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A B S T R A C T

Assessing wildfire risk presents several challenges due to uncertainty in fuel flammability and ignition potential.
Live fuel moisture content (LFMC) - the mass of water per unit dry biomass in vegetation - exerts a direct control
on fuel ignitability, fuel availability and fire spread, and is thus an important parameter in assessing wildfire risk.
Current estimates of LFMC from optical remote sensing or meteorological indices are insufficient to accurately
map LFMC at landscape scale. In this study, we present a physics-assisted recurrent neural network model for
mapping LFMC every 15 days at 250 m resolution over the western US using microwave backscatter (from
Sentinel-1) and optical reflectance (from Landsat-8). The model was physics-assisted by adding handcrafted
inputs representing radiative transfer processes and related parameters. Field data from the National Fuel
Moisture Database was used to train the deep learning model. The model had a satisfactory overall predictability
of R2 = 0.63, RMSE = 25.0% and bias = 1.9% when cross-validated at 125 sites. The model was substantially
better at predicting site-means (R2 = 0.71 and RMSE = 14.3%) as compared to site-anomalies (R2 = 0.55 and
RMSE = 21.3%). Of the 6 land cover types tested, the model was most accurate in predicting LFMC in shrub-
lands (R2 = 0.69), while closed broadleaf deciduous sites had the least accuracy (R2 = 0.49). Incorporating
microwave backscatter as a model input significantly enhanced performance (R2 increasing from 0.44 to 0.63,
and RMSE decreasing from 31.8% to 25.0%). Microwave backscatter therefore presents a complementary source
of information to optical remote sensing metrics for LFMC mapping. The high resolution dynamic LFMC maps
presented here may assist in improved wildfire risk characterization and also have potential applications in
quantifying plant drought stress at large scales.

1. Introduction

Wildfires play a critical role in Earth's water and carbon cycles
(Bowman et al., 2009; Shakesby and Doerr, 2006). By releasing carbon
stored in aboveground vegetation and soil, they emit CO2 and other
particulate matter into the atmosphere, that may adversely affect cli-
mate (Randerson et al., 2006), air quality (Crutzen and Andreae, 1990),
and human health (Lelieveld et al., 2015). Large wildfires can cause
catastrophic damage to property and human lives (Cal Fire, 2018). With
climate change, probability of large wildfires has grown in much of the
western United States (US) and is expected to continue to do so due to
increases in concomitant hot and dry summer time climate that could
lead to increases in fuel aridity (Abatzoglou and Williams, 2016;
Williams et al., 2019) and associated wildfires (Holden et al., 2018). In
the western US, large wildfires have become nearly five times more
frequent and consume more than ten times the area now than five
decades ago (Westerling, 2016). It is thus vitally important to estimate

and forecast forest wildfire risk.
Wildfire risk depends on three quantities - the availability of igni-

tion sources, the propensity of vegetation and litter fuel to ignite, and
the ease of fire spread once the fuel has ignited (Miller and Ager, 2013;
Preisler et al., 2004). Live fuel moisture content (LFMC), defined as the
mass of vegetation water per unit dry biomass is a key determinant of
all the three components - wildfire ignition (Chuvieco et al., 2004a),
fuel availability (Kelley et al., 2019) and fire spread (Rossa, 2017).
Previous studies of large wildfires have further observed clear thresh-
olds between fire size and LFMC (Chuvieco et al., 2009; Dennison et al.,
2008; Nolan et al., 2016).

Even though LFMC strongly influences wildfire risk, its spatio-
temporal variability remains poorly understood since LFMC has high
spatial heterogeneity due to its dependence on plant species and phy-
siological traits (Jolly and Johnson, 2018; Karavani et al., 2018). Thus,
wall-to-wall dynamic maps of LFMC are urgently needed to understand
its spatio-temporal characteristics, and ultimately to improve fire
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danger assessments.
Current LFMC estimation methods predominantly rely on empirical

relationships between LFMC and hydro-meteorological variables (e.g.,
Jia et al., 2019) or on radiative transfer models using multi-spectral
satellite observations (e.g., Yebra et al., 2018). The operational model
used by the United States Forest Service (USFS) for fire danger assess-
ment (Bradshaw et al., 1984) is one example of such an empirical
model. In this model, LFMC is estimated using lagged 1000-h duff fuel
moisture content, which is itself empirically estimated from past pre-
cipitation, temperature and relative humidity.

Other models also exist that determine LFMC from meteorological
variables but they are often unable to accurately predict LFMC
(R2<0.3; Ruffault et al., 2018) or constrained to just a few sites
(Pellizzaro et al., 2007). In part, this is because LFMC estimates from
climate-related variables cannot capture spatial variability in plant
adaptation and responses to drought (Nolan et al., 2018). Thus, internal
plant hydraulic state (LFMC) does not always mimic external climatic
controls as plants have varied drought response strategies (Blackman
et al., 2019).

On the other hand, several studies exist that use multi-spectral re-
mote sensing to estimate LFMC either empirically (Argañaraz et al.,
2016; Chuvieco et al., 2004b; Peterson et al., 2008) or from simulations
using radiative transfer models (Barraza et al., 2014; Bowyer and
Danson, 2004; Yebra and Chuvieco, 2009). These multi-spectral remote
sensing-based approaches rely on absorptive properties of leaf water in
near-infrared (NIR) or shortwave-infrared (SWIR) wavelengths (~
900–2500 nm; Yebra et al., 2013). However, plant water content in-
formation derived from multi-spectral observations is representative of
the top of the canopy only (Newton and Blackman, 1970; Sims and
Gamon, 2003). Moreover, optical and IR reflectances are highly sensi-
tive to vegetation characteristics such as canopy structure (Ceccato
et al., 2001; Song, 2013) and leaf area index (Carlson and Ripley,
1997), due to which models tend to be extremely site-specific. Lastly,
the dual relationship of optical data to both biomass as well as vege-
tation water has been identified as problematic in common situations
where both the water status and biomass vary (Danson and Bowyer,
2004). Thus, very few studies have produced periodically updated large
scale LFMC maps using multi-spectral remote sensing alone, with the
notable exception of the LFMC maps for Australia created by Yebra
et al. (2018).

Microwave remote sensing has the potential to overcome some of
the drawbacks of optical remote sensing. Since their wavelengths (≈
5 cm) are at least four orders of magnitude higher, they penetrate much
deeper into the canopy. As a result, they saturate less at high biomass
levels (Tian et al., 2016). Additionally, unlike multi-spectral remote
sensing, they usually penetrate through clouds (Ulaby and Long, 2014).
Furthermore, owing to the high dielectric property of water (Pampaloni
and Paloscia, 1986), they can capture vegetation water dynamics better
than lower wavelength optical metrics. Indeed, studies have explored
the predictive power of both passive (Fan et al., 2018) and active mi-
crowave remote sensing (Wang et al., 2019) for fire-related variables,
although they were confined to site-scale analysis. The relevance of
microwave remote sensing for large scale LFMC mapping across dif-
ferent land cover types, however, remains unexplored.

Owing to microwave and optical remote sensing's complementary
sensitivities to both vegetation water and biomass, they may be com-
bined to estimate LFMC, provided sufficient information related to ca-
nopy structure exists to help parametrize the relationship between re-
mote observations and LFMC. This idea is conceptually presented in
Fig. 1. The conceptual model links the microwave and optical inputs to
the components of LFMC - vegetation water and dry biomass - through
physical processes. By leveraging microwave and optical data's different
levels of sensitivities to vegetation water and biomass, it may be pos-
sible to better estimate LFMC.

Much like for optical remote sensing, LFMC estimation efforts using
microwave remote sensing can rely either on electromagnetic models or

on empirical relationships. Although electromagnetic scattering models
can simulate a parametric relationship between LFMC and remotely
sensed observables, they need a large number of field data related to
plant allometry (Ulaby et al., 1988), that is impractical to gather at
large scales. Alternatively, a non-linear, empirical model like an arti-
ficial neural network can help capture the parametric relationship
without explicitly assuming an analytical form a priori. Doing so allows
us to rely on the data to understand the required complexity of the
relationship between the input remote observations and LFMC output.
Furthermore, using carefully handcrafted input variables chosen based
on our understanding of radiative transfer processes, neural networks
can be assisted by physics (Karpatne et al., 2017). Here, we investigated
whether, by using a large number of LFMC field data to train a non-
linear deep learning model with inputs from remote sensing (as well as
terrain features that are known to influence the LFMC - remote sensing
relationship), it is possible to produce dynamic large scale LFMC maps.

In this study, we present a physics-assisted empirical method to
produce high resolution (250 m) LFMC maps across western US every
15 days. To estimate LFMC, we combine Sentinel-1 synthetic aperture
radar (SAR) backscatter and Landsat-8 surface reflectance with static
variables related to canopy structure in a recurrent neural network
(RNN) deep learning model. The western US spans a large climatolo-
gical range, with a diverse mix of 6 land covers, making it an excellent
location to test the robustness of our algorithm. The LFMC maps may be
used for wildfire danger assessments and other applications related to
plant drought stress.

2. Methods

Our modeling approach stems from the need for large scale LFMC
mapping without assuming LFMC's link to meteorological drivers. To
overcome this, we employed an observationally-driven approach to
directly estimate LFMC from remotely sensed optical and microwave
inputs (explained in Section 2.4). We trained and validated the em-
pirical model in the western US (see Section 2.1) on in-situ LFMC data
collected by the USFS (detailed in Section 2.2).

We adapted the model to be physics-assisted through the use of
carefully designed inputs based on our conceptual understanding of the
physical processes linking the inputs to LFMC (Fig. 1). This was par-
tially done through use of the microwave and optical ratios, which were
chosen based on the form of radiative transfer models (as further dis-
cussed in Section 2.3.3). It was also achieved through the choice of
ancillary static inputs (see Section 2.3.4), which provide information
about the effect of soil type, vegetation structure, and topography on
the remote sensing observations.

2.1. Study area

We chose the western US (consisting of 12 states) as our study area
(Fig. 2a) because its fire regimes are undergoing rapid change. The area
spans over 3.7 million km2 and contains all states west of (and in-
cluding) Texas, Colorado, Wyoming and Montana. Apart from being a
regional hot-spot for increased fire activity (Westerling, 2016), the
western US also covers diverse climatological, topographical, and eco-
logical regions, making it an ideal choice for developing a robust LFMC
mapping algorithm.

The area contains several types of vegetation, including broadleaf
deciduous forests, needleleaf evergreen forests, shrublands, grasslands,
and sparsely vegetated regions (displayed in Fig. S1 with data from the
GLOBCOVER dataset; (Arino et al., 2010). Seasonal temperatures and
precipitation range widely. Mean annual temperature (MAT) ranges
from 0 °C to 24.5 °C, while mean annual precipitation (MAP) ranges
from an arid 50 mm/yr to a very wet 5990 mm/yr (Fig. S2). Here,
climate data was obtained from the Parameter-elevation Regression on
Independent Slopes Model (PRISM Climate Group Oregon State
University, 2004). The study area's terrain is also diverse, with both the
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lowest (−86 m) and highest points (4417 m) in the contiguous US lo-
cated within it. The elevation data was obtained from the National
Elevation Dataset (USGS, 2011) and is mapped in Fig. S2.

2.2. LFMC field data

Live fuel moisture content (LFMC) is defined as

=
−

×LFMC(%)
Fresh mass Dry mass

Dry mass
100

(1)

Fig. 1. Conceptual model linking LFMC to inputs variables. The physical process representation is for illustrative purposes only; the empirical model estimates LFMC
directly from the inputs. Thicker arrows from the physical process representation to the output represent relatively greater sensitivity. For example, microwave
backscatter, due to microwave attenuation, has relatively higher sensitivity to vegetation water as compared to optical and IR reflection.

Fig. 2. Study area with LFMC sampling sites denoted as per number of measurements available since 2015 (a) with the same sites overlaid on the climatologic (b) and
topographic range (c). Grey hexagons in (b) and (c) represent data for the entire study area, with darkness denoting increased point density.
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where fresh mass is the mass of a vegetation element (leaf, twig, etc.)
just after being cut, and dry mass is its mass after drying in an oven.

LFMC field data from the National Fuel Moisture Database (NFMD;
United States Forest Sevices, 2018) was used for training and validation
of the model. The NFMD is a free web-based query system containing
more than 200,000 fuel moisture content measurements since 1977.
The database spans 976 sites mostly over the western US, although only
239 sites contain data from 2015 onwards (the study period used here).
According to the NFMD protocol, the field measurements were taken
for representative species within 5 acre (20,000 m2) plots. The mea-
surements were made during mid-afternoon and on dry days when dew
or precipitation were absent. We used LFMC measurements from Jan-
uary 1st, 2015 to March 1st, 2019 only, since Sentinel-1 observations
used as an input to the model were not available earlier (see Section
2.3.1). LFMC values ranged from 16% to 320% during the study period.

At many sites, LFMC of multiple species were recorded. Since no
information on the relative abundance of different species was avail-
able, scaling the individual species' LFMC to a pixel-representative
LFMC was infeasible. Spatial heterogeneity in the LFMC of a mixed-
species pixel can introduce severe errors in model predictions because
of degradation of data quality (Jia et al., 2006). Hence, sites with
multiple species were ignored except in cases where LFMC of multiple
species closely followed each other throughout the study period
(Pearson r between any two species ≥ 0.5). For sites where the sea-
sonality of individual species matched, a simple average was assumed
to determine the representative LFMC for those sites. Although this was
prone to induce errors into the model, it allowed the inclusion of 66
more sites. In total, 114 sites were removed from the study (Pearson r
between any two species< 0.5), 66 mixed-species were included
(Pearson r between any two species ≥ 0.5), and 59 single-species sites
were included in our study. Thus, a total of 125 sites were included
(shown in Fig. 2a).

The sampling sites covered the diverse range of geography, eleva-
tion, and MAT of the western US (Fig. 2a and c). However, sampling
sites were relatively dry. While MAP in the western US ∈ [50–5990]
mm/yr, the wettest NFMD site studied had an MAP of only 1560 mm/
yr. This was consistent with expectations, since drier sites - being more
prone to wildfires - tend to be more closely scrutinized by the USFS.
Even though the sampling sites did not span the complete MAP range of
the study area, no negative bias was observed. In fact, the mean MAP of
sites (610 mm/year) exceeded that of the study area (560 mm/year).
The effect of the diminished range of MAP of the sites is studied in
detail in Section 4.3.

2.3. Model inputs

2.3.1. Microwave data
Microwave backscatter (σ) was obtained from Sentinel-1's synthetic

aperture radar (SAR) owing to its high spatial resolution. The 2-con-
stellation system of satellites (Sentinel-1A and 1B) contains a C-band
(5.4 GHz) SAR which most commonly collects data in interferometric-
wide swath mode in vertical-vertical (VV) and vertical-horizontal (VH)
polarizations over land (Torres et al., 2012). The satellites also collect
data in other acquisition modes like stripmap, extra-wide swath, and
wave modes depending on the location and mission objectives. The
radar's C-band frequency makes it ideal for LFMC estimation as the
electromagnetic waves at that frequency are sensitive to foliage and
thin woody components - the elements that were sampled for LFMC in
the field and that contribute to fire spread substantially (Keane, 2015).
Note, however, that C-band backscatter also retains sensitivity to soil
moisture (Brocca et al., 2017). Because high-resolution soil moisture
information was not available, we instead relied on the hypothesis that
the RNN model can isolate vegetation from soil contributions to back-
scatter based on the relative variations of σVV and σVH. This hypothesis
was based on the recognition that the two polarizations have different
relative sensitivities to soil moisture and vegetation (Dubois et al.,

1995).
The native spatial resolution in interferometric wide swath mode is

5 m × 20 m. However, at that resolution, the image is noisy due to
speckle formation. To reduce speckle noise and be consistent with the
NFMD plot size, we rescaled the data to 250 m× 250 m pixels using bi-
linear interpolation.

Although the Sentinel-1 constellation has a revisit frequency (for the
same overpass) of 6 days over Europe, it is 12 days for western US. We
used ascending passes with a local overpass time of 18:00 only.
Descending overpasses were excluded. Because vegetation water con-
tent exhibits a strong diurnal cycle, which is reflected in the radar
backscatter (Konings et al., 2017a), only a single overpass time was
used. The 18:00 overpass was used because vegetation is likely to be
more water-stressed then than at pre-dawn, and because of availability
of more images in 2015 and early 2016.

We used σVV, σVH, and σVV − σVH in decibels (dB) as microwave
inputs for the model. We used σVV − σVH as it could be less sensitive to
soil moisture than the raw backscatter (Dubois et al., 1995).

Even though Sentinel-1 has a constant look angle of 40°, the in-
cidence angle on the ground can vary depending on location of a site
within the swath. Thus, all backscatter values were normalized to the
look angle of 40° using cosine square correction (Topouzelis and
Singha, 2016).

2.3.2. Optical data
Landsat-8 16-day composites of surface reflectance (Roy et al.,

2014; Vermote et al., 2016) were used to create optical inputs. The raw
band reflectances for red, green, blue, near-infrared (NIR), and short-
wave infrared (SWIR) channels at 30 m resolution were used. The NIR
and SWIR were used because water absorbs energy in those spectral
regions (Colombo et al., 2008). Apart from the raw band reflectances,
three additional vegetation indices were used: the normalized differ-
ence vegetation index (NDVI; Tucker, 1979), the normalized difference
water index (NDWI; Gao, 1996), and near infrared vegetation index
(NIRv; Badgley et al., 2017). Previous studies have shown a strong
correlation between NDWI and LFMC (Dennison et al., 2005; Roberts
et al., 2006), and a strong predictive capacity of NDVI for LFMC
(Chuvieco et al., 2004b; Hardy and Burgan, 1999) (though note that
NDVI is a measure of greenness, not water content). Although other
metrics like visible atmospheric resistance index (VARI; Gitelson et al.,
2002) and normalized difference infrared index (NDII; Hardisky et al.,
1983) also exist, we chose to include NDVI and NDWI only, as they
already contain NIR and SWIR (the bands most sensitive to vegetation
water in the optical domain; Colombo et al., 2008). Not adding more
indices with the same bands helps reduce co-linearity among the inputs.
Lastly, NIRv was used as an indicator of vegetation biomass levels as it is
related to the carbon assimilation from photosynthesis (Badgley et al.,
2017), and may therefore be useful for disentangling biomass and LFMC
effects on the Sentinel-1 backscatter.

Surface reflectance values were filtered for snow and clouds. To do
so, pixels with a quality assessment index indicating “snow”, “cloud”, or
“cloud shadow” were masked.

2.3.3. Microwave and optical ratios
Apart from including pure microwave and optical data as inputs,

some mixed inputs containing the ratios of microwave backscatter and
optical reflectance were also used. We pursued a physics-guided ap-
proach to enhance the learning capabilities of the RNN model (Karpatne
et al., 2017; Reichstein et al., 2019), reasoning that these ratios should
improve isolation of LFMC. With higher sensitivities of microwave
backscatter to vegetation water and optical reflectance to dry biomass,
the ratio of microwave backscatter and optical reflectance mimics the
structure of the definition of LFMC (Eq. (1)). We thus included ratios of
microwave backscatter of both polarizations and optical reflectances
and indices.
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2.3.4. Ancillary inputs
We assisted the RNN model by inputting several static inputs drawn

from our understanding of physical principles. Since these inputs do not
vary over time, they exist merely to assist the model in learning the
radiative transfer process between temporally varying inputs and
LFMC. We chose inputs only that were easily available on a large scale
to preserve our model's scalability.

Static inputs such as silt, sand, and clay content were used as they
govern microwave backscatter's sensitivity to soil moisture (Dobson
et al., 1985). By adding soil type as a static parameter, we assisted the
RNN model in isolating the vegetation-related information from mi-
crowave backscatter. Data on soil type was obtained from the Unified
North American Soil Map by Liu et al. (2014) which combines soil maps
from the US General Soil Map (USDA, 2019), Harmonized World Soil
Database (Fischer et al., 2008) and other sources. The map's resolution
is ~25 km.

Static inputs related to vegetation structure were also included in
the model. Canopy height based on Global Laser Altimetry System
(GLAS) lidar measurements aboard the IceSat satellite obtained from
Simard et al. (2011) was included (spatial resolution = 1 km). Land
cover at 300 m spatial resolution obtained from GLOBCOVER was in-
cluded as well.

Finally, elevation and slope obtained from the National Elevation
Dataset (USGS, 2011) was used to help the model calibrate to local
terrain, as local incidence angle can affect the backscatter's para-
metrization to vegetation water (Attema and Ulaby, 1978). Elevation
and slope data was obtained at 30 m spatial resolution. All static and
dynamic inputs used in the model are summarized in Table 1.

2.4. Recurrent neural network

The relationship between remote sensing observables and LFMC can
be highly non-linear, as shown by radiative transfer simulations of leaf
optical properties (Jacquemoud and Baret, 1990) and microwave
scattering simulations of vegetation components (Ulaby et al., 1988).
We therefore used a neural network to model LFMC. A neural network
consists of several layers, each in turn composed of many neurons that
combine the inputs linearly with scalar weights and pass it through a
non-linear activation function. LFMC is a time-dependent variable for
which only certain successive sets of values are realistic. The possible
values depend on previous LFMC values and their associated remote
sensing observables. We therefore used an RNN based on long-short
term memory architecture (LSTM; Hochreiter and Schmidhuber, 1997),
which allows propagating memory of essential features in time.

The overpass days for Sentinel-1 (12-day revisit) and Landsat-8 (16-
day composite) at a location often differ by a few days. We thus linearly

interpolated the time series inputs to the 1st and 15th day of each month.
Having a consistent time step (15 days) is a requirement for the RNN
model used in our study. We analysed the amount by which the dif-
ferent time series were modified due to interpolating them to the
nearest 1st and 15th day of each month. We found that a maximum
change of 6.7% and 3.0% was introduced in the optical and microwave
data, respectively. Thus, the interpolation itself did not change the
input data by much.

The network topology contained time series of length seven. That is,
it estimated LFMC for any 15-day interval (t to t+ 15) using input
variables for the period t-90 to t+15 in 15-day increments (six previous
time steps and the current one). The estimated LFMC for any 15-day
interval was then compared to the field-sampled LFMC measured on
one of the 15 days to calculate model error. Although estimating a 15-
day averaged LFMC value can be error-prone to rapid fluctuations in
LFMC, we are limited by the coarse temporal resolution of the remotely
sensed inputs. The errors associated with the temporal averaging are
discussed in Section 4.1.

For cases with missing Landsat-8 reflectance (due to snow cover,
cloud cover, or missing swaths) or Sentinel-1 backscatter (due to
missing swaths), the last valid observation was used. If no valid ob-
servations were available for the entire 3 months prior to an LFMC
measurement (even for one of the input time series), the LFMC mea-
surement was discarded. The 3-month period was chosen as the RNN
model relies on information 3 months prior to LFMC observation.
Although optical reflectance may vary within the 3-month window, if
the RNN model is trained to convergence, it is expected to rely less on
potentially outdated input variables.

The classical RNN model was modified to accept time series as well
as static inputs. This was achieved by passing the static inputs directly
to the activation function within each neuron. This way, we let the
model learn the parametrization of the relationship to local vegetation
structure and topography by itself.

We used a 4-layered RNN with each layer containing 10 units with
hyperbolic tangent activation function. The model architecture is
summarized in Fig. S4. A dropout of 5% was used for each layer to
regularize against overfitting. Additionally, a bias regularization of
0.001 was used after initial training led to biased results. The model
was fit to minimize mean squared error between the estimated and
observed LFMC. To quicken the training process, a Nesterov-Adam
optimizer was used which dynamically adjusted the learning steps by
incorporating a momentum function (Dozat, 2016).

2.5. Validation and prediction

Empirical approaches such as neural networks are known to over-fit
to the training data, rendering the training data unusable for calcu-
lating the model's performance. We therefore used 3-fold cross-valida-
tion to validate the model. That is, the model was trained iteratively on
two-thirds of the sites (83 sites) and validated on the remaining one-
third (42 sites) until out-of-sample LFMC estimates were available at all
the sites (125 sites). Splitting the data by sites allowed testing the
model's performance on sites that were completely different from the
training sites. This provides a realistic estimate of the model perfor-
mance at locations where no validation data was available, which make
up the overwhelming majority of the study region. The data was split
into training and validation sets using stratified random sampling to
ensure that the distribution of land cover types remained equal between
the two sets. Model accuracy was calculated on the out-of-sample va-
lidation estimates only. The model was validated on 3,020 LFMC
measurements.

We analysed model errors by decomposing the predictions into site-
mean LFMC (LFMC , which varies spatially only) and site-anomalies
(LFMC′, which varies spatially and temporally).

Table 1
Input variables passed to the recurrent neural network. All variables except
Static variables (last column) are temporally varying. The NIR refers to near-
infrared, NIRv refers to near-infrared vegetation, NDVI refers to normalized
difference vegetation index, and NDWI refers to normalized difference water
index.

Microwave (dB) Optical (−) Mixed (dB) Static

σVV rred σVV
rred

, σVH
rred

Canopy height (m)

σVH rgreen σVV
rgreen

, σVH
rgreen

Elevation (m)

σVH − σVV rblue σVV
rblue

, σVH
rblue

Terrain Slope (°)

rNIR σVV
rNIR

, σVH
rNIR

Silt fraction (−)

rSWIR
σVV

rSWIR
, σVH

rSWIR
Sand fraction (−)

NDVI σVV
NDVI

, σVH
NDVI

Clay fraction (−)

NIRv
σVV
NIRv

, σVH
NIRv

Land cover (−)

NDWI σVV
NDWI

, σVH
NDWI
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LFMC s t
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( , )

( )
t

T

1

(2)

′ = −LFMC LFMC s t LFMC s( , ) ( ) (3)

where s denotes the spatial index of a site, t denotes the LFMC mea-
surement/estimation date, and T(s) is the record length of site s.

The trained model was forward propagated to estimate LFMC across
the entire western US. The predictions were restricted to locations with
land cover classes among those that were already present in the training
data and to places where valid remote observables were available at
least once in the 3 months prior to the estimation. The modeling
workflow is summarized in Fig. S3. All modeling was performed on
Python v.3.6 using Keras library (Chollet et al., 2015) and the LFMC
maps were created using Google Earth Engine (Gorelick et al., 2017).

2.6. Microwave and static inputs' contribution to model performance

The contribution of microwave data towards model performance
was tested by excluding all microwave-related variables from the inputs
- raw backscattering coefficients and mixed ratios (columns 1 and 3 in
Table 1). The model was then retrained on the remaining optical data
and static inputs, keeping all other model parameters constant. The
degradation in model's accuracy was then used to quantify the con-
tribution of microwave data to the original model performance. A si-
milar approach was also followed for static inputs (column 4 in Table 1)
by removing each variable with replacement.

3. Results

During 3-fold cross-validation, the model displayed a strong ability
to estimate LFMC with coefficient of determination (R2) = 0.63, root
mean squared error (RMSE) = 25.0%, and bias = 1.9% (Fig. 3a). Al-
though on an absolute scale, the RMSE of the model (25.0%) was
moderately high, it was much lower than the standard deviation (SD) of
LFMC (41.6%), indicating that the model performed comfortably better
than a baseline of predicting average LFMC everywhere at all times.

The model predicted LFMC with R2 = 0.71, RMSE = 14.3%
(Fig. 3b), while LFMC′ performance was somewhat poorer with R2 =
0.55, RMSE = 21.3% (Fig. 3c). That is, the model captured spatial
variations in LFMC better than temporal variations.

The loss in temporal predictability can largely be attributed to three
factors. First, 13% of sites had a bias larger than 20% of the site-mean
(points away from grey line in Fig. 3b). Second, even though the model
estimated the general pattern in site coefficient of variation (CV) well
(Pearson r = 0.74; Fig. 4a), it consistently under-predicted CV
(bias = −0.1). This implied that the model's LFMC estimates routinely
varied less temporally than observations. Lastly, at sites with low CV
(low relative temporal variability), the model was unable to capture

temporal fluctuations altogether, resulting in low or negative Pearson r
(Fig. 4b). This was likely caused by difficulty in inferring minute LFMC
variations from satellite observations.

Skewed distribution of LFMC field sampling can introduce sys-
tematic errors in model predictions. As expected, the LFMC field sam-
ples were found to be concentrated towards June–October which
overlaps with the fire season in western US (Fig. 5a). Model errors were
higher in months with lower training data and in months immediately
following low-data months (Fig. 5b). The latter was due to the fact that
the RNN model relies on information up to 3 months prior to a mea-
surement.

Fig. 6a shows the distribution of the site-specific RMSE across land
cover. Also shown are sample prediction time series across sites with a
range of performance quality levels (relative to other sites): the sites
shown are the 5th percentile, median and 95th percentile site in terms of
their site RMSE (Fig. 6b, c, and d, respectively). Individual site RMSEs
ranged from 6.94% at a closed needleleaf site to 72.0% at a grassland
site. Mixed forests had the lowest overall RMSE (20.0%). On comparing
the RMSE at each site with its unbiased-RMSE (ubRMSE), we found that
the model had high biases in many sites, especially in shrub/grassland
and grasslands where 17% and 31% of the sites had bias larger than
20% of site-means, respectively (Fig. 6a).

Fig. 6b-d show that the model successfully captured LFMC's tem-
poral dynamics. The sample time series show that at the 5th percentile
site based on site RMSE, the model accurately estimated LFMC dy-
namics (Fig. 6b), while LFMC estimates were increasingly biased at the
poorer sites (Fig. 6c and d).

Table 2 summarizes the model's performance across land covers.
Shrub/grassland land cover had the highest mean bias of 5.4%, likely

Fig. 3. Model Performance on the validation data. Model performance is shown for raw data (a), site means (b), and site anomalies (c). The y-axis represents out-of-
sample cross-validated estimates, and x-axis represents field measurements. Grey line indicates the 1:1 line. Darkness of points indicates higher point density.

Fig. 4. Influence of site-scale variations on model performance. (a) Estimated
and observed coefficient of variation (CV) at each site. The CV is the standard
deviation divided by mean LFMC at the site scale. (b) Pearson correlation
coefficient (r) between estimated and observed LFMC at each site versus ob-
served CV. The curved grey line indicates best fit with shading of 1 standard
deviation on each side. Darkness of points indicates higher point density.

K. Rao, et al. Remote Sensing of Environment 245 (2020) 111797

6



due to the very low number of sites with this land cover (6) and low
associated number of field measurements (178) available for training
the model. Model performance in grasslands had the highest RMSE
(31.0%) and a moderate R2 (0.56), possibly due to the high inherent
temporal variance in grasslands (temporal SD = 33.1%). This was
consistent with previous LFMC modeling studies that observed very
high temporal variance in LFMC in grass, making it difficult to model its
rapid fluctuations (García et al., 2008).

In terms of variance explained on the validation set (R2), the model
estimated LFMC with high accuracy in shrublands, closed needleleaf
evergreen, and mixed forest land cover types. Even though shrublands
constituted only 22% of the sites, they comprise 45% of the western US
(Fig. S5) making it a crucial land cover for this study. The model per-
formed most accurately in shrublands (R2 = 0.69).

To evaluate the importance of microwave data for LFMC estima-
tions, all microwave-related variables were removed and an alternate
model was trained on the remaining inputs. Model performance de-
graded substantially. The R2 decreased from 0.63 to 0.44 (a drop of

30%) and RMSE increased from 25.0% to 31.8% (an increase of 27%;
Table 3). To check whether the reduction in accuracy was solely due to
the decreased number of features, we separately trained a model on
optical features and 17 time series of random numbers (replacing an
equal number of microwave-related variables) and found a similar drop
in accuracy (R2 = 0.41, RMSE = 32.6%). This drop in performance
confirmed that microwave data greatly improved LFMC estimation,

Fig. 5. LFMC field sampling bias and its effect on model performance. Grey
indicates no data available.

Fig. 6. Model performance at the site scale. (a) Model RMSE (vertical bars) compared to ubRMSE (points) at each site. Observed and estimated time series of LFMC at
the 5th (b), median (c), 95th (d) percentile site, respectively, according to model RMSE rank at the site-scale as seen from (a).

Table 2
Model performance across vegetation types. Number of sites and number of
field samples is denoted by Nsites and Nobs, respectively. Temporal SD refers to
mean of field-sampled LFMC's standard deviation at each site within the re-
spective land cover class.

Land cover Nsites Nobs Temporal
SD (%)

RMSE (%) R2 Bias (%)

Closed broadleaf
deciduous

9 218 24.7 27.7 0.49 3.0

Shrub/grassland 6 178 29.1 24.9 0.56 5.4
Grassland 16 362 33.1 31.0 0.56 2.8
Mixed forest 9 247 19.8 20.0 0.59 1.0
Closed needleleaf

evergreen
58 1,540 24.2 22.4 0.61 1.1

Shrubland 27 475 48.4 28.9 0.69 2.4
Overall 125 3,020 29.9 25.0 0.63 1.9

Table 3
Value of microwave-related time series and static variables for LFMC's pre-
dictability. “w/o” denotes “without”. For e.g., the row for “All w/o elevation”
contains model performance when elevation was removed from the inputs and
the model was retrained on the remaining variables as in Table 1.

Input variables RMSE(%) R2

All w/o microwave 31.8 0.44
All w/o elevation 29.4 0.49
All w/o terrain slope 27.2 0.56
All w/o land cover 26.5 0.57
All w/o canopy height 26.0 0.60
All w/o silt fraction 25.2 0.62
All w/o sand fraction 25.1 0.62
All w/o clay fraction 25.1 0.62
All 25.0 0.63
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even in the presence of traditionally used optical metrics.
Static variables that assist the model parametrize the relationship

between remote observables and LFMC also contributed to model per-
formance. Elevation and terrain slope were among the most important
static parameters for LFMC predictability, without which, model RMSE
deteriorated to 29.4% and 27.2%, respectively. This could be due to the
key role that topography plays in determining local incidence angle that
affects backscatter's parametrization to vegetation water (Attema and
Ulaby, 1978). A similar result was also found by Saatchi et al. (2007)
while estimating forest fuel load from radars. Soil properties had the
least effect on model performance.

Overall, our model's estimation accuracy was on par with previous
LFMC mapping approaches (Table 4), in spite of being validated at
much more sites (125) with much diverse species (56). When we
compared our model performance to that of the next best study in terms
of the number of validation sites (Yebra et al., 2018), we found that our
model outperformed it, although a direct comparison was not possible
due to differences in geographies and modeling strategies. Furthermore,
for a more direct comparison, we compared our method to Qi et al.'s
(2012) empirical LFMC estimation study in Utah which used several
single input variables such as NDVI, NDWI, etc. Our model had both an
improved R2 (0.49 relative to 0.27 in the Qi et al.'s (2012) study) and a
lower RMSE (25% instead of 28%).

Once the model was trained and validated, we produced 15-day
LFMC maps from 2015 to 2019 for the western US at 250 m resolution.
A series of estimated LFMC maps across the progression of the fire
season of 2019 is shown in Fig. 7. The spatial patterns in Fig. 7 such as

the dryness in vegetation in Southern California, high wetness in the
Pacific Northwest, etc. were consistent with expectations, suggesting
that the model captured the spatio-temporal dynamics across the wes-
tern US well.

4. Discussion

4.1. The cost of large-scale LFMC estimation

The physics-assisted RNN model was successful in estimating LFMC
at landscape-scale over the entire western US while maintaining a cross-
validated accuracy (R2 = 0.63, RMSE = 25.0%; Fig. 3a) that matched
previous models' accuracy (Table 4). While Myoung et al. (2018) de-
monstrated an R2 = 0.72 across 7 sites, their study did not include cross
validation. Furthermore, most previous predictive LFMC mapping ef-
forts have focused on ecosystem-scale analysis (6–12 sites spanning a
single region). It remains to be seen how robust such models are when
expanded to larger areas such as our study region (125 sites spanning
several ecosystems), especially since empirical models can be extremely
site specific (Dennison et al., 2005; García et al., 2008). To the best of
our knowledge, the only previous regional-scale analysis was Yebra
et al.'s (2018) study. Their study was validated at 32 locations across
Australia and had an R2 = 0.58 and RMSE = 40%. Their mapping
effort differed from the one in this study in two ways: it used a radiative
transfer model rather than an empirical modeling approach, and used
only optical frequency observations as dynamic inputs. But given the
fact that our estimation errors were lower and our model was validated
at approximately 4 times more sites with more diverse vegetation types,
empirical approaches such as the one presented here exhibit consider-
able potential for accurate, large scale LFMC mapping. This is mainly
due to the nature of physics-guided neural networks that can robustly
scale across diverse landscapes if sufficient (and representative)
training samples exist.

Our model did not capture temporal variability as well as spatial
variability. Although LFMC was predicted with an accuracy of R2 =
0.71, LFMC′ was predicted with lower accuracy of R2 = 0.55 (Fig. 3b
and c). The CV of LFMC estimates were consistently lower than those of
observations (bias in CV = −0.1). However, the general pattern in site
CVs was captured (Pearson r = 0.74, Fig. 4a) indicating that the sys-
tematic bias was likely due to the model setup (and not model fitting).
In our model setup, remote sensing observations are interpolated to 15-
day windows. Any LFMC variations at finer temporal scales (within

Table 4
Model performance compared against other observationally-driven LFMC esti-
mation techniques in literature. Values for Qi et al. (2012) retrieved for the
pooled model across all 10 sites with best remote sensing proxies. Values for
Chuvieco et al. (2002) obtained for single regression for shrub and grass spe-
cies. Values for Peterson et al. (2008) obtained for regression for all chapparal
and all coastal sage scrub species separately (combined regression not avail-
able). Values for Yebra et al. (2018) obtained for validation sites.

Study Species Sites R2 RMSE(%)

Qi et al., 2012 2 10 0.27 28.1
Chuvieco et al., 2002 5 6 0.63 5.1–128.0
Peterson et al., 2008 6 14 0.74–0.85 13.5–22.4
Yebra et al., 2018 17 32 0.58 40.0
Our approach 56 125 0.63 25.0

Fig. 7. Estimated LFMC for the first 15-day periods of June, August, and October of 2019. Grey pixels indicate LFMC estimates were unavailable. LFMC estimates
were unavailable when Sentinel-1 or Landsat-8 cloud- and snow-free surface reflectance were unavailable in the 3 months prior to time of estimation or when the
land cover class of a pixel was absent from the training data.
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15 days) are thus expected to be smoothed out, resulting in consistently
lower variability in the estimates.

For sites where local fluctuations in LFMC were relatively small (e.g.
CV ≤ 0.2), the estimated LFMC was often weakly or negatively cor-
related to observations (Fig. 4b). While predicting temporal dynamics
at sites with low LFMC variability is less relevant to fire danger as-
sessments (locations with no variability have constant fuel character-
istics and fire risk depends on ignition availability), future large scale
LFMC mapping efforts could benefit from explicit site-based calibra-
tions. Nonetheless, training an empirical model under a single loss
metric to obtain an overall high accuracy at large spatial scale (Fig. 3a)
comes at the expense of mis-representing site-scale fluctuations at sites
with relatively little LFMC variability.

Mixed-species pixels presented another cost of large-scale LFMC
mapping that is a weakness in this study - uncertainty of predictions in
heterogeneous pixels. We trained and validated the model on both
single-species sites and mixed-species sites with similar LFMC seasonal
patterns (Fig. 2). However, the actual study area also contains many
locations with a diversity of species that have very different LFMC
patterns (indeed, 48% of all LFMC sites were excluded for this reason,
because the LFMC patterns of different species at the site had an
average Pearson r<0.5, as discussed above in Section 2.2). Due to the
lack of any high resolution species coverage information, cross-valida-
tion at such sites is infeasible. The model performance in pixels with
heterogeneous species is therefore unknown. However, when we com-
pared model performance between single-species sites (59 sites) and
mixed-species sites (66 sites), we found that model performance re-
mained largely unchanged (for single-species sites, RMSE = 27.3%, R2

= 0.66 and for mixed-species sites RMSE = 22.9%, R2 = 0.58). The
similarity in model errors between single and mixed-species sites sug-
gests that overall model predictability may not be very sensitive to
pixel-scale species diversity. Additional validation in areas where de-
tailed species coverage information is known is still needed. Never-
theless, given the similar performance between the two types of vali-
dation sites, we suggest here that the resultant LFMC maps be
interpreted as an area-weighted representation of the LFMC within each
pixel. Furthermore, since LFMC is mapped at a relatively high resolu-
tion of 250 m, errors due to heterogeneity in species cover are expected
to be lower than for kilometer-scale models (Myoung et al., 2018).

4.2. Microwave backscatter improves LFMC estimation

After excluding all microwave-related inputs, the model perfor-
mance degraded markedly with R2 decreasing from 0.63 to 0.44 and
RMSE increasing from 25.0% to 31.8% (Table 3). Our results indicate
that by combining microwave data with optical data, and handcrafted
ratios of microwave and optical data, LFMC mapping can be enhanced
significantly. This provides direct evidence of the complementary
nature of the two datasets.

Previous efforts to model LFMC from satellite observations have
predominantly focused on optical remote sensing. Optical reflectance
metrics such as NDVI are primarily related to photosynthetically active
chlorophyll content. The LFMC estimations using NDVI thus rely on the
relationship between chlorophyll content and leaf water content for
their predictive ability (Tucker, 1979). But changes in vegetation wet-
ness are not always captured in their color. For instance, when
Dennison et al. (2005) compared the LFMC predictive strengths of NDVI
with NDWI, they found that NDWI performed substantially better, be-
cause NDWI is constructed using longer wavelength SWIR and has
higher sensitivity to vegetation water. In this work, we showed that a
similar principle is at play for the use of microwave observations
(which penetrate more deeply than SWIR).

Wang et al. (2019) showed that Sentinel-1 microwave backscatter
can be used for LFMC estimations using a coupled soil backscatter and
vegetation water cloud model. Although their study was limited to 3
sites, they presented process-based evidence for microwave's sensitivity

to LFMC. Their site-scale findings combined with the landscape-scale
empirical evidence presented here confirm the importance of micro-
waves for LFMC estimation.

Our study maps LFMC only for foliar, herbaceous and fine woody
fuels, as the training data from NFMD covers thin vegetation elements
only. Sentinel-1's C-band radar backscatter observations are expected to
be sensitive to these vegetation elements. However, LFMC of denser
woody fuels can be estimated using longer wavelengths such as L-Band
(1–2 GHz; Leblon et al., 2002; Tanase et al., 2015). Even though there
are no current publicly-available L-Band SAR satellites with frequent
revisit, the L-Band NASA-ISRO Synthetic Aperture Radar (NISAR; Rosen
et al., 2015) - which is expected to be launched in 2022 and have a
revisit of 12 days - could open up new opportunities for large scale
mapping of woody LFMC.

4.3. The potential of LFMC maps for fire danger assessment

Land cover plays a dominant role in determining fire risk since it
directly governs fuel characteristics. The selectivity of fires to some land
cover types warrants the need for a robust model with high accuracy
across all land covers (Barros and Pereira, 2014). Our model perfor-
mance ranged from R2=0.49 in closed broadleaf deciduous vegetation
to R2=0.69 in shrublands (Table 2). Shrublands are some of the most
fire prone vegetation in Mediterranean ecosystems, largely due to their
high ignition potential (Moreira et al., 2009). Moreover, the western US
consists of over 45% of shrublands (Figs. S1, S5) making it a vital fuel
class to model. The model's high performance in shrublands makes our
LFMC maps even more relevant to wildfire studies.

A novel feature of our RNN model is the absence of any assumptions
regarding how different species respond differently to meteorological
controls. Rather, using an observation-driven approach, LFMC is esti-
mated from microwave and optical remote sensing's direct sensitivity to
vegetation water and biomass, respectively. Hence, the LFMC maps
generated by the empirical model are entirely dependent on the field
data used to train it, and their representativeness. For instance, since
LFMC field samples were predominantly collected during the fire
season only (Fig. 5a), model errors were larger during winter months
when sufficient training data was unavailable. However, understanding
LFMC's spatio-temporal dynamics during the fire season is more im-
portant and model errors were consistently low for all land covers
during then (Fig. 5b).

Since the field data was derived from sites spanning the whole to-
pographical and climatological range of the western US (Fig. 2b and c),
we expect model errors over the study area to be close to our validation
error. We investigated whether the sampling sites' clustering towards
dry regions (Fig. 2b) could introduce systematic errors in LFMC esti-
mation over the entire study region by comparing site-scale RMSE to
MAP, MAT and elevation (Fig. S6). We observed that at the sampling
sites, no statistically significant relationship existed between site errors
and MAP (p-value = .55) suggesting that the true model error over the
entire study area (i.e. every pixel in western US) is not expected to be
affected by the concentration of the training and validation sites in
relatively drier regions. Thus, due to the climatological and topo-
graphical representativeness of the NFMD sites, the LFMC maps pro-
duced here may be illustrative of LFMC dynamics across the entire
western US.

Despite the fact that the sites were evenly distributed in climato-
logic and topographic space, we did find that shrublands were under-
represented in the NFMD (22% of sites were shrublands, but 45% of the
study area is; Fig. S5). This under-representation combined with high
model accuracy at shrubland sites (R2=0.69) may lead to a greater
accuracy across the entire study region, making the resultant LFMC
maps suitable for studying wildfire risk.
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4.4. Alternate applications: drought stress

Although LFMC is primarily used as a fuel wetness indicator in the
context of wildfires, it fundamentally represents the hydraulic state of
vegetation. If independent estimates of dry biomass are available, it can
be related to many other plant hydraulic metrics such as canopy water
content, relative water content and plant water potential (see Table 1 in
Konings et al., 2019).

Since vegetation hydraulic state can depend on many local, highly
heterogeneous vegetation traits (for e.g., soil water distribution factors,
roots, xylem and stomata; Anderegg et al., 2016), it cannot be estimated
from hydro-meteorological conditions alone. Models rarely have en-
ough information about spatial variability in vegetation traits to cor-
rectly estimate it. Dynamic maps of vegetation hydraulic state can en-
able large scale modeling of vegetation water stress (Brodrick et al.,
2019), vegetation drought tolerance (Konings et al., 2017b) and
drought-driven tree mortality (Rao et al., 2019).

Microwave remote sensing has undeniably helped in inferring ve-
getation properties such as forest biomass (Saatchi et al., 2011), iso-
hydricity (Konings and Gentine, 2017), canopy water content (Saatchi
et al., 2013), and crop parameters (Steele-Dunne et al., 2017). How-
ever, most of these applications have been hampered by the low (tens of
kilometers) spatial resolutions of spaceborne radiometers and scatte-
rometers.

SAR offers a unique opportunity to dramatically increase the spatial
resolution of observations, but there has been limited success in large-
scale efforts to isolate vegetation water information from backscatter.
This is due to the difficulty in parametrizing its complex, highly vege-
tation-dependent relationship with canopy structure and soil moisture
(Ulaby et al., 1988). Even simplified versions of the model require a
host of vegetation structure information which is impractical to gather
at landscape-scales (Graham and Harris, 2003). Empirical approaches
such as the one presented here overcome the need for such information.
Thanks to its direct relevance to wildfires, LFMC has the advantage of
being sampled intensively in the field (Figs. 2, 5a), presenting large
volumes of training data globally for empirical models (Yebra et al.,
2019). If properly interpreted, LFMC maps produced here could
therefore have applications beyond wildfire risk assessment, particu-
larly in vegetation drought stress studies.

5. Conclusion

We presented a physics-assisted, deep learning model to dynami-
cally estimate LFMC, and for the first time ever, produced 15-day LFMC
maps at 250 m spatial resolution for the western US. Sentinel-1 back-
scatter and Landsat-8 optical reflectances were combined with ancillary
static variables to train the model on LFMC field samples. Despite
covering an area that is highly diverse in terms of vegetation type, to-
pography, and climate, the model accuracy (R2 = 0.63,
RMSE = 25.0%, bias = 1.9%) matched or exceeded previous site-scale
empirical as well as process-based methods. This study also showed that
microwave backscatter directly enhances LFMC predictability, since
estimation accuracy dipped substantially (R2 from 0.63 to 0.44 and
RMSE from 25.0% to 31.8%) on excluding microwave-related variables
from the inputs. The LFMC maps produced here can be used for wildfire
risk assessment and landscape-scale studies of vegetation drought stress
in the western US. If sufficient training data can be acquired, the
methodology described here can be applied elsewhere in the world.
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