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Abstract

Deep neural networks progressively transform their inputs across multiple pro-
cessing layers. What are the geometrical properties of the representations learned
by these networks? Here we study the intrinsic dimensionality (ID) of data-
representations, i.e. the minimal number of parameters needed to describe a repre-
sentation. We find that, in a trained network, the ID is orders of magnitude smaller
than the number of units in each layer. Across layers, the ID first increases and then
progressively decreases in the final layers. Remarkably, the ID of the last hidden
layer predicts classification accuracy on the test set. These results can neither be
found by linear dimensionality estimates (e.g., with principal component analysis),
nor in representations that had been artificially linearized. They are neither found
in untrained networks, nor in networks that are trained on randomized labels. This
suggests that neural networks that can generalize are those that transform the data
into low-dimensional, but not necessarily flat manifolds.

1 Introduction

Deep neural networks (DNNs), including convolutional neural networks (CNNs) for image data, are
among the most powerful tools for supervised data classification. In DNNs, inputs are sequentially
processed across multiple layers, each performing a nonlinear transformation from a high-dimensional
vector to another high-dimensional vector. Despite the empirical success and widespread use of
DNNs, we still have an incomplete understanding about why and when they work so well – in
particular, it is not clear yet why they are able to generalize well to unseen data, not withstanding
their massive overparametrization (1). While progress has been made recently [e.g. (2; 3)], guidelines
for selecting architectures and training procedures are still largely based on heuristics and domain
knowledge.

A fundamental geometric property of a data representation in a neural network is its intrinsic
dimension (ID), i.e., the minimal number of coordinates which are necessary to describe its points
without significant information loss. It is widely appreciated that deep neural networks are over-
parametrized, and that there is substantial redundancy amongst the weights and activations of deep
nets – e.g., several studies in network compression have shown that many weights in deep neural
networks can be pruned without significant loss in classification performance (4; 5). Linear estimates
of the ID in DNNs have been computed theoretically and numerically in simplified models (6), and
local estimates of the ID developed in (7) have been related to robustness properties of deep networks
to adversarial attacks (8; 9), showing that a low local intrinsic dimension correlates positively with
robustness. Local ID of object manifolds can also be estimated at several locations on the tangent
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space, and was found to decrease along the last hidden layers of AlexNet (10; 11). Both linear and
nonlinear dimensionality reduction techniques have been used extensively to visualize computations
in deep networks (12; 13; 14). Estimates of the local ID (7) can assume very low values in the last
hidden layers (15), and can be used to signal the onset of overfitting in the presence of noisy labels.
Thus, local ID can be used to drive learning towards high generalization solutions, also in conditions
of severe noise contamination, showing a connection between intrinsic dimension and generalization
during training of specific models (15).

However, there has not been a direct and systematic characterization of how the intrinsic dimension
of data manifolds varies across the layers of CNNs and how it relates to generalization across a wide
variety of architectures. We here leverage TwoNN (16), a recently developed estimator for global
ID that exploits the fact that nearest-neighbour statistics depend on the ID (17) (see Fig. 1 for an
illustration). TwoNN can be applied even if the manifold containing the data is curved, topologically
complex, and sampled non-uniformly. This procedure is not only accurate, but also computationally
efficient. In a few seconds on a desktop PC it provides the estimate of the ID of a data set with O(104)
data, each with O(105) coordinates (for example the activations in an intermediate layer of a CNN),
thus making it possible to map out ID across multiple layers and networks. Using this estimator, we
investigated the variation of the ID along the layers of a wide range of deep neural networks trained
for image classification. Specifically, we addressed the following questions:

• How does the ID change along the layers of CNNs? Do CNNs compress representations into
low-dimensional manifolds, or, conversely, seek to expand the dimensionality?
• How different is the actual ID from the ‘linear’ dimensionality of a network, i.e., the dimen-

sionality of the linear subspace containing the data-manifold? A substantial mismatch would
indicate that the underlying manifolds are curved rather than flat.
• How is the ID of a network related to its generalization performance? Can we find empirical

signatures of generalization performance in the geometrical structure of the representations?
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Figure 1: The TwoNN estimator derives an estimate of
intrinsic dimensionality from the statistics of nearest-
neighbour distances.

Our analyses show that data representations
in CNNs are embedded in manifolds of low
dimensionality, which is typically several
orders of magnitude lower than the dimen-
sionality of the embedding space (the num-
ber of units in a layer). In addition, we
found that the variation of the ID along the
hidden layers of CNNs follows a similar
trend across different architectures – the
early layers expand the dimensionality of
the representations, followed by a mono-
tonic decrease that brings the ID to reach
low values in the final layers.

Moreover, we observed that, in networks
trained to classify images, the ID of the
training set in the last hidden layer is an
accurate predictor of the network’s classi-
fication accuracy on the test set – i.e, the
lower the ID in this layer, the better the
network capability of correctly classifying
the image categories in a test set. Conversely, in the last hidden layer, the ID remains high for a
network trained on non predictable data (i.e., with permuted labels), on which the network is forced
to memorize rather than generalize. These geometrical properties of representations in trained neural
networks were empirically conserved across multiple architectures, and might point to an operating
principle of deep neural networks.

2 Estimating the intrinsic dimension of data representations

Inferring the intrinsic dimension of high-dimensional and sparsely sampled data representations is
a challenging statistical problem. To estimate the ID of data-representations in deep networks, we
leverage a recently developed global ID-estimator (‘TwoNN’) that is based on computing the ratio
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between the distances to the second and first nearest neighbors (NN) of each data point (16) (see Fig.
1). This allows overcoming the problems related to the curvature of the embedding manifold and to
the local variations in the density of the data points, under the weak assumption that the density is
constant on the scale of the distance between each point and its second nearest neighbor.

Formally, let points xi be uniformly sampled on a manifold with intrinsic dimension d and let N
be the total number of points. Let r(1)i and r(2)i be the distances of the first and second neighbor
of i respectively. Then µi

.
= r

(2)
i /r

(1)
i , i = 1, 2, ..., N follows a Pareto distribution with parameter

d+ 1 on [1,+∞), f(µi|d) = dµ
−(d+1)
i . Taking advantage of this observation, we can formulate the

likelihood of vector µµµ .
= (µ1, µ2, ..., µN ) as

P (µµµ|d) = dN
N∏
i=1

µ
−(d+1)
i . (1)

At this point d can be easily computed, for instance by maximizing the likelihood, or, following (16),
by employing the empirical cumulate of the distribution of the µ values to reduce the ID estimation
task to a linear regression problem. Indeed, the ID can also be estimated by restricting the product in
eq. 1 to non-intersecting triplets of points, for which independence is strictly satisfied, but, as shown
in ref. (16), in practice this does not significantly affect the estimate.

The ID estimated by this approach is asymptotically correct even for samples harvested from highly
non-uniform probability distributions. For a finite number of data points, the estimated values remain
very close to the ground truth ID, when this is smaller than ∼ 20. For larger IDs and finite sample
size, the approach moderately underestimates the correct value, especially if the density of data is
non-uniform. Therefore, the values reported in the following figures, when larger ∼ 20, should be
considered as lower bounds.

For real-world data, the intrinsic dimension always depends on the scale of distances on which the
analysis is performed. This implies that the reliability of the dimensionality estimate needs to be
assessed by measuring the intrinsic dimension at different scales and by checking whether it is, at
least approximately, scale invariant (16). In our analyses, this test was performed by systematically
decimating the dataset, thus gradually reducing its size. The ID was then estimated on the reduced
samples, in which the average distance between data points had become progressively larger. This
allowed estimating the dependence of the ID on the scale. As explained in (16), if the ID is well-
defined, its estimated value will only depend weakly on the number of data points N ; in particular it
will be not severely affected by the presence of “hubs”, since the decimation procedure would kill
them (see Fig. 2B).

To test the reliability of our ID estimator on embedding spaces with a dimension comparable to that
found in the layers of a deep network, we performed tests on artificial data of known ID, embedded
in a 100,000 dimensional space. The test did not reveal any significant degradation of the accuracy.
Indeed, the ID estimator is sensitive only to the value of the distances between pair of points, and this
distance does not depend on the embedding dimension.

For computational efficiency, we analyzed the representations of a subset of layers. We extracted
representations at pooling layers after a convolution or a block of consecutive convolutions, and at
fully connected layers. In the experiments with ResNets, we extracted the representations after each
ResNet block (18) and the average pooling before the output. See A.1 for details.

The code to compute the ID estimates with the TwoNN method and to reproduce our experiments is
available at this repository.

3 Results

3.1 The intrinsic dimension exhibits a characteristic shape across several networks

Our first goal was to empirically characterize the ID of data representations in different layers of deep
neural networks. Given a layer l of a DNN, an individual data point (e.g., an image) is mapped onto
the set of activations of all the nl units of the layer, which define a point in a nl-dimensional space.
We refer to nl as the embedding dimension (ED) of the representation in layer l. A set of N input
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Figure 2: Modulation of ID across hidden layers of deep convolutional networks A) ID across
layers of VGG-16-R, error bars are the standard deviation of the ID (see A.1). Numbers in plot
indicate embedding dimensionality of each layer. B Subsampling analysis on VGG-16-R experiment,
reported for the same layers as in the inset in A (see A.1 for details).

samples (e.g., N images) generate, in each layer l, a set of N nl-dimensional points. We estimated
the dimension of the manifold containing these points using TwoNN.

We first investigated the variation of the ID across the layers of a VGG-16 network (19), pre-trained
on ImageNet (11), and fine-tuned and evaluated on a synthetic data-set of 1440 images (20). The
dataset consisted of 40 3D objects, each rendered in 36 different views (we left out 6 images for each
object as a test set) – it thus spanned a spectrum of different appearances, but of a small number
of underlying geometrical objects. When estimating the ID of data representations on this network
(referred to as ‘VGG-16-R’), we found that the ID first increased in the first pooling layer, before
successively and monotonically decreasing across the following layers, reaching very low values in
the final hidden layers (Fig. 2A). For instance, in the fourth layer of pooling (pool4) of VGG-16-R,
ID ≈ 19 and ED ≈ 105, with ID

ED ≈ 2× 10−4.

One potential concern is whether the number of stimuli is sufficient for the ID-estimate to be robust.
To investigate this, we repeated the analysis on subsamples randomly chosen on the data manifold,
finding that the estimated IDs were indeed stable across a wide range of sample sizes (Fig. 2B). We
note that, for the early/intermediate layers, the reported values of the ID are likely a lower bound to
the real ID (see discussion in (16)).

Are the ‘hunchback’ shape of the ID variation across the layers (i.e., the initial steep increase followed
by a gradual monotonic decrease), and the overall low values of the ID, specific to this particular
network architecture and dataset? To investigate this question, we repeated these analyses on several
standard architectures (AlexNet, VGG and ResNet) pre-trained on ImageNet (21). Specifically, we
computed the average ID of the object manifolds corresponding to the 7 biggest ImageNet categories,
using 500 images per category (see section A.1). We found both the hunchback-shape and the low
IDs to be preserved across all networks (Fig. 3A): the ID initially grew, then reached a peak or a
plateau and, finally, progressively decreased towards its final value. As shown in Fig. 8 for AlexNet,
such profile of ID variation across layers was generally consistent across object classes.

The ID in the output layer was the smallest, often assuming a value of the order of ten. Such a low
value is to be expected, given that the ID of the output layer of a network capable of recognizing Nc

categories is bound by the condition Nc ≤ 2ID, which implies that each category is associated with a
binary representation, and that the output layer optimally encodes this representation. For the ∼ 1000
categories of ImageNet, this bound becomes ID & 10, a value consistent with those observed in all
the networks we considered.

Is the relative (rather than the absolute) depth of a layer indicative of the ID? To investigate this,
we plotted ID against relative depth (defined as the absolute depth of the layer divided by the total
number of layers, not counting batch normalization layers (12)) of the 14 models belonging to the
three classes of networks (Fig. 3B). Remarkably, the ID profiles approximately collapsed onto a
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Figure 3: ID of object manifolds across networks. A) IDs of data representations for 4 networks:
each point is the average of the IDs of 7 object manifolds. The error bars are the standard deviations
of the ID across the single object’s estimates (see A.1). B) The ID as a function of the relative depth
in 14 deep convolutional networks spanning different sizes, architectures and training techniques.
Despite the wide diversity of these models, the ID profile follows a typical hunchback shape (error
bars not shown).

common hunchback shape 1, despite considerable variations in the architecture, number of layers, and
optimization algorithms. For networks belonging to the VGG and ResNet families, the rising portions
of the ID profiles substantially overlapped, with the ID reaching similar large peak values (between
100 and 120) in the relative depth range 0.2-0.4. The dependence on relative depth is consistent with
the results of (12), where it was observed that similarity between layers depended on relative depth.

Notably, in all networks the ID eventually converged to small values in the last hidden layer. These
results suggest that state-of-the-art deep neural networks – after an initial increase in ID – perform
a progressive dimensionality reduction of the input feature vectors, a result with is consistent with
the information-theoretical analysis in (22). Based on previous findings about the evolution of the
ID in the last hidden layer during training (15), one could speculate that this progressive, gradual
reduction of dimensionality of data-manifolds is a feature of deep neural networks which allows them
to generalize well. In the following, we will investigate this idea further by showing that the ID of the
last hidden layers predicts generalization performance, and by showing that these properties cannot
be found in networks with random weights or trained on non predictable data.

3.2 The intrinsic dimension of the last hidden layer predicts classification performance

Although the hunchback shape was preserved across networks, the IDs in the last hidden layers were
not exactly the same for all the networks. To better resolve such differences, we computed the ID in
the last hidden layer of each network using a much larger pool of images of the training set (∼ 2, 000),
sampled from all ImageNet categories (see section A.1). This revealed a spread of ID values, ranging
between ≈ 12 (for ResNet152) and ≈ 25 (for AlexNet, Fig. 4). These differences may appear small,
compared to the much larger size of the embedding space in the last hidden layer (where the ED was
between 1 and 2 orders of magnitude larger than the ID (range = [512− 4096]). However, the ID
in the last hidden layer on the training set was indeed a strong predictor of the performance of the
network on the test set, as measured by top 5-score (Fig. 4, Pearson correlation coefficient r = 0.94).
A tight correlation was found not only across the full set of networks, but also within each class of
architectures, when such comparison was possible – i.e., in the classes of the VGG with and without
batch normalization and ResNets (r = 0.99 in the latter case, see inset in Fig. 4).

1with the exception of AlexNet, and a small network trained on MNIST in a separate analysis, see section
3.4 for details and analysis
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Overall, this analysis suggests that the ID in the last hidden layer can be used as a proxy for the
generalization ability of a network. Importantly, this proxy can be measured without estimating the
performance on an external validation set.

3.3 Data representations lie on curved manifolds
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on the test set. Inset Detail for the ResNet class.

The strength of the TwoNN method lies in its
ability to infer the ID of data representations,
even if they lie on curved manifolds. This raises
the question of whether our observations (low
IDs, hunchback shapes, correlation with test-
error) reflect the fact that data points live on
low-dimensional, yet highly curved manifolds,
or, simply, in low-dimensional, but largely flat
(linear) subspaces.

To test this, we performed linear dimensionality
reduction (principal component analysis, PCA)
on the normalized covariance matrix (i.e., the
matrix of correlation coefficients – using the
raw covariance resulted in qualitatively similar
results) for each layer and network. We did
not find a clear gap in the eigenvalue spectrum
(Fig. 5A), a result that is qualitatively consistent
with that obtained for stimulus-representations
in primary visual cortex (23). The absence of a
gap in the spectrum, with the magnitude of the
eigenvalues smoothly decreasing as a function
of their rank, is, by itself, an indication that the
data manifolds are not linear. Nevertheless, we defined an ‘ad-hoc’ estimate of dimensionality by
computing the number of components that should be included to describe 90% of the variance in the
data. In what follows, we call this number PC-ID. We found PC-ID to be about one or two orders of
magnitude larger than the value of the ID computed with TwoNN. For example, the PC-ID in the last
hidden layer of VGG-16 was ≈ 200 (Fig. 5C, solid red line), while the ID estimated with TwoNN
was ≈ 18 (solid black line).

The discrepancy between the ID estimated with TwoNN and with PCA points to the existence of
strong non-linearities in the correlations between the data, which are not captured by the covariance
matrix. To verify that this was indeed the case (and, e.g., not a consequence of estimation bias),
we used TwoNN to compare the ID of the last hidden layer of VGG-16 with the ID of a synthetic
Gaussian dataset with the same second-order moments. The ID of the original dataset was low and
stable as a function of the size N of the data sample used to estimate it (Fig. 5B, black curve; similar
subsampling analysis as previously shown in Fig. 2B). In contrast, the ID of the synthetic dataset was
two orders of magnitude larger, and grew with N (Fig. 5B, red curve), as expected in the case of an
ill-defined estimator (16).

We also computed the PC-ID of the object manifolds across the layers of VGG-16 on randomly
initialized networks, and we found that its profile was qualitatively the same as in trained networks
(compare solid and dashed red curves in Fig. 5C). By contrast, when the same comparison was
performed on the ID (as computed using TwoNN), the trends obtained on random weights (dashed
black curve) and after training the network (solid black curve) were very different. While the latter
showed the hunchback profile (same as in Fig. 3), the former was remarkably flat. This behaviour
can be explained by observing that the ID of the input is very low (see section 3.4 for a discussion
of this point). For random weights, each layer effectively performs an orthogonal transformation,
thus preserving such low ID across layers. Importantly, the hunchback profile observed for the ID
in trained networks (Figs 2A, 3A,B) is a genuine result of training, which does not merely reflect
the initial expansion of the ED from the input to the first hidden layers, as shown by the fact that, in
VGG-16, the ID kept growing after that the ED had already started to substantially decline (compare
the solid black and blue curves in Fig. 5C).
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The analysis shown in Fig. 5C also indicates that intermediate layers and the last hidden layer
undergo opposite trends, as the result of training (compare the solid and dashed black curves): while
the ID of the last hidden layer is reduced with respect to its initial value [consistently with what
reported in (15)], the ID of intermediate layers increases by a large amount. This prompted us to run
an exploratory analysis to monitor the ID evolution during training in a VGG-16 network trained
with CIFAR-10. We observed a behavior that was consistent with that already reported in Fig. 5C:
a substantial increase of the ID in the initial/intermediate layers, and a decrease in the last layers
(Fig. 9A, black vs. orange curve). Interestingly, a closer inspection of the dynamics in the last hidden
layer revealed a non-monotonic variation of the ID (see Fig. 9B,C). Here, after an initial drop, the ID
slowly increased, but, differently from (15), without resulting in substantial overfitting. Thus, the
evolution of the ID during learning appears to be not strictly monotonic and its trend likely depends
on the specific architecture and dataset, calling for further investigation.
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Figure 5: Evidence that data-representations are on curved manifolds A) Variance spectra of last
hidden layer do not show a clear gap. B) ID in the last hidden layer of VGG-16 (black), compared
with the ID of a synthetic Gaussian dataset with the same size and second-order correlations structure
(red). C) The ID and the PC-ID along the layers of VGG-16 for a trained network and an untrained,
randomly initialized network. The ED, rescaled to reach the maximum at 400, is shown in blue.

3.4 The initial increase in intrinsic dimension can arise from irrelevant features

We generally found the ID to increase in the initial layers. However, this was not observed for a
small network trained on the MNIST data-set (Fig. 6B, black curve) and was also less pronounced
for AlexNet (Fig. 3A, orange curve). A mechanism underlying the initial ID rise could be the fact
that the input is dominated by features that are irrelevant for predicting the output, but are highly
correlated between each other. To validate this hypothesis, we generated a modified MNIST dataset
(referred to as MNIST?) by adding a luminance perturbation that was constant for all pixels within an
image, but random across the various images (Fig. 6A). Given an image i with pixels of xi ∈ RN

(where N is the number of pixels), we added shared random perturbations, xi → x?i = xi + λξi
where λ is a positive parameter and ξi are i.i.d. uniformly distributed random variables in the range
[0, 1]. This perturbation has the effect of stretching the dataset along a specific direction in the input
space (the vector [1, 1, . . . , 1]) thus reducing the ID of the data manifold in the input layer. Indeed,
with λ = 100, the ID of the input representation dropped from ≈ 13 (its original value) to ≈ 3.

The network trained on MNIST? was still able to generalize (accuracy ≈ 98%). However, the
variation of the ID (blue curve in Fig. 6B) now showed a hunchback shape reminiscent of that already
observed in Figs 2A and 3A,B for large architectures. This suggests that the growth of the ID in the
first hidden layers of a deep network is determined by the presence in the input data of low-level
features that carry no information about the correct labeling – for instance, in the case of images,
gradients of luminance or contrast. One can speculate that, in a trained deep network, the first layers
prune the irrelevant features, formatting the representation for the more advanced processing carried
out by the last layers (22). The initial increase of the dimensionality of the data manifold could be
the signature of such pruning. This notion is consistent with recent evidence gathered in the field of
visual neuroscience, where the pruning of low-level confounding features, such as luminance, has
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been demonstrated along the progression of visual cortical areas that, in the rat brain, are thought to
support shape processing and object recognition (24).

Figure 6: A The addition of a luminance gradient across the images of the MNIST dataset results in a
stretching of the image manifold along a straight line in the input space of the pixel representation.
B Change of the ID along all the layers of the MNIST network, as obtained in three different
experiments: 1) with the original MNIST dataset (black curve) 2) with the luminance-perturbed
MNIST? dataset (blue curve) and 3) with the MNIST†, in which the label of the MNIST images
where randomly shuffled (red curve).

3.5 A network trained on random labels does not show the characteristic hunchback profile
of ID variation

In untrained networks the ID profile is largely flat (Fig. 5C). Are there other circumstances in which
the ID profile deviates from the typical hunchback shape of Figs 2A and 3A,B, with IDs that do not
decrease progressively towards the output? It turns out that this is the case when generalization is
impossible by construction, as we verified by randomly shuffling the labels on MNIST (we refer to
the shuffled data as MNIST†).

It has been shown (1) that deep networks can perfectly fit the training set on randomly labelled data,
while necessarily achieving chance level performance on the test set. As a result, when we trained
the same network as in section 3.4 on MNIST†, we achieved a training error of zero. However, we
found that the network had an ID profile which did not decrease monotonically (orange curve in Fig.
6B) – in contrast to the same network trained with the original dataset (black curve). Instead, it grew
considerably in the second half of the network, almost saturating the upper bound, which is set by
the ED, in the output layer. This suggests that the reduction of the dimensionality of data manifolds
in the last layers of a trained network reflects the process of learning on a generalizable dataset. By
contrast, overfitting noisy labels leads to an expansion of the dimensionality, as already reported in
(15). As suggested in that study, this indicates that a network trained on inconsistent data can be
recognized without estimating its performance on a test set, but by simply looking at whether the ID
increases substantially across its final layers.

4 Conclusions and Discussion

Convolutional neural networks, as well as their biological counterparts, such as the visual system of
primates (25) and other species (24; 26), transform the input images across a progression of processing
stages, eventually providing an explicit (i.e. transformation-tolerant) representation of visual objects
in the output layer. Leading theories in the field of visual neuroscience postulate that such re-
formatting gradually untangles and flattens the manifolds produced by the different images within
the representational space defined by the activity of all the neurons (or units) in a layer (25; 27; 28).
This suggests that the dimensionality of the object manifolds may progressively decrease along
the layers of a deep network, and that such a decrease may be at the root of the high classification
accuracy achieved by deep networks. Although previous theoretical and empirical studies have
provided support to this hypothesis using small/simple network architectures or focusing on single
layers of large networks (6; 10; 15; 29; 30; 31), our study is the first to investigate systematically how
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the dimensionality of individual object manifolds - or mixtures of object manifolds - vary in large,
state-of-the-art CNNs used for image classification.

Our results can be summarized by making reference to the cartoon shown in Fig. 7. We found that the
ID in the initial layer of a network is low. As shown in Fig. 6, this can be explained by the existence
of gradients of correlated low-level visual features (e.g., luminance, contrast, etc.) across the image
set (32), resulting in a stretching of image representations along a few, main variation axes within the
input space (see Fig. 7A). Early layers of DNNs appear to get rid of these correlations, which are
irrelevant for the classification task, thus leading to an increase of the ID of the object manifolds (Fig.
2A and 3A,B). As illustrated in Fig. 7B, this can be thought as a sort of whitening of the input data.
Such initial dimensionality-expansion is also thought to be performed in the visual system (28; 32),
and is consistent with a recent characterization of the dimensionality of image representations in
primary visual cortex (23) and with the pruning of low-level information performed by high-order
visual cortical areas (24).

Figure 7: A. Input layer. The intrinsic dimen-
sionality of the data can assume low values
due to the presence of irrelevant features un-
correlated with the ground truth. B. The first
hidden layers pre-process the data raising its
intrinsic dimension. C,D. The representation
is squeezed onto manifolds of progressively
lower intrinsic dimension. These manifolds
are typically not hyperplanes. D. In the last
hidden layer (D) the ID shows a remarkable
correlation with the performance in trained
networks. E. The output layer.

After this initial expansion, the representation is
squeezed into manifolds of progressively lower ID
(Figs 2, 3A,B), as graphically illustrated in Fig.
7C,D). This phenomenon has been already observed
by (29) and (6) on simplified datasets and architec-
tures, by (10) in the final, fully connected layers of
AlexNet, and by (15) in the last hidden layers of two
different DNNs, where the ID evolution was tracked
during training. We here demonstrate that this pro-
gressive reduction of the dimension of data manifolds
is a general behavior and a key signature of every
CNN we tested – both small toy models (Fig. 6B)
and large state-of-the-art networks (Fig. 3A,B). More
importantly, our experiments show that the extent
to which a deep network is able to compress the di-
mensionality of data representations in the last hidden
layer is a key predictor of its ability to generalize well
to unseen data (Fig. 4) – a finding that is consistent
with the inverse relationship between ID and accu-
racy reported by (15), although our pilot tests suggest
that the ID, after a large, initial drop, can slightly in-
crease during training without producing overfitting
(Fig. 9). From a theoretical standpoint, this result is
broadly consistent with recent studies linking the clas-
sification capacity of data manifolds by perceptrons
to their geometrical properties (30; 33). Our findings
also resonate with the compression of the information
about the input data during the final phase of training
of deep networks (34), which is progressively larger
as a function of the layer’s depth, thus displaying a trend that is reminiscent of the one observed for
the ID in our study.

Finally, our experiments also show that the ID values are lower than those identified using PCA,
or on ‘linearized’ data, which is an indication that the data lies on curved manifolds. In addition,
ID measures from PCA did not qualitatively distinguish between trained and randomly initialized
networks (Fig. 5C). This conclusion is at odds with the unfolding of data manifolds reported by (31)
across the layers of a small network tested with simple datasets. It also suggests a slight twist on
theories about transformations in the visual system (25; 27) – it indicates that a flattening of data
manifolds may not be a general computational goal that deep networks strive to achieve: progressive
reduction of the ID, rather than gradual flattening, seems to be the key to achieving linearly separable
representations.

To conclude, we hope that data-driven, empirical approaches to investigate deep neural networks,
like the one implemented in our study, will provide intuitions and constraints, which will ultimately
inspire and enable the development of theoretical explanations of their computational capabilities.
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