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Despite being one of the most common and well-estab-
lished imaging modalities, chest radiography is subject 

to significant interreader variability and suboptimal sensi-
tivity for important clinical findings. Recent advances in 
deep learning offer promise for improving chest radiograph 
interpretation (1–4) and there are several recent reports of 
machine learning models achieving radiologist-level per-
formance for different chest radiograph findings (5–7).

A critical aspect of developing clinically relevant di-
agnostic models involves evaluation in representative test 
sets with carefully defined ground truth labels. Inter-
reader variability in establishing reference standard image 
labels can significantly impact performance evaluation 
(8–14). Previous work in deep learning for radiologic 

image analysis has generally used a single-reader or a ma-
jority-vote approach across multiple independent readers 
to provide reference-standard labels (5,6,15). However, 
because of errors or inconsistencies in the resulting labels, 
such approaches may lead to overestimation of model 
performance. For example, challenging but critical find-
ings may be under recognized and thus mislabeled by a 
majority-vote approach if they are only identified by a 
minority of the independent readers. This can result in 
the inability for a model to detect these findings (because 
of incorrect training labels), and also the inability to mea-
sure these errors (because of incorrect reference standard 
labels), resulting in a false sense of model accuracy. There-
fore, the use of more rigorous approaches to generating 
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Background: Deep learning has the potential to augment the use of chest radiography in clinical radiology, but challenges include poor 
generalizability, spectrum bias, and difficulty comparing across studies.

Purpose: To develop and evaluate deep learning models for chest radiograph interpretation by using radiologist-adjudicated refer-
ence standards.

Materials and Methods: Deep learning models were developed to detect four findings (pneumothorax, opacity, nodule or mass, and 
fracture) on frontal chest radiographs. This retrospective study used two data sets. Data set 1 (DS1) consisted of 759 611 images 
from a multicity hospital network and ChestX-ray14 is a publicly available data set with 112 120 images. Natural language process-
ing and expert review of a subset of images provided labels for 657 954 training images. Test sets consisted of 1818 and 1962 images 
from DS1 and ChestX-ray14, respectively. Reference standards were defined by radiologist-adjudicated image review. Performance 
was evaluated by area under the receiver operating characteristic curve analysis, sensitivity, specificity, and positive predictive value. 
Four radiologists reviewed test set images for performance comparison. Inverse probability weighting was applied to DS1 to ac-
count for positive radiograph enrichment and estimate population-level performance.

Results: In DS1, population-adjusted areas under the receiver operating characteristic curve for pneumothorax, nodule or mass, 
airspace opacity, and fracture were, respectively, 0.95 (95% confidence interval [CI]: 0.91, 0.99), 0.72 (95% CI: 0.66, 0.77), 
0.91 (95% CI: 0.88, 0.93), and 0.86 (95% CI: 0.79, 0.92). With ChestX-ray14, areas under the receiver operating characteristic 
curve were 0.94 (95% CI: 0.93, 0.96), 0.91 (95% CI: 0.89, 0.93), 0.94 (95% CI: 0.93, 0.95), and 0.81 (95% CI: 0.75, 0.86), 
respectively.

Conclusion: Expert-level models for detecting clinically relevant chest radiograph findings were developed for this study by using 
adjudicated reference standards and with population-level performance estimation. Radiologist-adjudicated labels for 2412 ChestX-
ray14 validation set images and 1962 test set images are provided.
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patient remained in the same split to avoid training and testing 
on the same patient.

Validation and Test Set Image Selection
To provide a sufficient number of diverse and high-quality la-
beled images with findings positive for pneumothorax, opac-
ity, nodule or mass, or fracture, we selected approximately 
2000 images from both DS1 and ChestX-ray14. Because 
ChestX-ray14 is already enriched for radiographs positive 
for pneumothorax, opacity, nodule or mass, or fracture, im-
ages were selected at random from the available images. For 
DS1, images were selected on the basis of radiology reports to 
enrich with radiographs positive for pneumothorax, opacity, 
nodule or mass, or fracture while maintaining radiograph di-
versity and also allowing for population adjustment at analy-
sis by inverse probability weighting (19). Enrichment details 
are in Appendix E1 (online). Although the radiology reports 
were used to facilitate enrichment, the reference standard la-
bels for each image were provided by an adjudicated radiolo-
gist image review.

Reference Standard Image Annotation
We sought to identify four chest radiographic findings: 
pneumothorax, opacity, nodule or mass (as a specific sub-

Abbreviations
CI = confidence interval, DS1 = data set 1

Summary
Four deep learning models identified pneumothorax, fractures, opac-
ity, and nodule or mass on frontal chest radiographs with similar 
performance to radiologists.

Key Result
 n Deep learning models achieved parity to chest radiography inter-

pretations from board-certified radiologists for the detection of 
pneumothorax, nodule or mass, airspace opacity, and fracture on 
a diverse multicenter chest radiography data set (areas under the 
receiver operative characteristic curve, 0.95, 0.72, 0.91, and 0.86 
respectively).

reference standard labels, such as multiphase review (16), ex-
pert adjudication, or confirmatory imaging, is critical for high-
quality algorithm development and evaluation.

The purpose of this work was to develop deep learning mod-
els and evaluate their potential to accurately detect clinically 
meaningful findings at chest radiography. Additional goals of 
this work were to underscore the importance of developing and 
validating diagnostic models by using thoughtfully assembled 
data sets with reliable reference standards to help standardize 
comparisons across studies in this growing field. Our image la-
beling data for ChestX-ray14 (17,18) are also made available for 
use by other researchers.

Materials and Methods

Data Sets
Institutional ethics committee approvals were obtained from 
all participating institutions in this retrospective study and all 
data were deidentified. Two independent data sets were used 
for model development and evaluation. Data set 1 (DS1) 
consisted of 759 611 deidentified frontal chest radiographs 
(digital and scanned) with reports from 538 390 patients 
(Table 1). This data set consists of all consecutive inpatient 
and outpatient images in DICOM format obtained from five 
regional centers across a large hospital group in India (Ban-
galore, Bhubaneswar, Chennai, Hyderabad, and New Delhi) 
between November 2010 and January 2018. The second data 
set was the publicly available data set from the National In-
stitutes of Health (ChestX-ray14) (17,18) and consisted of 
112 120 frontal chest radiograph images in 30 805 patients 
(Table 1). Because DS1 includes all chest radiographs from 
multiple different hospitals, the abnormalities in this data set 
reflect the natural population prevalence of different abnor-
malities in these populations. However, ChestX-ray14 is en-
riched for various thoracic abnormalities relative to the gen-
eral population (17,18).

For DS1, patients were randomly assigned to training, vali-
dation, or testing sets (Fig 1). In ChestX-ray14, we preserved 
the original test set of 25 596 images from 2797 patients. The 
remaining 86 524 images from 28 008 patients were randomly 
split into training (68 801 images) and validation sets (17 723) 
(Fig 1). For both data sets, we ensured that images from the same 

Table 1: Data and Patient Characteristics

Characteristic DS1* ChestX-ray14†

No. of patients 538 390 30 805
Median age (y)‡ 50 (1 to .90) 49 (1 to .90)
Sex
 Women 205 762 (38.2) 14 175 (46.0)
 Men 332 184 (62) 16 630 (54.0)
 Unknown 444 (.0.1) NA
No. of images 759 611 112 120
 AP images 133 876 (17.6) 44 810 (39.9)
 PA images 625 735 (82.4) 67 310 (60.0)
 Final test set 1818 1962
 Images with findings positive  
   for pneumothorax, opacity, 

nodule or mass, or fracture 
in the final test set (%)

  Pneumothorax 88 (4.8) 195 (9.9)
  Nodule or mass 322 (17.7) 295 (15.0)
  Opacity 444 (24.4) 1135 (57.8)
  Fracture 257 (14.1) 72 (3.7)
Image resolution range
 Width (pixels) 512–4400 114323827 
 Height (pixels) 512–4784 966–4715

Note.—Unless otherwise indicated, data in parentheses are 
percentages. AP = anteroposterior, DS1 = data set 1, NIH = 
National Institutes of Health, NA = not applicable, PA = postero-
anterior.
* Data are from five clusters of hospitals from five cities in India
† Data are from the National Institutes of Health Clinical Center 
(17,18).
‡ Data in parentheses are range.
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Reference-standard labels 
for the final validation and 
test set images were assigned 
by an adjudicated review 
by three radiologists (Fig 2, 
Table E1 [online]). For each 
image in the test set, three 
readers were assigned from a 
cohort of 11 board-certified 
radiologists (range of experi-
ence, 3221 years in general 
radiology with no thoracic ex-
perts; A.D.). The three read-
ers for each image of the vali-
dation set were selected from 
a cohort of 13 individuals, 
consisting of both board-cer-
tified radiologists (no thoracic 
experts) and residents (Table 
E1 [online]). Briefly, images 
were independently evaluated 
by three readers and allowing 
disagreements to be resolved 
by up to five rounds of asyn-
chronous anonymous discus-
sion by the same readers, but 
not by enforcing consensus 
(Appendix E1 [online]). In 
cases where consensus was 
not reached, the majority vote 
was used. All readers had ac-
cess to the patient age and im-
age view (posteroanterior vs 
anteroposterior), but not to 
additional clinical or patient 
data. Nodule or mass and 
pneumothorax were adjudi-
cated as present, absent, or 
hedge (ie, uncertain if present 
or absent), and opacity and 
fracture as present or absent. 
For evaluation, hedge was 
considered to be a positive re-
sult with the rationale that a 
clinical hedge would prompt 
additional read, action, and/
or clinical follow up.

These expertly adjudicated labels for the ChestX-ray14 data 
set are provided and include 2412 development set images and 
1962 test set images (https://cloud.google.com/healthcare/docs/
resources/public-datasets/nih-chest#additional_labels).

Training Set Annotation
To optimize use of the entire DS1 test set for training, im-
ages were labeled by using two approaches: expert image an-
notation and natural language processing (Fig 2; Appendix 
E1 [online]).

type of opacity), and fracture. Clinical definitions for these 
categories were on the basis of the Fleischner Society Glos-
sary of Terms for Thoracic Imaging, except for osseous frac-
ture, which was defined as visible rib, clavicle, humeral, or 
vertebral body fractures (20). For example, a nodule was 
defined as smaller than 3 cm and mass as 3 cm or larger. The 
presence or absence of each of these findings were labeled at 
the image level. Chest tube and fracture acuity labels were 
also collected to facilitate planned subanalyses by using 
these labels.

Figure 1: Flowchart of images used from, A, data set 1 (DS1) and, B, ChestX-ray14 data set. The final validation and 
test sets do not include images found to have technical issues (such as markings or poor image quality) or incomplete base-
line reviews. CXR = chest radiograph.
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To compare our model with radiologists, we collected addi-
tional radiologist interpretations for all test set images. All test 
set images were read independently by four nonthoracic spe-
cialty trained American Board of Radiology–certified radiolo-
gists (four radiologists for DS1 and four different radiologists 
for ChestX-ray14). These radiologists did not overlap with the 
radiologists who contributed to the reference standard labels. No 
clinical or patient data were available other than age and image 
view (anteroposterior vs posteroanterior).

To estimate both model and radiologist performance on the 
original population-level distribution for this particular data set, 
performance analysis was performed by using inverse probability 
weighting on the basis of degree of enrichment (known in DS1 
but not ChestX-ray14) for each image (Appendix E1, Table E3 
[online]).

Model and radiologist performance 95% confidence inter-
vals (CIs) were calculated by using the nonparametric bootstrap 
method with 1000-fold resampling at the image level. Model 
performance was compared against radiologists by using the 
Obuchowski-Rockette-Hillis procedure (24,25). Originally for 
comparing imaging modalities, this analysis has been adapted 
for comparison of radiologist performance to that of a stand-
alone algorithm (26). For this analysis, the model threshold was 

Natural Language 
Processing Model for 
Training Set Labels
To label DS1 training 
images, we developed 
a natural language pro-
cessing model to predict 
image labels from origi-
nal radiology reports 
by using approximately 
35 000 reports (Ap-
pendix E1, Table E2 
[online]). Briefly, a one-
dimensional deep convo-
lutional neural network 
(21) was trained and per-
formance was evaluated 
against human-labeled 
reports. The train, vali-
dation, and test sets for 
natural language process-
ing model development 
were subsets of the corre-
sponding data splits used 
for image modeling.

Model Development
Four separate deep 
learning models were 
trained and optimized 
to distinguish the pres-
ence or absence of frac-
ture, nodule or mass, 
pneumothorax, or opac-
ity, respectively. All models were convolutional neural net-
works trained with the combined set of training images from 
both DS1 and ChestX-ray14 training sets. We used Xcep-
tion (22) as the convolutional neural network architecture 
that was pretrained on 300 000 000 natural images (23). The 
models for creating an ensemble were selected on the basis 
of the area under the precision-recall curve in the validation 
set. The final models were an ensemble of multiple models 
trained on the same data set and the final model predictions 
were calculated as an average of the predictions of the en-
semble (Appendix E1 [online]).

Statistical Analysis
Model performance was evaluated by calculating the area 
under the receiver operating curve by using the per-image 
model prediction as the decision variable. Planned sub-
analyses included radiographs with pneumothorax without 
chest tubes and radiographs with fracture by acuity. Nonin-
feriority comparison of models with radiologists was an ex-
ploratory analysis. Model performance was compared with 
radiologist performance on the test sets at two operating 
points: the average radiologist sensitivity and the average 
radiologist specificity.

Figure 2: Schematic of labeling strategy used for training and validation and testing in the deep learning models. Training labels 
were provided by a mix of radiologist image interpretations and natural language processing (NLP) to maximize both high-quality 
and high-quantity training data. Test set labels were on the basis of adjudicated labels from a panel of three board-certified radiolo-
gists per image. Validation set labels were also adjudicated by a panel of three readers, including residents and radiologists. DS1 = 
data set 1.
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radiologists at the operating point where the specificity for the 
model was equal to that of the radiologists). The unweighted 
areas under the receiver operating characteristic curve for DS1 
and areas under the precision-recall curve are provided in Figures 
E2 and E3 (online).

For all conditions, the model demonstrated performance on 
par with radiologists. The models trended toward higher-than-
average radiologist sensitivity for some findings including frac-
ture for DS1 (absolute increase of 18.6%), pneumothorax for 
DS1 (absolute increase of 7.3%), nodule or mass for both data 
sets (absolute increases for DS1 and ChestX-ray14, 5.3% and 
2.7%, respectively), and airspace opacity for both data sets (ab-
solute increases for DS1 and ChestX-ray14, 2.9% and 4.4%, re-
spectively). Figure 1 and Table 1 show the total number of radio-
graphs evaluated to calculate these percentages. CIs are shown in 
Table 3. We also performed noninferiority testing by using a 5% 
noninferiority margin for each of these metrics (sensitivity, posi-
tive predictive value, and specificity). The P values for noninferi-
ority comparisons are provided in Table 3. P values are provided 
but significance claims are not made because of the exploratory 
nature of our analysis involving multiple comparisons.

To provide additional insights into the accuracy of the model 
compared with the radiologists, we also evaluated the overlap 
of true-positive findings. This comparison was performed at the 
model operating point corresponding to the average radiologist 
specificity, thus keeping the number of false-positive findings 
fixed. Notably, a substantial number of nonoverlapping true-
positive findings were identified. The overall percentage of true-
positive findings unique to only the models or the radiologists 
was 25.1% for ChestX-ray14 and 43.7% for DS1 (Fig 4).

Several radiographs were identified in which the model cor-
rectly identified a finding of interest that was missed by the four 
independent radiologist reviews (n = 42). Figure 5a shows exam-
ples of these radiographs, with regions that were important for 
model predictions highlighted. Images with incorrect model pre-
dictions were also reviewed by our radiologists at study comple-
tion in an effort to identify any clear trends in model errors. Two 
common error types were noted, including the model highlight-
ing granulomas as nodules (considered false-positive findings in 
this study design; Fig 5b), and borderline findings. The latter 
consisted of radiographs adjudicated as hedge or as findings posi-
tive for pneumothorax, opacity, nodule or mass, or fracture but 
missed by the model, and those scored as findings negative for 
pneumothorax, opacity, nodule or mass, or fracture by the adju-
dication panel but with possible pneumothorax, opacity, nodule 
or mass, or fracture manifest at retrospective review.

Evaluation of Condition Subsets
For many radiographic findings, certain subsets of images may 
be significantly easier or harder to read correctly because of 
variation in manifestation and/or co-occurring findings. To 
better understand the model performance on specific subsets 
of images for different conditions, we performed planned sub-
group analyses for the images positive for pneumothorax and 
fracture.

First, the presence of a chest tube is certainly highly correlated 
with the manifestation of pneumothorax and may influence 

established by using the operating point corresponding to the 
average radiologist sensitivity (when comparing specificity) and 
average radiologist specificity (when comparing sensitivity), and 
binarized agreement (ie, correct vs incorrect) was used for both 
model and radiologist (27). Noninferiority was assessed by in-
corporating the margin parameter (5%) into the numerator of 
the test statistic (28). A small P value indicated that the null hy-
pothesis (ie, radiologists perform better than the model by 5% or 
more) was rejected. The jackknife method was used to estimate 
the covariance terms for the test.

Results

Test Set Reference Standards
After the adjudication process, the final DS1 test set consisted 
of 1818 images (88 images were positive for pneumothorax, 
322 images were positive for nodule or mass, 444 images were 
positive for opacity, and 257 images were positive for fracture). 
The ChestX-ray14 test set consisted of 1962 images (195 im-
ages were positive for pneumothorax, 295 images were positive 
for nodule or mass, 1135 images were positive for opacity, and 
72 images were positive for fracture) (Table 1, Table E4 [on-
line]). We also compared the adjudicated labels to the corre-
sponding natural language processing labels for ChestX-ray14 
and to the so-called first-round majority vote labels for DS1. 
Notable differences were observed across conditions, and the 
adjudicated labels were consistently more sensitive, identifying 
findings positive for pneumothorax, opacity, nodule or mass, 
or fracture more than the other methods (Table 2). Example 
ChestX-ray14 images that were negative for pneumothorax, 
opacity, nodule or mass, or fracture by natural language pro-
cessing labels and majority vote labels, but positive by adjudi-
cation are in Figure E1 (online).

Model and Radiologist Performance
Results for model and radiologist performance are summarized 
in Figure 3 and Table 3. For the ChestX-ray14 test set, the mod-
els demonstrated area under the receiver operating characteristic 
curve of 0.94 for pneumothorax (95% CI: 0.93, 0.96), 0.91 for 
nodule or mass (95% CI: 0.89, 0.93), 0.94 for airspace opac-
ity (95% CI: 0.93, 0.95), and 0.81 for fracture (95% CI: 0.75, 
0.86). For DS1, to estimate performance on the population-level 
distribution, each image was weighted by using inverse prob-
ability weighting to account for enrichment. For the population-
adjusted analysis of the DS1 test set, the models demonstrated 
areas under the receiver operating characteristic curve of 0.95 for 
pneumothorax (95% CI: 0.91, 0.99), 0.72 for nodule or mass 
(95% CI: 0.66, 0.77), 0.91 for airspace opacity (95% CI: 0.88, 
0.93), and 0.86 for fracture (95% CI: 0.79, 0.92).

Sensitivity, specificity, and positive predictive value compari-
sons were performed between the models and the radiologists 
(Table 3, Fig E4 [online]). Inverse probability weighting enabled 
more meaningful estimation of positive predictive values in the 
unenriched data set for DS1. The average radiologist sensitivity 
or specificity was used to fix the operating point of the model 
for these comparisons (ie, model sensitivity was compared with 
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a trend toward lower performance for these untreated pneumo-
thorax radiographs relative to the radiologist average, with ab-
solute decreases in sensitivity of 2.5% and 13.2% for DS1 and 
ChestX-ray14, respectively (Table E5 [online]).

Images positive for fracture included clavicle, shoulder, rib, 
and spine fractures and spanned acute, subacute, and chronic 

identification of this finding. Thus, we analyzed the subset of 
images corresponding to untreated pneumothorax (ie, pneumo-
thorax present, but no ipsilateral chest tube). Although only a 
limited number of radiographs with findings positive for pneu-
mothorax, opacity, nodule or mass, or fracture met this criteria 
(41 for DS1 and 53 for ChestX-ray14), the model demonstrated 

Figure 3: Receiver operating characteristic (ROC) curves of performance evaluation. Performance of the model (blue curves) and individual radiologists (black crosses) 
across the four findings on the test sets of data set 1 (DS1) and ChestX-ray14. The average reader performance is indicated by red crosses. For DS1, the ROC curves and 
individual reader operating points represent population-adjusted analysis. Hedge response counts and analysis on a 3-point scale by using these responses are provided in 
Figure E5 [online]. AUC = area under the curve, CI = confidence interval.

Table 2: Comparison of Test Set Adjudicated Labels versus Natural Language Processing Labels or Majority Vote Labels for 
ChestX-ray14 and Data Set 1

Parameter

Pneumothorax Nodule/Mass Fracture Airspace Opacity

Adjudication 
Positive

Adjudication 
Negative

Adjudication 
Positive

Adjudication 
Negative

Adjudication 
Positive

Adjudication 
Negative

Adjudication 
Positive

Adjudication 
Negative

ChestX-ray14: Adjudicated  
  versus NLP
 NLP positive 97 103 134 103 … … … …
 NLP negative 98 1664 161 1564 … … … …
 NLP sens/spec (%) 49.7 94.2 45.4 93.8 … … … …
DS1: Adjudicated versus  
  majority vote
 Majority positive 77 12 253 38 161 9 392 34
 Majority negative 11 1718 69 1458 96 1552 52 1340
 Majority vote  
  sens/spec (%)

87.5 99.3 78.6 97.5 62.6 99.4 92.0 96.3

Note.—For the ChestX-ray14 images, data represent the publicly available NLP labels. (Only pneumothorax and nodule or mass were 
compared because fracture and airspace opacity do not have immediately comparable NLP labels available.) For DS1, the majority vote la-
bels from the initial round of image review are compared with the final adjudicated labels for all conditions. “Adjudication positive” means 
that adjudication showed findings positive for pneumothorax, opacity, nodule or mass, or fracture. “Adjudication negative” means that 
adjudication showed findings negative for pneumothorax, opacity, nodule or mass, or fracture. DS1 = data set 1, NLP = natural language 
processing, sens = sensitivity, spec = specificity.
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Such work supports the value of agreement-based approaches in 
obtaining accurate diagnostic interpretations. Here, adjudication 
led to increased expert consensus of the labels used for model 
tuning and performance evaluation. Adjudication increased the 
overall consensus from 41.8% (1580 of 3780 images) after the 
initial read to 96.8% (3660 of 3780 images) (Table E7 [online]). 
This may in part explain the relatively low sensitivity observed 
for both radiologists and models across the diverse set of images 
represented by DS1. There are indeed notable differences in both 
the labels (Table 2) and the model performance depending on 
the reference standard labeling strategy, with absolute area under 
the receiver operating characteristic curve differences of up to 
0.05 (ChestX-ray14) and 0.04 (DS1) (Table E8 [online]). By 
providing the adjudicated labels for publicly available ChestX-
ray14 validation and test set images, we hope to facilitate further 
development, comparison, and evaluation of algorithms for the 
detection of these key findings.

Whereas area under the receiver operating characteristic curve 
and other common performance metrics can be useful, reporting 
these metrics on enriched data sets can fail to reflect expected 
real-world performance because of issues of prevalence and/or 
underrepresentation of infrequent yet critical findings. Some 
metrics reported in the literature might appear high, but addi-
tional analysis such as population-adjusted positive predictive 
value gives a more complete picture in assessing model perfor-
mance. In this study, although radiologist specificity was greater 
than 98% across all four findings, population-adjusted positive 
predictive values ranged from 42% to 85% (DS1; Table E4 [on-
line]), underscoring the importance of considering and reporting 
prevalence-dependent metrics that adjust for enrichment. This 

radiographs. Given the clinical implications of fracture acuity, 
we evaluated performance on these subsets. When evaluating 
just the acute fractures, the model demonstrated higher sensi-
tivity relative to the average radiologist’s sensitivity, with a dif-
ference of 9.0% (population-adjusted DS1; n = 65; Table E6 
[online]). For ChestX-ray14, the image set was not curated to 
include fractures. Therefore, the subset of acute fractures was too 
small for meaningful analysis (n = 15).

Discussion
We developed and validated deep learning models for chest ra-
diograph interpretation by using adjudicated labels as a rigor-
ous reference standard and by using a clinically representative 
data set to produce more generalizable and comparable results. 
The models performed on par with board-certified radiologists. 
In data set 1 (DS1) from five hospitals in India, the model 
demonstrated population-adjusted areas under the receiver 
operating characteristic curve of 0.95 (pneumothorax), 0.72 
(nodule or mass), 0.91 (opacity), and 0.86 (fracture). This 
performance was on par with the performance of radiologists. 
With ChestX-ray14, the models demonstrated areas under the 
receiver operating characteristic curve of 0.94 (pneumotho-
rax), 0.91 (nodule or mass), 0.94 (opacity), and 0.81 (fracture). 

Ground truth in establishing the accuracy of the training sets 
for artificial intelligence in chest radiography is critical. In our 
study there was no contemporaneous CT chest examination data 
to independently confirm the presence or absence of the four ab-
normalities. Regarding the value of adjudicated labels, extensive 
work has been performed on the value of multiple interpreta-
tions in mammography (30) and other clinical settings (31,32). 

Figure 4: Venn diagrams show comparison of true positives identified by deep learning models and radiologists. For each image, one of the four radiologists’ responses 
was selected randomly to approximate an average response across readers. Data represent comparison of all images with true-positive classifications by the model (yel-
low) or the radiologist (blue). Nonoverlapping regions thus represent true-positive findings identified by only the radiologists or only the models. DS1 = data set 1, TP = true 
positive.
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the most obviously positive and negative for pneumothorax, 
opacity, nodule or mass, or fracture for training, which can fail 
to address the important challenge of learning to interpret more 
difficult images.

Data set selection is an important element of machine learning 
approaches in radiology. Enrichment for pneumothorax, opac-
ity, nodule or mass, or fracture is a common strategy in creating 
data sets because it can provide requisite examples for training 
and evaluation with efficient use of labeling resources. However, 
because such data do not necessarily reflect real-world prevalence 
or diversity (33,34), such enrichment can also prevent mean-
ingful clinical interpretation of diagnostic performance. Taken 

work combined enrichment methods that provide representative 
data sets and evaluation methods with population-based adjust-
ment to improve the thoroughness of the reported performance 
results.

Diversity among both positive and negative radiographs and 
in both training and evaluation is a key component of diagnostic 
model development. By beginning with a broad, hospital-based 
clinical image set, and then sampling a diverse set of radiographs 
for expert labeling, we believe the training and evaluation data in 
this work more accurately represent the spectrum for these con-
ditions than many prior efforts. This was done largely to mitigate 
the risk of selecting only the radiographs with findings that were 

Figure 5: Radiographic images with discordant interpretations between deep learning models and radiologists. (a) Examples for the four classes of abnormality 
(pneumothorax, nodule or mass, airspace opacity, and fracture) classified correctly by the deep learning model (ie, concordant with the adjudicated reference standard), 
but not identified by any of the four radiologists in the performance comparison cohort. The highlighted areas (orange) indicate the regions with the greatest influence on 
image-level model predictions, as identified by using SmoothGrad (29). (b) Examples for the four classes of abnormality incorrectly classified by the deep learning model 
(ie, model discordant with the adjudicated reference standard), and correctly classified by at least 2 radiologists in the performance comparison cohort. Top, an example of 
a granuloma that was classified incorrectly by our model as a nodule. Middle and bottom, additional findings not identified by the model at the threshold corresponding to 
average radiologist specificity. Black arrows indicate the finding of interest for each radiograph.
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In conclusion, we developed and evaluated clinically relevant 
artificial intelligence models for chest radiograph interpretation 
that performed similar to radiologists by using a diverse set of 
images. The population-adjusted performance analyses reported 
here along with the release of adjudicated labels for the publicly 
available ChestX-ray14 images can provide a useful resource to 
facilitate the continued development of clinically useful artificial 
intelligence models for chest radiography.
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