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Preventing undesirable behavior of
intelligent machines
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Intelligent machines using machine learning algorithms are ubiquitous, ranging from simple data analysis
and pattern recognition tools to complex systems that achieve superhuman performance on various
tasks. Ensuring that they do not exhibit undesirable behavior—that they do not, for example, cause harm
to humans—is therefore a pressing problem. We propose a general and flexible framework for
designing machine learning algorithms. This framework simplifies the problem of specifying and
regulating undesirable behavior. To show the viability of this framework, we used it to create
machine learning algorithms that precluded the dangerous behavior caused by standard machine
learning algorithms in our experiments. Our framework for designing machine learning algorithms
simplifies the safe and responsible application of machine learning.

M
achine learning (ML) algorithms are
having an increasing impact on mod-
ern society. They are used by geolo-
gists to predict landslides (1) and by
biologists working to create a vaccine

for HIV (2); they also influence criminal sen-
tencing (3), control autonomous vehicles (4),
and enable medical advances (5). The potential
for ML algorithms to cause harm—including
catastrophic harm—is therefore a pressing
concern (6). Despite the importance of this
problem, current ML algorithms do not pro-
vide their users with an effective means for
precluding undesirable behavior, whichmakes
the safe and responsible use of ML algorithms
difficult. We introduce a framework for de-
signing ML algorithms that allow their users
to easily define and regulate undesirable be-
havior. This framework does not address the
problem of imbuing intelligent machines with
a notion of morality or human-like values (7),
nor the problem of avoiding undesirable be-
havior that the user never considered (8).
Rather, it provides a remedy for the problem
of ML algorithms that exhibit undesirable
behavior because their users did not have an
effective way to specify and constrain such
behavior.
The first step of the current standard ap-

proach for designing ML algorithms, which
we refer to as the standard ML approach, is
to definemathematically what the algorithm
should do. At an abstract level, this defini-
tion is the same across all branches of ML:
Find a solution q*, within a feasible setQ, that
maximizes an objective function f: Q → ℝ.
That is, the goal of the algorithm is to find a
solution in

arg max
q ∈ Q

f ðqÞ ð1Þ

Note that the algorithmdoes not know f(q) for
any q ∈Q (e.g., the truemean squared error); it
can only reason about it from data (e.g., by
using the sample mean squared error).
One problem with the standard ML ap-

proach is that the user of an ML algorithm
must encode constraints on the algorithm’s
behavior in the feasible set or the objective
function. Encoding constraints in the objec-
tive function [e.g., using soft constraints (9)
or robust and risk-sensitive approaches (10)]
requires extensive domain knowledge or ad-
ditional data analysis to properly balance the
relative importance of the primary objective
function and the constraints. Similarly, encod-
ing constraints in the feasible set [e.g., using
hard constraints (9), chance constraints (11), or
robust optimization approaches (12)] requires
knowledge of the probability distribution from
which the available data are sampled, which is
often not available.
Our framework for designingML algorithms

allows the user to constrain the behavior of
the algorithm more easily, without requiring
extensive domain knowledge or additional
data analysis. This is achieved by shifting the
burden of ensuring that the algorithm is well-
behaved from the user of the algorithm to the
designer of the algorithm. This is important
because ML algorithms are used for critical
applications by people who are experts in
their fields, but whomay not be experts in ML
and statistics.
We now define our framework. LetD, called

the data, be the input to theML algorithm. For
example, in the classification setting,D is not a
single labeled training example but rather all
of the available labeled training examples.D is
a random variable and the source of random-
ness in our subsequent statements regarding
probability. AnML algorithm is a function a,
where a(D) is the solution output by the
algorithm when trained on data D. Let Q be
the set of all possible solutions that an ML

algorithm could output. Our frameworkmath-
ematically defines what an algorithm should
do in a way that allows the user to directly
place probabilistic constraints on the solution,
a(D), returned by the algorithm. This differs
from the standard ML approach wherein the
user can only indirectly constrain a(D) by re-
stricting or modifying the feasible set Q or
objective function f. Concretely, algorithms
constructed using our framework are designed
to satisfy constraints of the form Pr(g(a(D)) ≤
0) ≥ 1 – d, where g: Q→ℝ defines a measure
of undesirable behavior (as illustrated later
by example) and d ∈ [0, 1] limits the admissible
probability of undesirable behavior.
Note that in these constraints, D is the only

source of randomness; we denote random
variables by capital noncalligraphic letters to
make clear which terms are random in state-
ments of probability and expectation. Because
these constraints define which algorithms a
are acceptable (rather than which solutions q
are acceptable), they must be satisfied during
the design of the algorithm rather than when
the algorithm is applied. This shifts the burden
of ensuring that the algorithm is well-behaved
from the user to the designer.
Using our framework for designingML algo-

rithms involves three steps:
1) Define the goal for the algorithm design

process. The designer of the algorithm writes
a mathematical expression that expresses a
goal—in particular, the properties that the
designer wants the resulting algorithm a to
have. This expression has the following form,
which we call a Seldonian optimization prob-
lem after a fictional character (13):

arg max
a ∈ A

f ðaÞ

s:t: ∀i ∈f1; :::;ng;Pr
�
giðaðDÞÞ≤0

�
≥1� di

ð2Þ
whereA is the set of all algorithms that will be
considered by the designer, f:A→ℝ is now an
objective function that quantifies the utility of
an algorithm, and we allow for n ≥ 0 con-
straints, each defined by a tuple (gi, di), where
i ∈ {1, …, n}. Note that this is in contrast to
the standard ML approach: In the standard
ML approach, Eq. 1 defines the goal of the
algorithm, which is to produce a solution with
a given set of properties, whereas in our frame-
work, Eq. 2 defines the goal of the designer,
which is to produce an algorithm with a given
set of properties.
2) Define the interface that the user will use.

The user should have the freedom to specify
one or more gi that capture the user’s own def-
inition of undesirable behavior. This requires
the algorithm a to be compatible with many
different definitions of gi. The designer should
therefore specify the class of possible defini-
tions of gi with which the algorithm will be
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compatible, and should provide ameans for the
user to tell the algorithmwhich definition of gi
should be used, without requiring the user to
have knowledge of the distribution ofD or even
the value gi(q) for any q ∈Q. Below, we provide
examples of how this can be achieved.
3) Create the algorithm. The designer creates

an algorithm a, which is a (possibly approxi-
mate) solution to Eq. 2 from step 1 and which
allows for the class of gi chosen in step 2. In
practice, designers rarely produce algorithms
that cannot be improved upon, which implies
that they may only find approximate solutions
to Eq. 2. Our framework allows for this by re-
quiring a to satisfy only the probabilistic con-
straints while attempting to optimize f; we call
such algorithms Seldonian. We call an algo-
rithm quasi-Seldonian if it relies on reason-
able but false assumptions, such as appeals to
the central limit theorem. See (14) for further
discussion regarding the benefits and limita-
tions of quasi-Seldonian algorithms.
Once a Seldonian algorithm has been de-

signed, a user can apply it by specifying one
or more gi (belonging to the class of gi chosen
in step 2 above) to capture the user’s desired
definition of undesirable behavior, and specify-
ing di, the maximum admissible probability of
the undesirable behavior characterized by gi.
To show the viability of our framework, we

used it to design regression, classification, and
reinforcement learning algorithms. Constrain-
ing the behavior of regression and classification
algorithms is important because, for exam-
ple, they have been used for medical appli-
cations where undesirable behavior could
delay cancer diagnoses (15), and because they
have been shown to sometimes cause racist,
sexist, and other discriminatory behavior (3, 16).
Similarly, reinforcement learning algorithms
have been proposed for applications where
undesirable behavior can cause financial losses
(17), environmental damage (18), and even
death (19). The Seldonian algorithms and
applications we present below are illustrations
to show that it is possible and tractable to de-
sign Seldonian algorithms that can tackle im-
portant problems of interest. Note that these
are intended only as proof of principle; the
primary contribution of this work is the frame-
work itself rather than any specific algorithm
or application. Like the common application of
classification algorithms (20) to the Wisconsin
breast cancer dataset (21), the applications val-
idate our ML algorithms as tools that re-
searchers with medical expertise and domain
knowledge could apply (22), but do not imply
that our learned solutions (classifiers or pol-
icies) should be deployed as-is to any particu-
lar real-world problem.
The regression algorithm that we designed

attempts to minimize the mean squared error
of its predictions while ensuring that, with
high probability, a statistic of interest, g(q), of

the returned solution, q = a(D), is bounded.
The definition of this statistic can be chosen
by the user to capture a particular definition
of undesirable behavior (e.g., the expected
financial loss that results from using a given
solution q). The user may not know the value
of this statistic for even a single solution. We
must therefore provide the user with a way to
tell our algorithm the statistic to be bounded,
without requiring the user to provide the
value, g(q), of the statistic for different solu-
tions q (see step 2 above). To achieve this (14),

we allow the user to specify a sample statistic
ĝðq;DÞ, and we define g(q) to be the expected
value of this sample statistic: g(q) =E½ĝðq;DÞ�,
where E denotes expected value.
The creation of a regression algorithm (step

3) with the properties specified during steps
1 and 2 is challenging. This is to be expected
given the shifted burden discussed previous-
ly; see (14) for a detailed description of how
we performed step 3 when designing all of
the Seldonian algorithms that we present.
Figure 1 overviews our regression algorithms.
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Fig. 2. Seldonian regression algorithm applied to GPA prediction. We used five different regression
algorithms to predict students’ GPAs during their first three semesters at university based on their scores
on nine entrance exams. We used actual data from 43,303 students from Brazil. Here, the user-selected
definition of undesirable behavior corresponds to large differences in mean prediction errors (mean predicted
GPA minus mean observed GPA) for applicants of different genders. This plot shows the mean prediction
errors (±SD) for male and female students when using each regression algorithm. We used three standard
ML algorithms—least squares linear regression (LR) (40), an artificial neural network (ANN) (41), and a
random forest (RF) (42)—and two variants of our Seldonian algorithm: QNDLR and QNDLR(l). All shown
standard ML methods tend to notably overpredict the performance of male students and underpredict the
performance of female students, whereas the two variants of our Seldonian regression algorithm do not. In
particular, our algorithms ensure that, with approximately 95% probability, the expected prediction errors for
men and women will be within e = 0.05, and both effectively preclude the sexist behavior that was exhibited
by the standard ML algorithms.

Fig. 1. Overview of Seldonian regression algorithms. The algorithm takes the behavioral constraints ðgi; diÞni¼1

and training data D as input and outputs either a solution qc or NSF (no solution found). First, the data are
partitioned into two sets, D1 and D2. Next, a routine called Candidate Selection uses D1 to select a single solution,
the candidate solution qc, which it predicts will perform well under the primary objective f while also being
likely to pass the subsequent safety test based on knowledge of the specific form of the test. The Safety Test
mechanism checks whether the algorithm has sufficient confidence that gi(qc) ≤ 0 for each constraint i ∈ {1,…, n}. If
so, it returns the candidate solution qc, otherwise it returns NSF. The Safety Test routine uses standard statistical
tools such as Student’s t test and Hoeffding’s inequality to transform sample statistics computed from D2 into
bounds on the probability that g(a(D)) > 0 (i.e., bounds on the probability of undesirable behavior).
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Recent methods designed particularly for al-
gorithmic fairness in regression tasks (23), de-
veloped in parallel to our own, do not give
users the freedom to select their own desired
definitions of undesirable behavior, nor do
they provide guarantees on the avoidance of
such behavior.

We applied a variant of our Seldonian re-
gression algorithm to the problem of pre-
dicting students’ grade point averages (GPAs)
during their first three semesters at university
on the basis of their scores on nine entrance
exams; we used a sample statistic that cap-
tures one form of discrimination (sexism).

Note that our algorithm is not particular to
the chosenmeasure of discrimination; see (14)
for a discussion of other definitions of fairness.
Figure 2 presents the results of this experi-
ment, showing that commonly used regres-
sion algorithms designed using the standard
ML approach can discriminate against female
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Fig. 3. Seldonian classification algorithm applied to GPA prediction.
We applied using classification algorithms to predict whether student GPAs
will be above 3.0. Shaded regions represent SE over 250 trials. The curves
labeled “Standard” correspond to common classification algorithms designed
using the standard ML approach; the multiple curves for Fairlearn and Fairness
Constraints correspond to different hyperparameter settings for each algorithm
(14). Each row corresponds to a different fairness definition: (A) disparate
impact, (B) demographic parity, (C) equal opportunity, (D) equalized odds,
(E) predictive equality. The horizontal axes of all plots correspond to the amount

of training data and have logarithmic scale. The left column shows the accuracy of
the trained classifiers, the center column shows the probability that each algorithm
returned a solution (non-Seldonian algorithms always returned solutions), and
the right column shows the probability that each classifier violated a behavioral
constraint. When showing the failure rate of each algorithm, the horizontal
dashed line corresponds to 100d%, where d = 0.05. In all cases, the Seldonian
and quasi-Seldonian algorithms returned solutions using a reasonable amount of
data (center), did so without significant losses to accuracy (left), and were the
only algorithms to reliably enforce all five fairness definitions (right).
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students when appliedwithout considerations
for fairness. In contrast, the user can easily limit
the observed sexist behavior in Fig. 2 using our
Seldonian regression algorithm.
To emphasize that Seldonian algorithms are

compatible with a variety of definitions of fair-
ness and to better situate our research relative
to current state-of-the-art fairness-aware ML
algorithms, we present a Seldonian classifi-
cation algorithm (14). This classification algo-
rithm differs from our regression algorithm in
its primary objective (classification loss rather
than mean squared error) and in its more so-
phisticated interface, which allows the user to
type an expression that defines g(q) in terms of
common statistics (such as the false negative
rate or false positive rate given that the pro-
tected attribute, here gender, takes a specific

value), constants, operators (such as addition,
division, and absolute value), and statistics for
which the user can provide unbiased estimates,
as in the regression example. We applied our
classification algorithm to predicting whether
student GPAs will be above 3.0 using the
dataset described in Fig. 2, while constraining
five popular definitions of fairness for classi-
fication (Fig. 3). The Seldonian classification
algorithm properly limited the specified form
of unfair behavior across all trials. Unlike our
approach, fairness-aware classification algo-
rithms designed using the standard ML ap-
proach do not provide probabilistic guarantees
that the resulting classifier is acceptably fair
when applied to unseen data. We observed
that two state-of-the-art fairness-aware algo-
rithms that we ran for comparison, Fairlearn

(24) and Fairness Constraints (25), each pro-
duced unfair behavior under at least one defi-
nition of fairness.
Next, we used our framework to design a

general-purpose Seldonian reinforcement learn-
ing algorithm: one that, unlike regression and
classification algorithms, makes a sequence of
dependent decisions. In this context, a solu-
tion q is called a policy; a historyH (a random
variable) denotes the outcome of using a pol-
icy to make a sequence of decisions; and the
available data D is a set of histories produced
by some initial policy q0. Because it is Seldonian,
our algorithm searches for an optimal policy
while ensuring that Pr(g(a(D)) ≤ 0) ≥ 1 – d.
The algorithmwe designed is compatible with
g of the form g(q) = E[r′(H)|q0] – E[r′(H)|q],
where the user selects –r′(H) to measure a
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Fig. 4. Seldonian reinforcement learning algorithm for proof-of-principle
bolus calculation in type 1 diabetes. Results are averaged over 200 trials;
shaded regions denote SE. The Seldonian algorithm is compared to an algorithm
built using the standard ML approach that penalizes the prevalence of low
blood sugar. (A) Probability that each method returns policies (solutions) that
increase the prevalence of low blood sugar. The algorithm designed using the
standard ML approach often proposed policies that increased the prevalence
of low blood sugar, violating the safety constraint, even though it used an
objective function (reward function) that penalized instances of hypoglycemia.
In contrast, across all trials, our Seldonian algorithm was safe; it never changed
the treatment policy in a way that increased the prevalence of low blood sugar.
(B) Probability that each method returns a policy that differs from the initial
policy. Our Seldonian algorithm was able to safely improve upon the initial policy

with just 1 to 5 months of data. (C) Box plot (with outliers plotted) of the
distribution of the expected returns (objective function values) of the treatment
policies returned by the standard ML algorithm. The blue line depicts the sample
mean; red lines within the boxes mark the medians. All points below –0.1116
[where the blue curve in (D) begins] correspond to cases where the standard
ML algorithm both decreased performance and produced undesirable behavior
(an increase in the prevalence of low blood sugar). (D) Similar to (C), but
showing results for the Seldonian algorithm. The magenta line is the average
of the performance when the algorithm produced a policy that differed from
the initial policy. Notice that all points have values of at least –0.1116, indicating
that our algorithm never produced undesirable behavior. When boxes appear
to be missing, the boxes have zero width and are obscured by the red line
indicating the median of the box.
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particular definition of how undesirable the
history H is. That is, with probability at least
1 – d, the algorithm will not output a policy q
that increases the user-specified measure of
undesirable behavior. Notice that the user
need only be able to recognize undesirable
behavior to define r′; the user does not need
to know the distributions over historiesH that
result from applying different policies. For
example, the user might define r′(H) = –1 if
undesirable behavior occurred in H, and
r′(H) = 0 otherwise.
Some previous reinforcement learningmeth-

ods are guaranteed to increase the primary
objective with high probability (26–28). These
algorithms can be viewed as Seldonian or
quasi-Seldonian algorithms that are restrict-
ed to only work with one definition of un-
desirable behavior: a decrease in the primary
objective. This restricted definition of un-
desirable behavior precludes their applica-
tion to problems where undesirable behavior
does not align perfectly with the primary
objective (see fig. S31 for an example where
the behavioral constraint and primary ob-
jective are conflicting). Similarly, data-driven
robust optimization (29) has also provided
high-probability guarantees on constraint sat-
isfaction, but only for convex constraints and a
subset of objectives f that do not include the
regression, classification, and reinforcement
learning examples we consider (14).
Of the many high-risk, high-reward applica-

tions of reinforcement learning that have been
proposed, we selected one to show the feasi-
bility of our approach: automatically adjusting
the treatment for a personwith type 1 diabetes
(30, 31). In this application, a policy q (as defined
above) is a bolus calculator, which determines
the amount of insulin that a person should
inject prior to ingestion of a carbohydrate-
containing meal to avoid high blood sugar
levels. To simulate the metabolism of a human,
we used a detailed metabolic simulator (32).
Each historyH corresponds to the outcome of
1 day, and we defined –r′(H) to be a measure
of the prevalence of low blood sugar (with
particularly large penalties for hypoglycemia,
i.e., dangerously low blood sugar levels) in the
history H. Enforcing high-probability safety
constraints on hypoglycemia is important
because of the severe health consequences
caused by hypoglycemia, including alteredmen-
tal status, confusion, coma, and even death
(33–35).
Figure 4 shows the result of applying both

our Seldonian algorithm and a baseline algo-
rithm designed using the standard ML ap-
proach. The baseline algorithmuses a technique
called importance sampling (36) to estimate
the performance of all policies using the data
D generated by the initial policy q0, and it re-
turns the policy predicted to perform best.
This non-Seldonian algorithm (14) closely

resembles our Seldonian algorithm with the
behavioral constraints removed. Neither the
Seldonian algorithm nor the corresponding
standard ML approach algorithm are meant
to be used directly in clinical practice; however,
comparing their behavior provides insight
into the effects of our Seldonian framework.
Note from Fig. 4 that our algorithm does not
propose a new policy until it has high con-
fidence that the prevalence of low blood sugar
will not increase. Our algorithm is not specific
to this particular choice of constraint [see (14)
for implementation of alternative constraints,
such as constraints on the mean time hyper-
glycemic]. Our approach is complementary to
existing work on personalized bolus calcu-
lators that do not use reinforcement learning
but rely on experts or prior data to set critical
parameters (14, 37). These parameters could
be adapted for each individual using a rein-
forcement learning approach, and a Seldonian
reinforcement learning algorithm would en-
sure that it would alter the parameters only
when it is highly confident that the change
would not cause undesirable behavior (e.g.,
increase the prevalence of hypoglycemia) for
the particular individual. Although any clin-
ical application would leverage a more com-
plicated policy thanwhat we consider here, we
use this as an illustration of how a Seldonian
algorithm could be used as part of a broader
effort to provide personalized policies for high-
stakes applications.
Given the recent rise of real-world ML ap-

plications and the corresponding surge of
potential harm that they could cause, it is
imperative that ML algorithms provide their
users with an effective means for controlling
behavior. To this end, we have proposed a
framework for designing ML algorithms and
shown how it can be used to construct algo-
rithms that provide their users with the
ability to easily (that is, without requiring
additional data analysis) place limits on the
probability that the algorithm will produce
any specified undesirable behavior. Algo-
rithms designed using our framework are
not just a replacement for ML algorithms in
existing applications; it is our hope that they
will pave the way for new applications for
which the use ofMLwas previously deemed to
be too risky.
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algorithm. The researchers illustrate the benefits of their approach using examples in gender fairness and diabetes
introduce a general framework for algorithm design in which this burden is shifted from the user to the designer of the 

et al.this harmful behavior is placed on the user of the algorithm, who most often is not a computer scientist. Thomas 
causing financial loss or delaying medical diagnoses. In standard machine learning approaches, the burden of avoiding
applications affect quality of life. Yet such algorithms often exhibit undesirable behavior, from various types of bias to 

Machine learning algorithms are being used in an ever-increasing number of applications, and many of these
Making well-behaved algorithms
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