, for the first time, liquid-phase
TEM imaging with our customized analysis framework based on a machine
learning model called U-Net neural network. This combination is made
possible by our workflow to generate simulated TEM images as the training
data with well-defined ground truth. We apply this framework to three typical
systems of colloidal nanoparticles, concerning their diffusion and interaction, reaction kinetics, and assembly dynamics, all resolved
in real-time and real-space by liquid-phase TEM. A diversity of properties for differently shaped anisotropic nanoparticles are
mapped, including the anisotropic interaction landscape of nanoprisms, curvature-dependent and staged etching profiles of
nanorods, and an unexpected kinetic law of first-order chaining assembly of concave nanocubes. These systems representing
properties at the nanoscale are otherwise experimentally inaccessible. Compared to the prevalent image segmentation methods, U-
Net shows a superior capability to predict the position and shape boundary of nanoparticles from highly noisy and fluctuating
backgrounda challenge common and sometimes inevitable in liquid-phase TEM videos. We expect our framework to push the
potency of liquid-phase TEM to its full quantitative level and to shed insights, in high-throughput and statistically significant fashion,
on the nanoscale dynamics of synthetic and biological nanomaterials.

■ INTRODUCTION
The recent proliferation of liquid-phase transmission electron
microscopy (TEM) studies has offered great opportunities to fill
knowledge gaps on nanoscale structural and functional
dynamics by generating massive amounts of multidimensional
data, which necessitate methods to extract quantitative
information from them. On one hand, compared with ensemble
measurements (e.g., small-angle X-ray scattering, UV−vis),
liquid-phase TEM captures real-space videos at the nanometer,
or sometimes atomic, resolution, which provides insights on a
wide range of phenomena that are otherwise elusive. For
example, by taking TEM videos of nanoparticle growth in
solution, researchers have elucidated various growth mecha-
nisms, such as nucleation,1 oriented attachment,2,3 and
coalescence.4 Similarly, nanoparticle assembly5 and superlattice
crystallization pathways6 have been studied by liquid-phase
TEM, where kinetically stable intermediates were captured to
understand phase transition. On the other hand, liquid-phase
TEM videos are huge data files consisting of temporal stacks of
spatial images. With the advent of fast detectors capable of
capturing hundreds to thousands of frames per second,5 the size
of liquid-phase TEM videos grows ever rapidly. Methods for
automated image processing and analysis, with high tolerance to
noise and high precision, thus become instrumental to

converting raw TEM images of spatial intensity profiles to
chemical and physical properties, and thus to materials design
rules.
However, achieving automated and robust processing of

liquid-phase TEM videos is still in its infancy, due to technical
challenges associated with low quality videos of spatial
heterogeneity, which as we argue below are often unavoidable
and generic to liquid-phase TEM. First, the liquid layer and
window (e.g., graphene,7,8 silicon nitride,9,10 graphene oxide11)
of a vacuum-sealed liquid chamber interact with incident
imaging electrons,12 making the TEM contrast between the
objects of interest and background lower than that in the TEM
images taken at dry and windowless conditions. Second,
numerous studies have showed that the imaging electrons can
cause artifacts on the nanoscale dynamics by modifying the
shape, interaction, and chemical stability of samples due to
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effects such as ionization and radiolysis.13−16 As a result, using
low dose rates emerges as a standard protocol in liquid-phase
TEM studies.17 Shot noise of a Poisson nature increases with
lowered dose rates,18 which together with the low image contrast
makes liquid-phase TEM videos often with a low signal-to-noise
ratio (SNR). For the low SNR TEM videos, conventional image
analysis algorithms based on single intensity threshold easily
gives false “segmentation” (identifying features from the
background). Recently developed advanced segmentation
algorithms such as distance regularized level set evolution,19

intelligent scissors,20 and graph cuts21 have improved perform-
ance but require frequent human supervision on tasks like input
parameter optimization, which compromises the high-through-
put advantage of computerized data analysis.
Here we draw upon the great success of machine learning in

applications, such as facial recognition,22 self-driving automo-
bile,23 biomedical image diagnosis,24 and the prominent
example of atomic level structure analysis on scanning
transmission electron microscopy (STEM) images,25,26 and
apply machine learning for the first time to analyzing liquid-

phase TEM videos. Compared with current liquid-phase TEM
analysis methods,27,28 the key advantage of machine-learning
methods is that no intensity threshold or input parameters other
than the rawTEMvideos themselves are needed. Specifically, we
use the U-Net convolutional neutral network (NN) among the
many machine learning algorithms, which was purposed in 2015
by Olaf Ronneberger and co-workers.29 This method does not
require hand-crafted features or predetermined input parame-
ters and works by automatically learning a hierarchy of
increasingly complex features directly from the training data.
U-Net has made major breakthroughs in identifying irregular
cellular features from gray scale optical microscopy images.30 It
has not yet been applied to TEM images or liquid-phase TEM
videos, which require a customized workflow we present here,
particularly on the generation and choice of training data with
well-defined ground truth. We show as proof-of-concept three
types of nanoscale dynamics, including motion, chemical
reaction, and self-assembly of nanoparticles. We extract a series
of parameters from the analyzed TEM videos to reveal: (i) a
highly anisotropic interparticle interaction landscape based on

Figure 1. U-Net-based image segmentation for liquid-phase TEM videos. (a) The workflow of segmentation for time-lapse TEM images through U-
Net. (b) Representative images showing the data flow in U-Net models. From left to right: Simulated TEM images as inputs for training (nanorods,
triangular nanoprisms, concave nanocubes, bipyramids), images obtained at different convolution layers (the middle 6 columns), and the prediction
after training. (c) Convergence of the prediction results to ground truth over epochs. The red color in the images denotes deviation from ground truth.
Here one epoch corresponds to one round of training cycles for all the training images (800 in this example). Training sets used are the simulated
liquid-phase TEM images at 1 e−·Å−2·s−1 (top) and 10 e−·Å−2·s−1 (bottom), respectively. (d) Plot of intersection-over-union (IoU) during training
over number of epochs and dose rates. A total of 10 models are trained to account for 10 different dose rates (training data simulated at the
corresponding dose rates). Scale bars: 20 nm in (a); 20 nm, 100 nm, 200 nm, 100 nm from top to bottom in (b); and 100 nm in (c).
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the trajectory sampling of around 300,000 pairs of interacting
nanoprisms, (ii) curvature-dependent and staged etching
profiles of gold nanorods from the complete tracking of
nanoparticle boundaries, and (iii) thermodynamically favored
structural motifs and kinetic laws of chain formation from the
self-assembly of concave nanocubes. These three systems, all
new experimental results themselves, cover representative
scenarios and challenges in the analysis of liquid-phase TEM
videos. Notably, for a TEM video of hundreds of frames, it only
takes < 1 min for a trained NN model to finish segmentation,
which fully embraces the emerging paradigm shift to automated
imaging and big data analysis in the field of liquid-phase TEM as
well as the related disciplines where new knowledge is being
learned, which is only possible based on statistical mechanics-
based analysis of a significant data set.

■ RESULTS AND DICUSSIONS
The Segmentation Workflow for Liquid-Phase TEM

Videos UsingU-Net. In this work, we focus on using U-Net for
the first and foremost step of image analysissegmentationto
delineate objects of interest in the liquid-phase TEM videos
(Figure 1a), though U-Net can also be extended to other pixel

classification tasks. We recognize that one critical step in using
U-Net for liquid-phase TEM videos is the generation and choice
of training data. In previous applications, annotated (mostly
manually) experimental images were used as training data.30,31

However, liquid-phase TEM videos taken at low dose rates have
low SNR, making annotations difficult even for human experts.
Inspired by machine-learning-based analysis of STEM im-
ages,25,26 we present a workflow to create a huge, in principle
unlimited, number of training data sets consisting of simulated
liquid-phase TEM images. As shown in Figure S1 and Figure 1b
(the leftmost column), the simulated liquid-phase TEM images
are generated by randomly placing nanoparticles on a substrate.
The nanoparticles are modeled as polyhedrons in a three-
dimensional (3D) liquid chamber (Machine Learning Work-
flow, Supporting Information). The pixel intensity in the
simulated image is calculated as follows to resemble the contrast
and background in an experimental liquid-phase TEM image.
First, Beer’s law32 is applied to obtain the generic TEM contrast
of the sample due to sample−electron interaction, following

( )expI
I i

ttr

in

i

i
= −∑

λ , where Iin is incident beam intensity, Itr is the

beam intensity after interacting with the sample, and ti and λi are

Figure 2. Statistical analysis of the diffusion, structure, and interaction landscape of gold triangular nanoprisms imaged by liquid-phase TEM, enabled
by accurate segmentation based on the trained U-Net model. (a) Raw liquid-phase TEM snapshot of gold triangular nanoprisms taken at a dose rate of
3.7 e−·Å−2·s−1 in a SiNx liquid chamber (see Materials and Methods in Supporting Information for experimental details). (b) Histogram of the pixel
intensity of the liquid-phase TEM image (a) which shows a single-peaked distribution (black line) without a clear valley differentiating the nanoprisms
and the background. Insets: Binarized images based on different single intensity thresholds as denoted by the arrows. (c) Binarized images of (a) by
different combinations of Gaussian blur and thresholding by built-in functions in MATLAB. (d) Tracked nanoprisms (the same color denoting the
same nanoprism) in time-lapse liquid-phase TEM images based on U-Net predictions. (e) Temporal trajectories of the tracked centroid positions of
nanoprisms colored by their mean-squared displacement (MSD) at a time interval of 10 s. (f) Natural logarithm of the relative probability ln(P/P0) of
displacements of the tracked nanoprisms (d) at a time interval of 0.77 s with a parabola fitting at small displacements and a linear fitting at large
displacements, where P denotes the probability of a displacement of d and P0 denotes the probability of d = 0. Dash lines denote the extended fitting
results. (g) The 2D distribution map of the occurrence of other nanoprisms when one nanoprism is positioned at the coordinate center. (h) The radial
distribution function and “effective” interaction landscape based on the Boltzmann inversion rule as derived from (g). Dash lines in the plot correspond
to data from the dashed box in (g), and solid lines correspond to data from the solid box in (g). (i) The 2D histogram (right) of the relative orientations
(defined by θ1 and θ2 combined, left) of two nanoprisms at a particle center-to-center distance r < 200 nm. Scale bars: 200 nm in (a) and (e); 100 nm in
(g).
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the thickness and inelastic mean free path of species i (e.g.,
nanoparticles, solvent, window) along the beam path. Next,
Poisson noise is superimposed to consider the noise coming
from the electron counting process (i.e., shot noise) that scales
with dose rates, and Gaussian noise is applied to account for all
other noises from the electronic devices and processes after the
shot noise in a detector (Figure S1a). Last, a modulation transfer
function measured from an experimental liquid-phase TEM
image of a blank liquid sample is further superimposed to the
simulated TEM image to reproduce the pixel−pixel intensity
correlation (the visible “graininess” in a TEM image, Figure S2).
Using this workflow, we find that fewer than 1000 simulated
TEM images are sufficient to validate training for the variety of
nanoparticle shapes presented in Figure 1b. These nanoparticles
cover the different geometric shapes one might encounter in
TEM analysis, from two-dimensional (2D) (nanoprisms), three-
dimensional (3D) convex (nanorods, bipyramids) to 3D
concave (concave nanocubes) polygons. The workflow works
for all these nanoparticles because the generation of simulated
images poises in principle no limits on the object size or shape.
This workflow of generating training data is now posted on
GitHub as open-access codes (see Supporting Information).
The U-Net NN has a symmetric encoder-decoder architec-

ture as shown in Figure 1a and Figure S3. The down-sampling
process allows the NN to identify the features at different scales,
while the up-sampling process reconstructs the extracted
features at the original image scale30 to complete the forward
propagation. The result is compared with ground truth and then
proceeds reversely to the beginning to complete the back-
propagation and update every parameter inside the U-Net
model; this concludes one training cycle. We find that the
number of epochs needed for sufficient training depends on the
SNR (as determined mostly by the electron dose rate) of the
input images. For images of high SNR (Figure 1c bottom, 10 e−·
Å−2·s−1), the IoU, namely the fraction of the particle prediction
matching with ground truth,33 increases rapidly from 0.22 to
0.92 after the first epoch, while images of a low SNR (Figure 1c
top, 1 e−·Å−2·s−1) take 15 epochs to reach at a similar IoU
(0.90). We plot the IoU evolution during training as a function
of dose rates and number of epochs (Figure 1d). Within 15
epochs of training, the U-Net model is capable of high-precision
segmentation unless the SNR of the input images is too low (at a
dose rate lower than 1 e−·Å−2·s−1) (Figures S4 and S5). Next,
experimental liquid-phase TEM videos are fed to the trainedNN
without preprocessing, which yield time series of pixel-level
probability maps representing the likelihood of each pixel
belonging to the objects of interest, as the prediction images for
further analysis.
Based on this unified U-Net segmentation workflow, we

present three different systems as below. In each system, we
discuss the challenges in segmentation using conventional
threshold-based algorithms and how our U-Net method
overcomes these challenges. Meanwhile, each system represents
one type of liquid-phase TEM studies, including nanoparticle
diffusion and interaction, chemical reaction, and self-assembly,
demonstrating the potency and versatility of our method.
System 1: Mapping the Interaction Landscape of Gold

Triangular Nanoprisms. In the first system, we focus on
mapping an effective interaction landscape at the nanoscale,
which governs fundamentally the phase behaviors of nanosized
objects in the solution but has remained challenging to model or
predict due to nonadditive multiscale coupling effects.34

Specifically, we study a model system of gold triangular

nanoprisms35 with anisotropic shapes to show how U-Net-
based segmentation enables interaction mapping. The small
thickness of the nanoprisms (7.5 nm) and the low dose rate (3.7
e−·A−2·s−1) used to minimize beam artifacts lead to low SNR in
the raw liquid-phase TEM images (e.g., Figure 2a). As a result,
the typical intensity histogram of the images exhibits only a
single peak (Figure 2b). In conventional intensity threshold-
based algorithms, a threshold at the valley between two intensity
peaks of the histogram is chosen to divide the image pixels into
background and foreground (objects of interest). In this liquid-
phase TEM image, the intensities of background and foreground
cannot be distinguished, thereby resulting in blurry or incorrect
segmentation regardless of the choice of thresholds (insets in
Figure 2b). Alternative tricks such as Gaussian blur can reduce
the background noise and make more structured prediction
(Figure 2c, right), but the segmented boundaries are also blurred
during this process, resulting in rounded corners and merged
shapes. Other smart thresholding algorithms provided by
MATLAB, such as automatic global threshold36 (Figure 2c,
top) and adaptive threshold37 (Figure 2c, bottom), also show
insufficient segmentation. In contrast, when we use the same
liquid-phase TEM image as input for the trained U-Net, the
predicted image is significantly improved in determining the
probability of the pixels belonging to nanoprisms (Figure 2d).
The predicted image is further binarized given the better-defined
intensity histogram (Figure S5h). The centroid positions and
boundaries of the nanoprisms (∼50 particles per frame) are
extracted to track the continuous motions of nanoprisms
(Figure 2e, Movie S1).
Statistical analysis of the trajectories shows the presence of

two components in the motions of nanoprisms. The logarithm
of displacement probability of the nanoprisms (∼28,000
displacements with a time interval Δt of 0.77 s) is fitted with a
parabola trend at a small displacement (d < 4 nm) and a linear
relationship at large displacement (Figure 2f). The parabola
region corresponds to a Gaussian-distributed Brownian motion
with a diffusion coefficient of 0.5 nm2·s−1, while the linear region
suggests an exponential tail which could be attributed to
hopping of the nanoprisms, consistent with the adsorption and
desorption of nanoparticles to the SiNx substrate as discussed in
previous studies.38 Such a two-component fitting has been
observed in the motions of micron-sized objects in a crowded
environment imaged by optical microscopy as they are
temporarily confined by the surrounding particles.39−42 Here,
we retrieve similar behaviors at the nanoscale as the nano-
particles are partially bounded by the substrate.
Meanwhile, the smooth boundaries of the nanoprisms tracked

by our U-Net enable us to analyze the stable motifs of two
interacting nanoprisms and measure an effective interaction
landscape at nanometer resolution. In Figure 2g, we enumerate
all the nanoprism pairs (around 300,000) in the TEM video, put
one nanoprism in the pair at the coordinate center, and plot the
counts of a pixel (x, y) in the 2D plane occupied by the other
nanoprism in the pair (Figure S6). The as-obtained 2D
distribution map shows a high-occurrence, short-range structure
of two nanoprisms in the side-by-side motif, which agrees with
earlier simulations on the densest packing of triangular
nanoprisms.43,44 From the 2D distribution, we map the radial
distribution function g(r) along two different directions as
marked in Figure 2g. Clearly g(r) exhibits an anisotropy (Figure
2h), differing from the radially symmetric g(r) in the gold
nanorod case studied earlier.35 Further analysis of a different 2D
histogram on the relative orientation of two close nanoprisms (r
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< 200 nm) (Figure 2i) confirms that the nanoprisms are
preferentially positioned in the side-by-side configuration
(Figure 2i, upper right). The other slightly high probability
motif corresponds to a sawtooth configuration where the two
tips of two nanoprisms connect with a 120° bond angle (Figure
2i, center). This sawtooth configuration can be attributed to
balanced van der Waals attraction and electrostatic repulsion we
previously discussed.17 Finally, based on the Boltzmann
inversion rule, namely more populated states corresponding to
lower free energies in equilibrium, we map an effective
interaction landscape. As shown in Figure 2h, the energy valley
occurs at different locations along different directions of the
nanoprisms, with a net attraction strength of −0.55kBT (r = 100
nm) perpendicular to the side of the center nanoprism (dashed
box in Figure 2g) and of−0.39kBT (r = 125 nm) along the tip of
the center nanoprism (solid box in Figure 2g). Real-space
imaging of trajectories allows for mapping anisotropic
interaction.
Note that our measured interaction landscape is phenom-

enological and can be a combined result contributed by factors
such as entropic effects that favor closest packing of nanoprisms,
and enthalpic effects (e.g., van der Waals attraction, electrostatic
repulsion, steric repulsion of the surface ligands). Nevertheless,
the direct measurement of the net interparticle interaction by
delineating the boundaries of anisotropic nanoparticles via U-
Net-based segmentation serves as a general route for arbitrarily
shaped or solvated nanosized objects. The identification of

motifs (i.e., different configurations in Figure 2i) provides
essential guidance for designing more sophisticated assembly
structures from anisotropic nanoparticles. Our demonstrated
tracking capability of a massive number of anisotropic
nanoparticles not only enables statistical mechanics-based
analysis of the energetics of the system but also reveals the
dynamics of individual nanoparticles, which can be potentially
useful for understanding questions ranging from diffusions in
geometrically or chemically confined environment,39 non-
equilibrium self-propulsion45 and collective motion46 as driven
by external fields, to aggregations of heterogeneous and
polydisperse systems such as micro- and nanoplastics.47,48

System 2: Curvature-Dependent, Staged Etching of
Gold Nanorods. In the second system, we focus on the
chemical reaction kinetics of nanoparticles captured by liquid-
phase TEM, where mechanisms such as existence of non-
equilibrium intermediates,49 nucleation,50 growth,51 and
corrosion52,53 have been suggested, and our U-Net method
pushes for complete quantitativeness. We choose an established
system of gold nanorods dispersed in FeCl3 solution as a
representation of studies on beam-triggered nanoparticle
transformation.8,54 Movie S2 and Figure 3a show gold nanorods
are etched over time in a graphene liquid cell, through a complex
redox reaction network as discussed previously.55−57 Although
this experiment does not require low-dose imaging because
electrons are used as the reactant, leading to liquid-phase TEM
video of high SNR, conventional thresholding-based segmenta-

Figure 3. Multiobject tracking of particle boundaries using U-Net to reveal the curvature-dependent, staged etching dynamics of gold nanorods
captured by graphene liquid cell TEM. (a) Time-lapse liquid-phase TEM images overlaid with nanorod boundaries predicted by the trained U-Net
model (each color denoting a different nanorod). (b) The intensity histograms of all the four gold nanorods (coloring matching with a) and the
background (gray) in the TEM images as tracked by U-Net. (c) Nanorod boundaries colored to their local surface curvatures during etching. (d)
Nanorod boundaries colored to their local etching rates. The height of the boundary profiles corresponds to the etching time. (e) The three stages of
etching based on the distinctive relationships between the etching rate and curvature at a local site. Coloring denotes the nanorods in (a). 0−40 s is
regarded as etching stage 1 for the green, yellow, blue, and red nanorods. The etching stage 2 is 40−49 s, 40−62 s, and 40−68 s for the green, blue, and
red nanorods, respectively, and stage 3 covers the rest of the etching. There is no stage 2 or 3 for the yellow nanorods. Scale bars: 50 nm.
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tion still remains insufficient. The thickness and orientation of
each nanorod are different, generating different TEM contrasts
in the same image, which makes a single threshold unsuitable for
all the nanorods (Figure S7): The nanorods of low TEM
contrast are tracked with the boundaries enveloping a smaller
area or completely missed (Figure S7i). Even the intensities of
the same nanorods undergo temporal changes due to motions,
shifting the intensity histograms over time (Figure 3b). This
shift makes the segmentation inconsistent, which causes an
unphysical “dip” in the nanorod area versus time curve (Figure
S7j). Note that such intensity fluctuation in the objects can
happen inevitably in some liquid-phase TEM videos and causes
difficulties in analyzing those videos. Though it is feasible to
manually adjust the threshold from time to time or set different
thresholds for different nanorods, these modifications require
additional parameter optimization, which can be low throughput
and may easily bias the segmentation based on the operator’s
own subjective judgment.
Our trained U-Net model shows robust segmentation even in

the presence of the contrast fluctuation among individual
nanorods and with time because it requires no determination of
thresholds (Figure 3a). The greatly improved accuracy on
tracking particle boundaries is confirmed by the nanorod area
versus time curve, which now exhibits a smooth and monotonic
decrease during etching (Figure S7k,l). Based on the tracked
boundaries, wemeasure the local curvature (Figure 3c) and local
etching rate (Figure 3d) of the nanorods in each frame in the
TEM video as they etch. Compared to previous work presenting

only longitudinal and transverse etching rates of one nano-
rod,8,58−60 we track vigorously the etching rates in all directions
normal to the nanorod boundaries.
In our effort to elucidate a quantitative interdependence of the

local curvature and local etching rate of nanorods, we find
unexpectedly a three-stage process, which is a characteristic
otherwise hidden but emerges from the significant data set of the
nanorod boundaries we now have. As shown in Figure 3e, the
first 40 s is stage 1, where isotropic etching dominates.We see no
statistical difference of local etching rates over the whole
curvature range, possibly due to a large excess of oxidative
species at the beginning that overwhelms the curvature
dependence. In the intermediate stage 2, the etching becomes
directional, with the higher-curvature sites etched faster,
following a positive relationship between the local curvature
and local etching rate as noted in Figure 3e. This regime can be
attributed to the high reactivity of less coordinated atoms at the
high-curvature sites, consistent with previous discussions where
high-curvature sites signature lower ligand density.8 At the end
of the etching process (stage 3), the etching rates no longer
depend on local curvatures but undergo a sudden drop, possibly
due to the local accumulation of gold ions (products of the
etching) or local depletion of oxidative species in a sealed liquid
environment, both of which slow the etching. By monitoring
more than one gold nanorod, we also found that the etching
profiles are not the same for every particle. As shown in Figure
4d, one gold nanorod (bottom right, shown in yellow in Figure
4a,b,e) is different from the other three nanorods, exhibiting a

Figure 4. Substrate-mediated self-assembly of gold concave nanocubes. (a) Time-lapse liquid-phase TEM snapshots of chaining concave nanocubes
with the particle centroid labeled as red, tracked by a trained U-Net model. (b) The conventional thresholding directly “cuts” the intensity (for easier
comparison, the intensity is inverted) in the original image, giving irregular shaped or connected particle boundaries. (c) Applying a threshold to the U-
Net prediction produces more accurate particle boundaries than that in (b). (d) The 2D histogram (right) of the relative orientations (defined by θ1
and θ2 combined as shown on the left) of two close concave nanocubes at a surface-to-surface distance < 35.7 nm. (e) Plot of ln(Xn(t)) and t. Straight
line is the linear fitting. Inset: Plot of Xn(t)−t showing a nonlinear trend. (f−h) Liquid-phase TEM snapshots during the chaining process. Green
denotes desorbed particles, and red denotes adsorbed particles on the SiNx window. Scale bars: 300 nm in (a); 100 nm in (f−h).
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curvature independent, single-staged etching profile. We
attribute this heterogeneity on the single particle level to a
heterogeneous local reaction environment surrounding the
nanorods. For example, nanoparticles at different positions in
the imaging area might be exposed to different concentrations of
oxidative species as the electron beammodulates the network of
redox reactions.14 Or the local depletion or excess of FeCl3
concentration could be different if the initial nanorod’s size and
shape are varied. We see this subtle difference showcasing the
need for our demonstrated capability to track the etching
trajectories of many nanorods.
Our completemapping of the staged and curvature dependent

etching of gold nanorods is only possible by the huge amount of
data we can derive with accurate boundary tracking. Ourmethod
can be applied to identify broadly multistep processes involved
in chemical reactions or structural transformation of nanosized
entities. In comparison to the single-step etching presented in
previous work,8 the detailed understandings on the staged
etching mechanism suggest additional routes to control the
etching kinetics by intervening different stages, which can be
combined with regrowth methods to synthesize nanoparticles
with novel shapes or hierarchical structures.61,62

System 3: “Individualizing” Connected Assemblies
into Basic Units to Elucidate Assembly Kinetics. In the
third system, we focus on the kinetic pathways of nanoparticle
assembly and show the potency of U-Net in solving one key
challenge in the analysis of such liquid-phase TEM videos:
Distinguishing individual building blocks in a connected/
bonded assembled structure. The system concerns an aqueous
suspension of dispersed, charged gold concave nanocubes
sandwiched in a SiNx liquid chamber. Upon the flow of salted
buffer, the concave nanocubes have their electrostatic repulsion
screened and assemble into chains as shown in the liquid-phase
TEM images (Materials and Methods, Supporting Information,
Figure 4a) and Movie S3. The chaining process resembles
qualitatively bifunctional monomers polymerizing into one-
dimensional polymers.63 In order to quantify the kinetic laws
and chain topology (e.g., connection scheme, bond angle)
during assembly, we extract the position and orientation of the
concave nanocubes consisting the assembled chains. Conven-
tional thresholding method fails to disconnect the “bridge”
region between bonded concave nanocubes while keeping the
particle shape integrity. As shown in Figure 4b, a low threshold
keeps the bridge region between two concave nanocubes and
thus does not separate them, while a high threshold gives rise to
unphysical and corrugated particle shape. In contrast, using the
trained U-Net model, we retrieve mostly smooth particle
boundaries of individual concave nanocubes. Remarkably, in the
image predicted after U-Net processing (Figure 4c), the
intensities of the pixels in the “bridge” region are much lower
than those in the “particle” region.We attribute this advantage of
our U-Net method over single thresholding to the fact that U-
Net weighs collectively many factors such as intensity, shape,
and local surroundings to achieve the final segmentation, while
the thresholding method concerns only pixel intensity. The
centroid position and orientation of each concave nanocube in
growing chains are shown in Movie S3, so that we can digitalize
the liquid-phase TEM images into nanoparticle “polymers” with
well-defined topology and bond angle. The bond angle statistics
on the bonded pairs show preference on the tip-to-tip
configuration of the concave nanocubes (Figure 4d), likely
due to the smaller electrostatic repulsion at the position where
tips are connected.17

The immediate surprise that emerges is a first-order reaction
mechanism in the polymerization kinetics as we analyze the
length evolution of growing chains. We use the number-
averaged degree of polymerization (Xn(t)) at a given time t as
the average number of concave nanocubes in polymer chains.
The Xn(t)−t curve shows a nonlinear dependence (Figure 4e),
different from the linear relationship observed in previous
studies associated with step-growth polymerization.17,64 Instead,
Xn(t) relates phenomenologically to t following a mathematical
form of ln(Xn(t)) = kt + 0.17, in which k as the assembly reaction
constant is fitted to be 0.029 s−1. Such a linear relationship
between ln(Xn(t)) and t can be rationalized by a first-order
reaction accounting for the linking of monomers into polymers:
− d[M]/dt = k[M], where [M] is the instantaneous
concentration of monomers and chains (see derivation in
Image Processing and Data Analysis in Supporting Informa-
tion).
The first-order reaction mechanism seems counterintuitive

first because the growth of linear polymer chains requires two
monomers/chains to approach and connect. We find that the
adsorption of concave nanocubes onto the SiNx window likely
due to a friction aging effect reported before65 explains this
unexpected behavior: The concave nanocubes spend ∼98% of
the time adsorbed, and the chain growth only occurs for the
occasionally desorbed particles (Figure 4f−h). By neglecting the
rare cases where two desorbed particles bond with each other,

the chain growth can be simplified into two steps:M Mm
k

m
1→ *

(step 1) and M M Mm
k

m nn
2* + → + (step 2), whereMm stands for

adsorbed species consisting m monomeric particles, and Mm*
stands for the corresponding desorbed species. Given our
observation that the time between desorption events (∼16 s) is
much longer than the average time required for a desorbed
particle to diffuse and attach to growing chains (∼0.5 s), i.e., k1
≪ k2, step 1 is the rate-limiting step and defines a linear
dependence of reaction rate on the concentration [M]. In other
words, our fitted k (0.029 s−1) essentially measures particle
desorption rate k1. This kinetic model proposed here works for
the scenario where particles adsorption on the substrate is
involved in the solution-phase assembly, a typical case for
nanoparticle assembly in liquid-phase TEM studies and solvent-
evaporation driven self-assembly.66,67 This capability to
quantitatively track the kinetic pathways during nanoparticle
assembly offers mechanistic insights that can unravel previously
unrecognized routes to manipulate the kinetics. The switching
between the desorption controlled first-order growth mecha-
nism demonstrated here and a diffusion controlled second-order
step-growth mechanism discussed extensively in previous
studies17 can potentially lead to new self-assembly structures
for advanced applications.68

■ CONCLUSION

In this work we map the interaction landscape, anisotropic
etching, and the self-assembly kinetic laws using a U-Net-based
workflow to achieve nanoparticle segmentation in liquid-phase
TEM videos. U-Net can efficiently and precisely identify the
boundary of nanoparticles, with a high tolerance over low SNR,
spatial heterogeneity in particle intensity, and particle bridging,
all of which are long-standing obstacles in the analysis of TEM
data using conventional tracking methods, and we now solve all
at once. Going beyond proof-of-concept systems of inorganic
nanoparticles, we expect machine learning as a potent toolset
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can also enable the analysis of liquid-phase TEM videos of soft
materials such as polymers, micelles, or proteins or even detect
prenucleation clusters in molecular crystals that are otherwise
too difficult to distinguish using traditional methods.
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