
McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

1 of 14

C O L L E C T I V E B E H A V I O R

Minimal navigation solution for a swarm of tiny flying
robots to explore an unknown environment
K. N. McGuire1*, C. De Wagter1, K. Tuyls2, H. J. Kappen3, G. C. H. E. de Croon1*

Swarms of tiny flying robots hold great potential for exploring unknown, indoor environments. Their small size
allows them to move in narrow spaces, and their light weight makes them safe for operating around humans.
Until now, this task has been out of reach due to the lack of adequate navigation strategies. The absence of external
infrastructure implies that any positioning attempts must be performed by the robots themselves. State-of-the-art
solutions, such as simultaneous localization and mapping, are still too resource demanding. This article presents
the swarm gradient bug algorithm (SGBA), a minimal navigation solution that allows a swarm of tiny flying robots
to autonomously explore an unknown environment and subsequently come back to the departure point. SGBA
maximizes coverage by having robots travel in different directions away from the departure point. The robots
navigate the environment and deal with static obstacles on the fly by means of visual odometry and wall-following
behaviors. Moreover, they communicate with each other to avoid collisions and maximize search efficiency. To
come back to the departure point, the robots perform a gradient search toward a home beacon. We studied the
collective aspects of SGBA, demonstrating that it allows a group of 33-g commercial off-the-shelf quadrotors to
successfully explore a real-world environment. The application potential is illustrated by a proof-of-concept
search-and-rescue mission in which the robots captured images to find “victims” in an office environment. The
developed algorithms generalize to other robot types and lay the basis for tackling other similarly complex missions
with robot swarms in the future.

INTRODUCTION
Swarms of tiny autonomous flying robots hold great promise. Tiny
flying robots can move in narrow spaces, can be so cheap that they
may become disposable, and are safe in the presence of humans (1, 2).
Moreover, whereas the individual robots may be inherently limited
in their abilities both in terms of cognition and in terms of actions,
together they may solve very complex problems. This kind of problem-
solving ability is abundant in nature. Two well-known examples are
the shortest path finding by swarms of ants (3) and collective selection
of profitable food resources by honeybees through waggle dances (4).

The core principle of swarm robotics is that the individual robots
obey relatively simple control rules, merely based on their local sensory
inputs and local communication with their neighbors. This principle
fits well with the limited resources of tiny robots. Moreover, not
relying on any central processing promises a high robustness of the
system. A single failing robot will not endanger task execution
because its role will be fulfilled by one of the many other robots. In
addition, together, small robots will potentially be able to perform
tasks—such as surveillance, construction, or exploration—quicker
and more robustly. In the past few decades, a large body of research
investigating swarm robotics has formed. For instance, in the
Swarm-Bots project, controllers have been evolved for small driving
robots to complete tasks such as gap crossing, which required them
to attach themselves to each other to form a bridge, and movement
of objects bigger than each individual (5). Moreover, swarms of robots
have been demonstrated in applications ranging from constructing
small preplanned structures (6) to forming shapes with their own

bodies (7, 8) and to performing tasks such as dispersion, aggregation,
and surveillance (9).

Concerning flying robot swarms, the major challenge lies in
achieving autonomous robot navigation and coordination between
the robots in real-world environments. There have been impressive
shows with many simultaneously flying robots, such as Intel’s
Shooting Star drones (10), which were used in the 2017 Super Bowl
halftime and the 2018 Winter Olympics. However, those robots
purely followed preprogrammed Global Positioning System (GPS)–
based trajectories, so they did not make local decisions based on their
surroundings. In contrast, in (11, 12) and, more recently, (13), swarms
of flying robots performed coordinated swarming behaviors together
in outdoor environments. In the latter study, the main behavioral
parameters were optimized with an evolutionary process such that
robots stayed together, even in the presence of no-fly zones. The
studies (11–13) all still crucially relied on GPS. The flying robots
communicated their GPS locations to each other to determine
the relative locations to other robots that serve as input to the local
controllers. In all above studies, the swarms essentially flew in open
environments or, in the case of (13), had access to a global map of
no-fly zones.

Navigation of a swarm of tiny flying robots in a cluttered,
GPS-denied environment has been an unsolved problem. The major
challenge derives from the highly restricted nature of these tiny robots.
The mainstream solution to navigation consists of simultaneous
localization and mapping (SLAM) based on camera images (14) or
laser range finders (15). However, typical, metric SLAM methods make
detailed three-dimensional (3D) maps, which is very demanding in
terms of computational and memory resources. State-of-the-art
SLAM methods, like large-scale direct monocular SLAM (LSD-SLAM)
(16), often need to be computed by an external ground station com-
puter (17). Multirobot SLAM, in which a group of robots jointly creates
and maintains a shared map of the environment (18), places an

1Faculty of Aerospace Engineering, Delft University of Technology, Delft, Netherlands.
2Department of Computer Science, University of Liverpool, Liverpool, UK. 3Faculty
of Science, Radboud University, Nijmegen, Netherlands.
*Corresponding author. Email: k.n.mcguire@tudelft.nl (K.N.M.); g.c.h.e.decroon@
tudelft.nl (G.C.H.E.d.C.)

Copyright © 2019
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim
to original U.S.
Government Works

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

2 of 14

additional load on the communication bandwidth. One can also opt
for the slightly more efficient visual inertial odometry (19). However,
this is subject to drift. To illustrate the challenge of navigating with tiny
flying robots, we show (Fig. 1) the processing power of the robot used
in our experiments (Bitcraze’s Crazyflie 2.0) beside two recent, state-of-
the-art–embedded processing units used in SLAM approaches. Flying
robots like the Crazyflie use about 7 W to fly. To not substantially
affect their flight time, the processing should therefore use only a
fraction of this power. The Crazyflie carries an STM32F4 micropro-
cessor, with a clock speed of 168 MHz and 192 kB of random-access
memory (RAM). Typical state-of-the-art robots used for autonomous
flight [e.g., (20, 21)] use processors like the NVIDIA TX2, which has
a six-core central processing unit, each with a clock speed of 2 GHz, a
256-core NVIDIA graphics processing unit, and 8 GB of RAM. Hence,
we need to solve the navigation problem with orders of magnitude
less memory and processor speed. This calls for a completely different
navigation strategy.

One potential approach to efficient navigation is to draw inspi-
ration from biology, for instance, by looking at honeybee navigation
strategies. Honeybees navigate by combining path integration with
landmark recognition (22). Path integration is well understood
and can be implemented with very limited systems, as in the recently
presented AntBot (23). Whereas walking insects can count their
steps for path integration, flying insects rely more heavily on the
integration of optical flow (24). Path integration alone does not
suffice for navigation because it drifts over time. This drift can

be cancelled by means of landmark detection and visual homing,
but it is not obvious how landmark recognition is performed by
biological systems. The dominant model is the snapshot model
(25), in which pictures are stored of the surroundings and later
compared with the visual inputs. Unfortunately, current implemen-
tations of landmark recognition still require substantial processing
and memory [e.g., (26)], making it unsuitable for navigation by tiny
robots. Moreover, they mostly thrive on texture-rich environments,
which are commonly found in nature but not in repetitive man-made
environments.

Biological systems provide interesting suggestions for arriving
at the minimal requirements for navigation. The maps created by
metric SLAM can be used for navigating from any point to any
other point in the map. The navigation strategies followed by insects
suggest that it may be possible to save on computation and memory
by requiring less accurate maps. Biological navigation strategies
show a parallel with topological SLAM (27), in which a robot only
stores important landmarks and their relations in terms of distance
and direction. This no longer allows a robot to travel anywhere in
the explored space with high accuracy, but this may not be necessary
for successful behavior. In some cases, it may only be important to
explore and come back to the “nest,” i.e., to only perform accurate
homing. A navigation strategy that only demands homing and does
not rely on computationally complex visual navigation has strong
potential for downscaling to tiny robots.

A minimal navigation solution
The main contribution of this article is a minimal autonomous
navigation solution for a swarm of tiny flying robots to explore an
unknown, unstructured environment and subsequently to come back
to the departing point. “Exploration” here means to move through
as large a part of an unknown environment as possible, with a goal
to gather application- dependent information. The proposed navigation
solution was implemented in a swarm of tiny flying robots and
shown to work in a large real- world indoor environment that has
no external infrastructure for exact positioning. Moreover, in the
same environment, we illustrate how the solution enabled a specific
proof-of-concept search-and-rescue exploration mission, in which
the swarm gathered images to find “victims” in the environment.

Particularly, we introduce the swarm gradient bug algorithm
(SGBA). As the name suggests, the method is inspired by “bug
algorithms” (28–30), which originated as simple maze-solving
algorithms. The core concept is that navigating from A to B is
performed not by planning in a global map with known obstacles
but by reacting to obstacles as they come within range of the sensors.
This way of dealing with obstacles results in a highly computationally
efficient navigation. However, existing bug algorithms in the literature
remain rather theoretical and are not suitable for application to
navigation in real, GPS-denied environments because they typically
rely on either a known global position or perfect odometry. For
example, in (31, 32), real-world robots used their wheel odometry
for navigation within an indoor environment; nevertheless, the
testing environments were too small to experience the full extent
of the possible odometry drift. A flying robot typically relies on
visual odometry and, due to the vibrations and texture dependence,
is even more prone to odometry inaccuracies than a driving robot.
When realistic levels of odometry drift were introduced, the navi-
gation performance of bug algorithms from the literature dropped
steeply (33).

M
em

or
y

RA
M

 [
m

B]

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

10

20

30

40

50

60

70

80

90

100

Po
w

er
 [

m
W

]

W
ei

gh
t

[g
r]

16
00

65
00

0

16
00

0

8575
00

80
00

4030
00

20
00

420
0

0.
19

2

Dell
 E7

45
0

NVid
ia

TX
2

Odr
oid

-C
2

ST
M32

F4

Flow Deck

Multi-ranger Deck

CrazyFlie 2.0
STM32F4

Total weight

33g

Diameter 9 cm

A

B

Fig. 1. Hardware specifications and comparison. (A) Crazyflie 2.0 with the flow
and multi-ranger expansion decks and (B) the autopilot (STM32F4) compared with
the specifications of the NVIDIA TX2, the Odroid-C2, and a laptop (Dell Latitude
E7450). Note that the Dell specifications do not fit within the chart (as indicated
with the top triangles).

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

3 of 14

The bug algorithm proposed in this article, SGBA, departs sub-
stantially from existing bug algorithms because it has been designed
explicitly for allowing a swarm of tiny robots to explore a real-world,
GPS-denied environment. Figure 2B shows the main concept: A
swarm of robots departs their base station for outbound travel.
Each robot has a different preferential direction toward which it
will try to go. When robots encounter obstacles, they follow the
obstacles’ contours. This process is called “wall following” in the
bug algorithm literature. When a robot’s preferred direction is free
of obstacles again, it will continue to follow its preferred direction.
As soon as the robot’s battery is around 60%, it starts inbound travel
(Fig. 2C). To come back to the original location, the robots use a
mix of (coarse) odometry and, on longer time scales, an observable
gradient to the base station. In our experiments, we used the re-
ceived signal strength intensity (RSSI) to a radio beacon located at
the base station. Because bug algorithms do not make maps, there
is a danger that they get stuck in loops without realizing it. For
instance, this can happen in rooms where there is only one way out,
which may be missed when the robot leaves the wall in its preferred
direction, just to navigate to the opposite wall again. Hence, during
both outbound and inbound travel, the odometry was also exploited
to detect short-term loops that could result in robots getting stuck
in a particular part of the environment. The robots also needed
to avoid each other and to communicate their desired direction
to each other. In the experiments, we used wireless onboard inter-
robot communication to both these ends. Specifically, for the intra-
swarm collision avoidance, the inter- robot RSSI was used instead
of communicating a global position (which is not known by the
robots). Moreover, when robots noticed the presence of other
robots in the direction of their preferred heading, they adapted
their preference, thus enhancing the exploration for the outbound
flight.

A simplified version of the finite state machine (FSM) of SGBA
can be found in Fig. 2A. The SGBA method and the FSM are
presented in more detail in Materials and Methods. The innovation
of SGBA lies in its suitability for the real-world properties of
tiny, exceptionally computationally restricted robots and in the

combination of the various subcomponents. Many of the sub-
components themselves have already been proposed in the literature.
For instance, traveling toward a wireless beacon with a bug algorithm
was also proposed in (34, 35). However, the proposed methods
in those studies were too sensitive to the real- world noise of RSSI
measurements. Because of the difficulties of real-world interference,
refraction, and scattering of the signal, the experiments eventually
involved an infrared beacon instead, which was visible from all
locations in the environment. This setup would not be useful in
a real scenario. The work in (36) used the gradient of real-world,
noisy RSSI values to guide exploration on a real robot (without a
bug algorithm type of behavior). However, the platform still required
a full SLAM method on board because the precise positions of
the RSSI samples were needed to estimate the location of the Wi-Fi
source. In contrast to these methods, we have implemented a home
beacon search tactic that dealt with real-world, noisy, 2.4-GHz,
Wi-Fi RSSI values and did not rely on exact positioning. Another
asset is SGBA’s use of multiple robots. The idea of using multiple
robots for bug algorithms was first forwarded and studied in simulation
in (37). However, they used it to explore the local obstacle boundary
and not for efficiently exploring the environment. The swarming
mechanisms of SGBA involve (i) imprinting of different initial
preferential directions, (ii) collision avoidance, and (iii) adapt ation
of preferential directions when robots notice that their preferred
direction overlaps too much with that of another robot. More
elaborate swarming mechanisms are possible, but the results show
that these straightforward mechanisms, which do not require accurate
relative positions between the robots, already significantly increase
exploration efficiency.

From the explanation above, it can be deduced that SGBA re-
quires five main functionalities: (i) following a given direction; (ii)
wall following; (iii) odometry; (iv) inter-robot detection, communi-
cation, and avoidance; and (v) a gradient-based search toward the
departure point. Although we mainly focused on flying robots in
this article, the five functionalities can be implemented with various
types of hardware and software on different types of robots. We used
flying robots for the real-world experiments and driving robots in

Fig. 2. Main concept of the SGBA. (A) A simplified state machine of SGBA derived from the one presented in Materials and Methods. (B) Outbound travel of SGBA. The
purple shading illustrates the local signal strength around each drone used for intra-swarm avoidance. (C) Inbound travel. The pink shading represents the signal strength
of the wireless beacon at the ground station to which the drones navigate. The interswarm avoidance is still active on the inbound flight but is not depicted. The fuchsia
arrow at each drone’s position illustrates the robot’s estimated direction to the beacon.

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

4 of 14

the simulation experiments detailed below. The difference in imple-
mentation of SGBA includes, for instance, that functionality (iii) is
performed with optical flow–based odometry on the flying robot
and wheel-based odometry on the driving robot. Hence, the SGBA
algorithm can be applied to different types of mobile robots with
limited resources, as long as they are endowed with the above re-
quired functionalities.

RESULTS
We performed both simulation and real-world experiments to gauge
the performance of SGBA as an autonomous navigation solution
for exploration missions. Navigation here means spreading out in
the environment, covering the environment as much as possible, and
coming back to the departure point. The two main performance
metrics are (i) the area coverage and (ii) the return rate of the robots.
With these metrics, we mainly assessed the navigational characteristics
of SGBA because these are important to exploration missions in
general. We varied the number of robots to investigate the advan-
tages of the swarming aspect of SGBA. After the main simulation and
real-world experiments focusing on the navigation performance,
we also investigated a search-and-rescue scenario in which the robots
had to find possible victims in the environment. For this scenario,
the robots carried onboard cameras and secure digital (SD) cards for
storing images of the environment because transmitting live streams
was not feasible. When returning to the base station, the robots
could upload the images to the base station, and a human end user
could look at the images to find the victims. Hence, only returning
robots provided useful information on the task. Because this will be
the case in many real-world exploration scenarios where SGBA is a
suitable method, we considered as a third performance metric, (iii)
the area covered by returning robots—termed “coverage returned.”
In the specific search-and-rescue experiment, we evaluated whether
the victims were present in the images.

Simulation experiment results
We first implemented the SGBA in simulation. The goal of the simula-
tion experiments was to investigate the performance of the algorithm
in many artificially generated environments. Moreover, in simulation,
we could perform extensive experiments for gathering sufficient
statistics on trends such as the relation between the performance
and the number of robots. As a simulator, we have chosen ARGoS
(Fig. 3A) because it has especially been developed for multirobot
systems (38). A Robot Operating System (ROS) environment was
used to connect the SGBA controller, the automatic environment
generator, and the simulator together, in a similar manner as in (33),
by using ARGoS for ROS (39) [all code repositories for the simula-
tion experiments can be found in (40)]. In simulation, the robots
were adapted ARGoS foot-bots, which were originally modeled on
the MarXbot (41). These ground-based nonholonomic robots are
different from the airborne holonomic robots used in the real-world
experiments (see text S5 for an overview of how we implemented
SGBA’s five functionalities on the simulated foot-bot and on the
flying robots used in the real-world experiments). The use of
ground-based robots in the simulation experiments illustrates that
SGBA can be applied to different types of robots.

The simulated robots started around the home beacon in the
middle of the environment. With SGBA, each of them sequentially
started moving into their preferred direction, which in this case

were the angles 45°, 135°, −135°, and −45° [the modulus of the
robot’s identification number (ID) from 4 determines the preferred
direction]. In simulation, the outbound travel lasted for 5 min.
After spreading out into the environment, the simulated robots
tried to head back to the home beacon within another 5 min (10 min
of total simulation time), for which they used the noisy and locally
perturbed RSSI of the base station beacon. Figure 3 (B and C) shows
two examples of the simulated experiments with four and six robots.
We experimented with 2, 4, 6, 8, and 10 robots per simulated
environment. Per test configuration, 100 environments were produced
with the procedural environment generator, as developed in (33).
The coverage statistics can be found in Fig. 3D and the return rates
in Fig. 3E. Despite their extremely restricted onboard resources,
10 small robots were able to explore, on average, 90% of a simulated
20 m by 20 m environment in 10 min [dark blue bar in Fig. 3D,
example trajectory in Fig. 3 (B and C)].

The utility of the collective aspect of SGBA is shown by the dark
blue bars in Fig. 3D; adding more robots leads to a higher coverage
in the same amount of time. The trend of the bars indicates that the
coverage is subject to a law of diminishing returns; adding two more
robots has more effect when going from two to four robots than when
going from 8 to 10 robots. The results suggest that this effect is
mainly due to covering the same areas in the environment and not
due to robots interfering with each other. Namely, the coverage per
robot (Fig. 3D, yellow bars) and the return rate (Fig. 3E, light blue
bars) did not decrease for the studied number of robots. The return
rate is also of interest for the envisaged proof-of-concept search-and-
rescue mission, in which the robots would store images onboard and
only robots that return to the base station provide information on the
task. The return rate was lower than 100%, mainly because SGBA
can lead to suboptimal paths back to the base station (too slow for the
total mission time). The coverage by the group of returned robots is
shown in turquoise in Fig. 3D. Last, the variances of all performance
characteristics became smaller for higher number of drones, showing
that adding more agents increased the certainty of the outcome. This
seems mainly due to the reduced effect of variations in individual
performance on total coverage. For instance, with two robots, an early
failing robot could halve the coverage, whereas with 10 robots,
the effect would be much less noticeable, underlining swarm
robustness. The logging data can be found in (42), and statistical
tests of the simulation results can be found in text S4.1, which
show that the trend of the total coverage and coverage returned are
significantly related to the total number of robots. This is not the
case for the coverage per robot and the return rate.

Last, we have studied the contributions of the different swarming
mechanisms in SGBA: (i) sending them off in different directions,
(ii) performing an avoidance maneuver when close to another robot,
and (iii) changing preferential direction. All three mechanisms
contributed to reducing collisions and increasing coverage. For ex-
ample, for the “full” SGBA with six robots, there were, on average,
0.2 collisions per exploration trial. When sending off all robots in
the same direction, this rose to 1.7 collisions. When only switching
off the avoidance maneuvers, there were, on average, 1.2 collisions
per trial. Text S6 contains these test results.

Real-world experiment results
Subsequently, we performed real-world experiments. The goal of
these experiments was to show that SGBA works in the real world
and to investigate whether the results align with the findings from

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

5 of 14

simulation. Particularly, we implemented SGBA on the small com-
mercial off-the-shelf (COTS) Crazyflie 2.0 drone developed by Bitcraze
AB (43). The hardware package of the drones consisted of the follow-

ing modules. The multi-ranger deck (44) was used for obstacle
detection and wall following. It has four tiny laser rangers that point
to the front, left, right, and back. The flow deck (45) was used for

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Coverage total
Coverage returned
Coverage per agent

C
ov

er
ag

e

Number of RobotsD

10

 5

 0

 -5

-10

10 5 0 -5 -10C

A

10

 5

 0

 -5

-10

10 5 0 -5 -10B

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of RobotsE

R
et

ur
n

R
at

e

Fig. 3. Simulation results. The results of the simulation environments with (A) a representation of the ARGoS simulator and the modified simulated foot-bot. Two example
environments and trajectories are shown for (B) six robots and (C) for four robots. (D and E) The results of 2, 4, 6, 8, or 10 robots in 100 procedurally generated environments
for each configuration, in the coverage (not including nonaccessible areas), and the return rate. Three types of coverage are shown in (D): coverage total (area covered by
all robots), coverage returned (area covered only by the robots that have returned), and coverage per robot (area that a single robot has covered). The exact computation
of the covered area can be found in text S4.1. Last, in (E), the return rate is shown, i.e., the portion of robots that successfully returns to the base station after exploration.
Both bar graphs of (D) and (E) show the mean as the SD, of which the specific values can be found in text S4.1.

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

6 of 14

coarse visual odometry. It consists of a downward looking camera
that determines translational optical flow and a downward pointing
laser ranger that scales the flow to obtain height and translational
velocity. Bitcraze’s own communication hardware, “Crazyradio,” with
the 2.4-GHz Wi-Fi band (46) was used for ranging to other drones
and to the wireless beacon. The firmware running on the Crazyflies
can be found in (40). It also served as a communication channel
between the drones for exchanging desired headings. These three
light-weight and low-power hardware modules were sufficient for
our navigation solution. We performed the experiments in an empty
hallway of the faculty of Aerospace Engineering at Delft University of
Technology because it allowed us to perform extensive testing (Fig. 4A;
see text S1 for a more detailed description). We conducted real-
world tests with two, four, and six Crazyflies at the same time. For
each number of drones, five different flights were performed.

As in the simulation experiments, the robots started in the middle
of the environment. From here, they flew with SGBA to their own
preferred outbound flight direction for about one third of their battery
life, which was about 2 min. Afterward, they needed to return again
using the RSSI of the home beacon. Along the entire path, they
avoided each other by using the RSSI of the inter-robot connection,
which was handled by the communication scheme presented in
Materials and Methods. Because we did not have access to ground-truth
global coordinates, we determined the coverage performance in terms
of the number of visited rooms, excluding the hallway.

SGBA also allowed tiny robots in the real world to explore the
environment, with six tiny drones, on average, flying into 83% of
the open rooms in the 40 m by 12 m environment within 7.5 min
(Fig. 4D, dark blue bar). Figure 4 (B and C) shows two example
trajectories with four and six Crazyflies, respectively. The trajectories
show that when a drone entered a room, it typically flew along its
complete boundaries. Hence, upon entry, we considered the room
“covered.” Note that the rather accurate trajectories in Fig. 4 (B and C)
have only been reconstructed for visualization purposes and did not
play any role in the navigation. The trajectories were plotted on the
basis of the coarse onboard odometry, adjusted with the video footage
of the external cameras on the scene using post-processing (text S3
explains the procedure and shows the difference between the original
and adjusted odometry). The trajectories show how, generally, the
drones explored different parts of the environment, thanks to the
different preferential directions. In Fig. 4C, an example can be seen
where drone 5 lost connection with the beacon in the far top-left room
of the environment, so the external camera had to provide the additional
trajectory information. Losing the connection was no problem for
autonomous navigation because the FSM ran on board the Crazyflie.
The visual odometry and wall-following behaviors allowed the drone
to escape the room and to reconnect with the home beacon. Video
compilations of the flight from Fig. 4C can be found in movie S1.

Figure 4D shows that, as in simulation, a clear trend can be seen
that the total coverage increases with the number of drones. How-
ever, the increase of the coverage by returned drones seems less
steep than in simulation. The reason for this is that both the coverage
per robot and the return rate (Fig. 4E) slightly decreased when adding
more Crazyflies. This is due to many issues, such as hardware mal-
functions, sensing failures, and (even for six drones) a collision
between two drones (see the pie chart of Fig. 4E). Having a limited
battery capacity is a real-world problem as well but was taken into
account in the simulation in the form of a time limit for the results
in Fig. 3. Concerning the collision avoidance, in all 15 real-world

experiments, there were 54 encounters between drones and only one
collision. This corresponds to a 98% success rate of the implemented
avoidance maneuver. The logged data can be found in (42), and sta-
tistical tests of the real-world results can be found together with a
table with the numbers of encounters and collisions in text S4.2. In
addition, the real-world results (Fig. 4D) show that the trend of the
total coverage is significantly related to the total number of drones.

Proof-of-concept search-and-rescue mission
Last, to illustrate the potential application of SGBA, we applied it to
a search-and-rescue exploration mission. The light-weight Crazyflies
carried a mission-relevant payload: A forward-looking camera and
an SD card (see Materials and Methods for the exact setup), which
resulted in a flight time of 5.5 min in total. This extra camera allowed
storage of images captured during flight for inspection by a human.
Although the proposed navigation solution worked with COTS
Crazyflie modules, for the proof-of-concept search-and-rescue mission,
we had to make a custom, lighter weight, and lower power laser-
ranging module to accommodate the extra camera and SD card. This
custom ranging module replaced the Crazyflie’s multi-ranger module.

The experiment simulated a search-and-rescue scenario, in which
two human-size wooden figures were placed in two different rooms
in the hallway. The same starting position was used for the four-
camera–equipped Crazyflies as in the previous test. To cope with
the limited flight time of the prototypes, we chose to perform only the
outbound flight. The trajectories in Fig. 5C were inferred from the
onboard camera footage in combination with the external cameras.

Both victims were found by the drones. In Fig. 5 (A and B), we
can see that Crazyflies 1 and 4 were flying in the rooms where the
victims were located. Drone 4 was able to capture the victim on its
onboard camera (Fig. 5E). However, Crazyflie 1 stopped recording
right before it flew into the room with the victim. Luckily, the victim
was spotted by drone 3 from another angle (Fig. 5D). This example
shows the advantage of using swarming, which can yield redundant
observations in an exploration task. A video compilation can be
found in movie S2.

As explained, the drones did not make a map of their environment
for navigation. After the drones came back, their collected images
could be downloaded to the base station. A human end user can
then go through the images, and, when finding a victim, look at the
video of the robot in fast-forward to find the location. If a map is
desired by the end user, the base station computer could also generate
a map based on the onboard images with state-of-the-art SLAM
methods [e.g., (16)]. This map generation may be challenging due
to real-world factors such as quick motions, motion blur from
vibrations, lack of texture, etc.

DISCUSSION
The purpose of this work was to develop an alternative for navigating
a group of tiny, resource-limited flying robots in an unknown,
GPS-denied environment. We presented the SGBA, which fit onboard
the Crazyflie robot, weighing a mere 33 g. Owing to the STM32F4
microprocessor and added sensing capabilities (multi-ranger and
flow-deck expansion decks), it navigated through a real office envi-
ronment. Moreover, while communicating with its peers, it avoided
other Crazyflies and increased coverage in the overall exploration task.
The algorithm enabled a group of small and limited flying robots to
fully autonomously navigate in a real environment by using their

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

7 of 14

Crash wall

Hardware
 failure

Crash another
Low battery

6
dr

on
es

4
dr

on
es

2 drones

2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
ve

ra
g

e

Coverage total
Coverage returned
Coverage per agent

Number of Robots

B
M

on
ito

r r
oo

m

-25 -20 -15 -10 -5 0 5 10 15 20 25

-6

-4

-2

0

2

4

6 1
2
3
4
5
6

Starting
Location

BarrierBarrier

M
on

ito
r r

oo
m

1
2
3
4

-25 -20 -15 -10 -5 0 5 10 15 20 25

-6

-4

-2

0

2

4

6

2 4 6
0

0.2

0.4

0.6

0.8

1

re
tu

rn
 r

at
e

Number of Robots

C

D E

A

Lost Connection External video

Fig. 4. Real-world results. The results of the real-world experiments with (A) a representation of the environment used and the Crazyflie 2.0’s with the necessary expan-
sion decks. Several example trajectories are shown for (B) four robots and (C) for six robots from their onboard odometry (adjusted by means of the external cameras). The
results of two, four, or six robots for five flights in each configuration are shown in (D) for the coverage (not including the nonaccessible areas in gray) and in (E) for the
return rate (cyan bars), with a pie chart additionally indicating the percentages of real-world–related issues, which prevented a successful return to the base station. Both
bar graphs of (D) and (E) show the mean as the SD, of which the specific values can be found in text S4.2.

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

8 of 14

onboard sensors and processing capabilities. Still, there are several
elements to consider for extending this work to bigger and more
complex environments as seen, for instance, in real-world search-
and-rescue scenarios.

There are several options that would improve navigation perfor-
mance. First, we expect that using Ultra Wide Band (UWB) instead
of the Crazyradio PA would substantially improve both localization
with respect to the beacon and sensing of other drones [see e.g., (47)].
The Crazyradio is heavily influenced by other 2.4-GHz sources
(Wi-Fi), and the inter-Crazyflie chatter and the RSSI-based distance
measurements are particularly noisy and heading dependent. The
good overall results show the robustness of SGBA. Still, communi-
cation could be considerably improved by using UWB communication
with time-of-flight ranging. For instance, a single DecaWave DWM1000
module can provide ranging to another such module for a distance
up to 290 m, through walls and obstacles, with ~10-cm accuracy
(48). Because SGBA only needs ranging to a single beacon, it can

use the full extent of the UWB range to notably improve the in-
bound flight.

In addition, the collision avoidance between drones may benefit
from using UWB. The experimental results showed an increase in
coverage when adding more drones to the swarm. However, the
increase follows a law of diminishing returns. We expect this
phenomenon to be fundamental because having more robots neces-
sarily means covering more of the same area when they start from
the same point, and it also means that robots will spend more time
avoiding each other. Still, in our current implementation, using too
many drones also led to communication overload during the flight.
In our current communication scheme (see Materials and Methods),
the more drones there were, the slower they communicated with
each other. Increasing the number of drones may cause problems of
miscoordination or, even worse, a higher likelihood of interdrone
crashes. We saw in the real-world results (Fig. 4E) that the latter did
not occur with two and four drones, but it did once with six drones.

Starting
Location BarrierBarrier

M
on

ito
r r

oo
m

1
2
3
4

-25 -20 -15 -10 -5 0 5 10 15 20 25

-6

-4

-2

0

2

4

6

video loss

2:53 2:59

4:032:54

External
video
Onboard
video

Victim

start end

Trajectory ID

A B

C

D E

video loss

M
on

ito
r r

oo
m

Fig. 5. Proof-of-concept search-and-rescue mission. The results of the experiment in which the Crazyflies carry a camera to detect victims in the environment. (A and
B) Screenshots of the external cameras capturing the Crazyflies during their flight. (C) Trajectory of the four Crazyflies (inferred from the onboard and external camera).
(D and E) Screenshots of the onboard Hubsan camera, with the two human-shaped silhouettes captured during the exploration flight.

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

9 of 14

The optimal number of drones will depend on the size of the environ-
ment and, with the current implementation of interswarm avoid-
ance, the communication hardware and protocol. Because of UWB’s
greater robustness with respect to interference and its higher
throughput, we expect it to also improve the scalability of the current
proposed scheme for drone collision avoidance.

During the real-world experiments, there was almost always a
connection between the home beacon and all drones. In Fig. 4C, a
disconnected drone kept executing its tasks autonomously because
the FSM runs fully on board. It was therefore able to get out of a
communication dead zone eventually. However, the question still
arises: How will the robots be able to get home if the beacon is lost
completely? Even with the earlier mentioned UWB improvement,
there are situations where the environment is larger than the range
of the beacon. A useful addition to cope with the home beacon loss
problem in bigger environments is to make more use of the swarm.
As the Crazyflies are communicating with each other, they can also
be used as a beacon themselves. As soon as a drone loses connection
with the homing beacon, it could try to find another Crazyflie that is still
connected to the beacon and navigate toward that position first, re-
connect with the original home beacon, and resume its navigation
to the starting position [a strategy that reminds of “chains” of robots
as used in, e.g., (49), but that would be more economical in terms of
the number of used robots]. Yet, this requires that at least several
Crazyflies always need to stay connected to the home beacon and
therefore are limited in their own missions.

Improving the robots’ sensing capabilities would also improve the
results. Specifically, the multi-ranger deck proved to be sufficient for
our test environment, yet there are limitations. For instance, it cannot
see very thin objects and relies on the flow deck to work properly.
Although the flow deck and the existing sensor fusion provided stable
velocity- driven flight, the dark floor in the office environment turned
out to be challenging. Therefore, a Crazyflie would occasionally drift
and move into a direction where obstacles were present in the blind
spots of the multi-ranger. A higher robustness to collisions from a
protective cage, as proposed in (50), would help. The wall following
and obstacle detection can also be made more robust. A possible
solution is to add a light-weight vision system, as in (51, 52). Vision
can provide distance estimates in an entire field of view and aid the
velocity estimation and odometry by means of frontal optical flow
[see (53)]. This would reduce problems with textureless floors. Even
so, a fundamental limitation of using the multi-rangers, cameras,
or optical flow sensors is that they will be ineffective if the sur-
roundings are filled with smoke. In that case, different sensors such
as sonar or radar can be used, whereas the navigation can remain
identical.

The high efficiency of SGBA in terms of sensing, computation,
and memory comes at the cost of navigation efficiency. Not build-
ing a global map and not performing computationally expensive
optimal path planning results in suboptimal paths. Drones can
revisit rooms multiple times or can visit rooms that were already
visited by other drones. This could perhaps be solved in a relatively
efficient manner, e.g., involving visual landmark recognition. Still,
the experimental results have shown that multiple measurements
from the same area can be beneficial. Camera footage can get tem-
porarily occluded or even lost, as happened with drone 1 in Fig. 5C.
Moreover, the fact that drones’ views overlap with each other can
make a substantial difference in the data collection if not all robots
are able to return.

We illustrated the potential of SGBA by implementing it on the
smallest possible commercially available quadrotor. However, the
discussion above suggests that the method would perhaps be even
more successful on a custom-designed drone. One option is to im-
plement SGBA on a smaller platform while keeping a similar per-
formance. Making SGBA work on a smaller drone is possible because
a custom design would not have to be as modular and easy to use as
the Crazyflie decks. That this is possible is already shown by the
lighter and more energy-efficient custom laser ranger deck that was
made for the proof-of-concept search-and-rescue mission. Another
option is to implement SGBA on a slightly bigger drone for better
performance. We expect that using a slightly bigger drone with better
sensing, communication devices, and more battery capacity would
notably improve the return rate of the drones because it would
reduce collisions both with obstacles and with other drones, make
the inbound flight more efficient, and extend the flight time available
for returning. Even if such a drone could have a bit more processing
available, the current proposed navigation solution remains of high
interest because it will leave much room for other types of functional-
ities. This may be used by vision algorithms to enhance the navigation
or by other algorithms performing mission-specific tasks.

In the future, more processing power will become available to
small robots [see, e.g., (54)]. In comparison with 3D SLAM, SGBA
will always be available to smaller robots. For instance, it is not un-
thinkable that SGBA may be applied to the 80-mg RoboBee (55).
Furthermore, small robots will have to use their onboard computing
power for all tasks that they need to perform autonomously. It is
essential for small robots to have computationally efficient algorithms
for all tasks they perform. Using SGBA implies that there is more
computational power and memory available for other mission-relevant
tasks. Hence, we expect SGBA to remain relevant even with the further
progress in the miniaturization of computing devices.

Last, we suggest application scenarios for which the developed
swarm exploration seems suitable. We performed a preliminary
investigation into SGBA’s use for search and rescue. However, the
proposed method is also suitable for other tasks because it allows a
swarm of small robots to quickly explore a potentially unknown en-
vironment. Hence, we believe that it is also suitable for exploring an
unknown cave or inspecting the inside of a building that is about to
collapse. Apart from unknown environments, SGBA can also be
applied to known environments, for instance, in surveillance appli-
cations. In the case of surveillance for security, one may typically
think of robots performing regular trajectories, e.g., along the property’s
perimeter, but a less predictable swarm-based surveillance may be
better in countering unwanted intruders. In many applications, robots
will need to operate for longer times. For example, in an inventory-
tracking scenario, a swarm of safe, tiny drones may buzz around the
warehouse, continuously flying out to scan products and then re-
turning to base to recharge. Similar setups may also serve blue algae
monitoring by little robot boats or floor cleaning by small garbage
collection robots. A swarm of tiny robots has benefits because the
robots are safe, cheap, navigate in narrow spaces, and, as a group,
can quickly cover relatively large areas.

CONCLUSION
To conclude, we presented a minimal navigation solution, the SGBA,
that allows tiny flying robots to successfully explore a real-world
environment. In our experiments, the Crazyflie robots only used

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

10 of 14

their inertial measurement unit, four tiny 1D laser range finders, an
optical flow deck, and a very light 2.4-GHz radio chip. The processing
fit easily in the single 32-bit, 168-MHz, 196-kB RAM microcontroller
of the Crazyflie in addition to all flight control code. Instead of
building a map of the environment like conventional SLAM tech-
niques, our navigation solution consists of a combination of simple
behaviors and behavioral transitions to accomplish the complex
tasks of autonomous exploration and homing. The guiding principle
here is to trade off properties such as path optimality and accuracy
with resource efficiency, allowing for autonomous swarm navigation.
We believe that this principle can offer inspiration for solving other
complex robotic tasks as well with swarms of cheap and safe tiny robots.

MATERIALS AND METHODS
Here, we explain the exploration and homing strategy of SGBA,
starting with the navigation of a single robot and then expanding to
larger numbers of robots. Afterward, we explain the hardware used
for the real-world experiments.

Outbound travel
We start our explanation of the FSM with the outbound travel of
a single robot. Figure 6 (A and B) illustrates the entire FSM, where
the robot starts at “Init.” For the outbound travel, it is important to
realize that the robot just needs to explore the available space and
does not need to go to a specific location. Therefore, it will only be
assigned a preferred heading. After it encounters, follows, and then
leaves an obstacle, it will follow that same heading again (Fig. 6C).
Of course, there will be heading drift over time. In the case of the
Crazyflie robots used in the real-world experiments, the drift was
~0.10°/s (48° over the 8-min flight time). Still, because the main
goal of the heading estimate was to send multiple robots into roughly
different directions, the drift did not significantly affect SGBA’s
performance.

After the robot detects an obstacle with its front laser range sensor,
it will start the wall-following behavior. First, it chooses an initial
“local direction,” which decides whether to follow the wall on the
right- or left-hand side. We chose a local direction policy based on
the strategies of DistBug (56) and FuzzyBug (57), namely, by adopt-
ing the “angle of attack” as the robot approaches the wall. With the
current hardware of the four laser range sensors in all four directions
of the horizontal plane, the robot could easily determine the angle
of the wall by evaluating whether the side range sensors are triggered
in combination with the front one. The main assumption here is
that the wall needs to be straight. However, if this is not the case,
this does not mean that the strategy will fail. If the local direction
ends up being a less optimal one, this will be corrected for at a later
time. From here on, the robot starts following the boundary of the
obstacle and the wall.

SGBA uses memory for loop detection. Memoryless bug algo-
rithms are prone to getting stuck in loops because they may encounter
an obstacle, perform wall following, and then leave the obstacle in a
direction, which will lead them back to exactly the same obstacle.
This will lead to an endless loop, devastating the navigation perfor-
mance. An example of this can happen in a room, where a robot’s
preferred direction is away from the only door in the room. It may
then enter the room and travel through the room until it detects the
wall on the opposite side of the room. Subsequently, it will follow
the walls of the room until it is following the wall with the door

entry. However, because its preferred direction is away from the
door, it may leave that wall again before reaching the door, travelling
to the opposite wall again. The occurrence of this type of loop is why
during wall following SGBA keeps track of its position relative to
the location where the robot first detected the obstacle (termed the
“hit point”). If the robot tracks back, due to the environment charac-
teristics, and crosses the area behind the hit point, it will detect that
as a loop. This means that once the robot leaves the obstacle and en-
counters another, which is usually the same hit point as last time, it will
not base its local direction on the current wall angle but on the reverse
of the direction chosen at the previous saved hit point. This position
tracking is illustrated in Fig. 6D and is done completely with relative
position estimations of the onboard odometry. Because this procedure
is only used for local decision-making within small rooms, this was
a sufficient tactic to handle loops within our experiment environment.
However, this probably will not prevent a potential loop in large
areas because the drift will be too severe. We have studied the effect
that SGBA’s loop detection has on the return rate (text S6). The
results show that for one robot, the return rate dropped substantially
when there was no loop detection, but for six robots, the effect was
less evident. Upon detailed inspection, we noticed that inter-robot
encounters are responsible for getting stuck robots out of a loop.
With this, they can cope with the lack of a proper loop detection,
which is an interesting feature of the swarming element of SGBA.

Wireless communication-based inbound travel
After a few minutes, either after a time threshold has passed or based
on the remaining voltage of the battery, the robot needs to return to
its base station. This is extremely important for robots that store
their measurements onboard and do not stream their results to the
operator. To achieve this, SGBA keeps track of the gradient of the
filtered RSSI (see text S2 for raw measurements) while it is perform-
ing the wall following, as seen in Fig. 6E. During the straight parts of
the procedure, it has a circular buffer, corresponding to the heading
of the robot, where the values in the buffer track the directions in
which the RSSI has increased over time. In the direction of the RSSI
increase, the buffer value is incremented, whereas the value in the
opposite (−180°) direction is decremented to give it a lower influ-
ence. For an RSSI decrease, the exact opposite procedure is done,
and for no RSSI change, the buffer values stay the same. Both incre-
mentation and decrementation, based on the RSSI’s derivative, are
done for every N meter, where N is a decimal number defined by the
user. Every N × k meter, where k is a scalar value, a vanishing function
is applied to decrease the influence of older RSSI measurements. This
RSSI change in function of the heading allows the robots to estimate
the direction to the home beacon, which they will use for the return
travel any time they are not forced to follow an obstacle or wall.
Because the RSSI increase is noisy and irregular, this will usually
not be an exact angle but a coarse indication of where the bea-
con is. This proved to be enough for the robot to return to its home
base. Any drift in the robot’s heading estimate is not problematic
for the inbound travel because the direction to the home beacon is
determined with respect to this internal heading representation.

Coordination among drones
A single robot could use the SGBA-FSM by itself to navigate. How-
ever, it only has a limited battery capacity and therefore will not be
able to explore the entire environment. For this reason, it is more
advantageous to use a swarm of robots. However, using multiple

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

11 of 14

robots poses a new set of problems. First,
the robots need to avoid each other,
and second, they should coordinate
the search with each other to achieve
maximum dispersion and avoid conflicts.
This was done with their communicated
information and range measurements
(range or RSSI) and implemented by the
“move out of way” state in Fig. 6A. For
collision avoidance, if two robots come
really close to each other (Rother < Rth_coll),
the robot with the high-priority (and
in our case lower ID, IDlow) will have
the right of way. The low-priority robot
(IDhigh) will perform an action enabling
IDlow to smoothly move past it. After
staying out of IDlow’s way until Rother >
Rth_coll, IDhigh resumes navigation. For
the coordination of the search, the robots
dynamically adapt their preferred heading.
Initially, each robot is assigned a preferred
heading, chosen out of K different direc-
tions. If during outbound travel a robot
comes nearby another one (Rother < Rth)
and these robots have a similar preferred
heading, then the low-priority robot IDhigh
will change the sign of its preferred
heading and carry on (Fig. 6F). The next
time it leaves the obstacle, it will therefore
move away from the search area of the
robot with the higher priority, IDlow. A
change in preferred heading is triggered
earlier than a collision avoidance action
(Rth_coll < Rth), and it is only performed
during outbound travel. During inbound
travel, the preferred heading is going
toward to the home beacon. Hence, during
inbound travel, the range between robots
is only used for collision avoidance. The
different implementations for simulated
and real-world robotic platforms can be
found in text S5.

Hardware
For the experiments, we used Bitcraze’s
platform Crazyflie 2.0 (43), augmented
with the flow deck v2.0 (45) and the multi-
ranger (44) expansion decks, which can
be seen in Fig. 7A. An alternative battery
with more capacity was added for a longer
flight time, namely, the Turnigy nano-
tech 300 mAh (1S 45-90C) LiPo battery,
providing an average power supply of
3.7 V. To make sure the entire path in
front of the drone is free of obstacles
using the 20° field-of-view laser ranger,
the minimum required detection range
is 50 cm, for which the VL53L1xs (58) laser
ranger on the multi-ranger is sufficient.

A

start

pref

init

C

B

Symbol

pref
init
now

Dobst
Dth_obst
LD
SWF
ID
Rother
Rth
Rth_coll

RSSI

Meaning

Goal heading
Initial goal heading
Current heading
Distance to Obstacle
Distance Obstacle Threshold
Local Direction
Wall-following State
Identi cation number
Range to closest drone
Range threshold to change goal
Range threshold for coll. avoidance
RSSI gradient of home beacon

loop detected!

saved hit-point

D

E

2,pref

2,pref
*

Bot2

Bot1

1,pref

F

Other Drone
Detected! Rth

RSSI

RSSI

Forward

Wall Following

Rotate to goal

Dobst < Dth_obst

now pref

IF: previous loop detected
 overwrite previous chosen LD
ELSE:
 LD based on attack angle to wall

SWF = "around corner"
& Dobst < Dth_obst &
Goal reachable = true

Check if loop
is detected

Dobst < Dth_obst

Init

 pref = init

Rother < RTh_coll

& IDother < IDown

Rother > Rth_coll

Only outbound
travel

IF: Rother < RTh
& sign(pref) = sign(pref,other):
 Change sign pref

Only inbound
travel

IF: SWF = 'forward'
 update pref with RSSI

Move out of
the way

Fig. 6. SGBA FSM. (A) FSM of the SGBA with (B) a legend of symbols. Its individual subsystems are illustrated as fol-
lows: (C) Outbound navigation in which the robot attempts to follow its goal heading, following obstacle contours
on the way, and (D) local direction preferences based on angle of attack, i.e., the angle that the robot’s trajectory makes
with the wall and the principle of the loop detection. The addition to the state machine of the gradient search toward
the beacon at the home location for the inbound travel is given in blue, with (E) the gradient search method during
the straight parts of the wall following. Here, the robot tries to estimate the direction toward the beacon by integrating
information on the received signal strength based on its heading along the way. Swarm coordination addition to the
state machine for the outbound flight (green), where (F) shows that the robot will change its goal heading if another
drone (with higher priority) has its preferred heading in the same direction. In case the drones are even closer, the
one with the lowest priority will move out of the way completely for both inbound and outbound travel.

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

12 of 14

The flow deck contains a PMW3901MB optical flow sensor (59) to
detect motion, with an additional VL53L1x for height detection and
control. Within the existing state estimation (60), the Crazyflie
achieved excellent hover and velocity control, and optical flow
was detected on most surfaces. Nevertheless, dark colors should be
avoided. The dark low-texture floors in our real-world environment
were challenging (Fig. 4A), and the flyable height where motion
detection was still reliable was only 0.5 m.

For the onboard video recording experiments, we designed a
custom expansion board, which included configuration of the lower
power VL53L0x time-of-flight (61) sensors (the predecessor of the
VL53L1xs on Bitcraze’s multi-ranger deck) and a camera module,

meant as a spare part of the Hubsan X4 H107C RC Quadcopter
(62). This camera module carries an SD card to record the videos
captured during the SGBA navigation of the Crazyflies. This config-
uration is displayed in Fig. 7B. The weight of the platforms and the
average power consumption per expansion board are shown in
Fig. 7C, which resulted in approximate flight times of 7.5 min for
the left-hand Crazyflie configuration and 5.5 min for the right-hand
Crazyflie configuration in Fig. 7.

To fully execute the SGBA, a communication protocol (Fig. 7E)
has been flashed into the NRF51 microprocessor, which handles the
Crazyradio communication (2.4-GHz Wi-Fi protocol and Bluetooth),
and the power distribution. Each drone has its own unique ID

Components Weight [g]
CrazyFlie 2.0 (with motors)
 20.64 ~1350 mA (in hover)
Turnigy 3.7 Battery 8.39 350 mAh
Flow Deck v1 1.71 40 mA
Multi-ranger Deck 2.28 90 mA
Custom Multi-ranger 2.00 70 mA
Hubson Camera module 3.48 100 mA

A

B

C

D

1

2

3

4

5

6

Drone ID

Channel

30

40

50

60

70

80

Communication
Command

0 1 2 3 4 5

E

Total weight: 35.68 g.
Flight time:~ 5.5 min

Total weight: 33.02 g.
Flight time: ~ 7.5 min

Transmit
msg to
other
channel

5 x VL53L1x

4 x VL53L0x

Power Consumption/
Capacity

Fig. 7. Hardware and communication specifics. (A) Crazyflie used for outbound and inbound travel and (B) the assembly used for the video recording of the environ-
ment. (C) Components on the Crazyflie, including weight and battery consumption. (D) Total of six Crazyflies used including six Crazyradio PAs and (E) the communication
scheme shown for the six-drone experiment. Here, a counter is regulating when the drone will transmit a message (msg) to another drone (for counter 1: drone 1 to 2,
drone 2 to 3, etc.). Between the regulated counter, the drone transmits its message to another drone with a time offset based on its ID. Six PAs were used for the six com-
munication channels to receive logging of the Crazyflies for statistics; however, these can be replaced by one if no telemetry is required.

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

13 of 14

number; We consider numbers one to six in this explanation. This
ID also indicates in which channel (ID × 10 + 20) the Crazyflie
communicates with the computer for logging the onboard variables,
as can be seen in Fig. 7E. This separation of channels was done to
reduce interference between the Crazyflies. The variable logging of
each Crazyflie to the computer was done at 0.5 Hz, which includes
the position estimation, the RSSI of the beacon and other robots,
the SGBA status of the state machine, etc. In our experiments,
because we needed to receive the onboard data of each Crazyflie
separately for the statistics in this paper, each drone had its own
individual Crazyradio PA (Fig. 7D). This reduced the possibility of
package loss of the telemetry data; however, technically, only one
beacon is necessary. If the Crazyradio PA quickly switches and
transmits empty packages on all the available channels, the SGBA
does not require any additional knowledge except for the RSSI
value.

The communication between the Crazyflies was done with a
counter to prevent package loss due to message collisions (Fig. 7E).
The counter regulates when one drone will send a package to another
drone, which will be incremented every 0.5 s. For this, it switches to
the primary transmitter (PT) mode, changes its communication
channel to the other drone’s channel, sends the message within a
short timeframe, and switches back immediately to its own channel
in primary receiver mode to receive messages from the other Crazy-
flies and to receive an RSSI of the home beacon. Between the regulat-
ing counter increments, the moment to switch to PT depends on the
drone’s ID. This should prevent the Crazyflies from simultaneously
sending messages, therefore reducing the possibility of interdrone
package loss. The information that the Crazyflies send to each other
is their ID and preferred heading. This is necessary for changing
direction on the outbound travel. At the same time, the receiving
drone also knows the signal strength and hereby has an indication
of the proximity of the other robot. Not all Crazyflies send a similar
number of messages. The highest priority robot (lowest ID = highest
priority) transmits to every channel because all others would need
to avoid it, and the lowest priority robot does not send a message at
all because it needs to avoid everybody else.

In the experiments, the earlier-mentioned counter was regulated
by the computer; however, each Crazyflie would be able to do this
by itself after clock synchronization of the autopilots. The separa-
tion of channels on the Crazyradio modules was necessary to enable
stable communication between Crazyflies. It should be possible to
put multiple Crazyflies on one channel; however, the number of usable
channels and the number of robots per channel are limited. This poses
a restriction for the total number of robots that the 2.4-GHz Crazyradio
protocol is useful for; however, this could be further scaled by using
UWB instead and a more sophisticated scheduling protocol such as
self-organized time-division multiple access (STDMA) as in (63).

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/35/eaaw9710/DC1
Text S1. Real-world test environment
Text S2. RSSI measurements
Text S3. From odometry to trajectory
Text S4. Analysis and statistics
Text S5. SGBA implementation details simulation versus real world
Text S6. SGBA submodule analysis
Fig. S1. Overview of the real-world environment.
Fig. S2. RSSI measurements.
Fig. S3. Odometry versus trajectory.
Fig. S4. Transcripts hallway video.

Fig. S5. Odometry correction.
Fig. S6. Coverage calculation simulation.
Fig. S7. SGBA simulation versus real world.
Fig. S8. Simulated collisions SGBA.
Fig. S9. Loop detection check.
Table S1. Statistics of the simulation tests.
Table S2. End status of the real-world tests with two drones.
Table S3. End status of the real-world tests with four drones.
Table S4. End status of the real-world tests with six drones.
Table S5. Coverage of the real-world tests with two drones.
Table S6. Coverage of the real-world tests with four drones.
Table S7. Coverage of the real-world tests with six drones.
Table S8. Statistics of the real-world tests.
Table S9. Real-world collisions.
Movie S1. Video six-drone test configuration.
Movie S2. Video four-drone victim search.

REFERENCES AND NOTES
 1. D. Floreano, R. J. Wood, Science, technology and the future of small autonomous drones.

Nature 521, 460–466 (2015).
 2. K. Y. Ma, P. Chirarattananon, S. B. Fuller, R. J. Wood, Controlled flight of a biologically

inspired, insect-scale robot. Science 340, 603–607 (2013).
 3. C. R. Reid, D. J. T. Sumpter, M. Beekman, Optimisation in a natural system: Argentine ants

solve the Towers of Hanoi. J. Exp. Biol. 214, 50–58 (2011).
 4. R. Menzel, J. Fuchs, A. Kirbach, K. Lehmann, U. Greggers, Navigation and communication

in honey bees, in Honeybee Neurobiology and Behavior (Springer, 2012), pp. 103–116.
 5. F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J. Deneubourg, M. Dorigo, The

cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robot. Autom. Mag.
12, 21–28 (2005).

 6. K. H. Petersen, R. Nagpal, J. K. Werfel, Termes: An autonomous robotic system for
three-dimensional collective construction (Robotics: Science and Systems VII, 2011).

 7. M. Rubenstein, A. Cornejo, R. Nagpal, Robotics. Programmable self-assembly
in a thousand-robot swarm. Science 345, 795–799 (2014).

 8. A. Kushleyev, D. Mellinger, C. Powers, V. Kumar, Towards a swarm of agile micro
quadrotors. Auton. Robots 35, 287–300 (2013).

 9. M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira, A. L. Christensen,
Evolution of collective behaviors for a real swarm of aquatic surface robots. PLOS ONE 11,
e0151834 (2016).

 10. Intel, Intel Drone Light Show Breaks Guinness World Records Title At Olympic Winter
Games Pyeongchang 2018 (2018); https://newsroom.intel.com/news-releases/
intel-drone-light-show-breaks-guinness-world-records-title-olympic-winter-games-
pyeongchang-2018 .

 11. G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz, T. Vicsek, Outdoor
flocking and formation flight with autonomous aerial robots, paper presented at the
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Chicago, IL, 14 to 18 September 2014.

 12. S. Hauert, S. Leven, M. Varga, F. Ruini, A. Cangelosi, J.-C. Zufferey, D. Floreano, Reynolds
flocking in reality with fixed-wing robots: Communication range vs. maximum turning
rate, paper presented at the 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), San Francisco, CA, 25 to 30 September 2011.

 13. G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, T. Vicsek, Optimized flocking
of autonomous drones in confined environments. Sci. Robot. 3, eaat3536 (2018).

 14. J. Fuentes-Pacheco, J. Ruiz-Ascencio, J. M. Rendón-Mancha, Visual simultaneous
localization and mapping: A survey. Artificial Intelligence Review 43, 55–81
(2012).

 15. M. T. Lazaro, L. M. Paz, P. Pinies, J. A. Castellanos, G. Grisetti, Multi-robot SLAM using
condensed measurements, paper presented at the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3 to 7 November 2013.

 16. J. Engel, T. Schöps, D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, paper
presented at the 2014 European Conference on Computer Vision (ECCV) Zurich, Switzerland,
6 to 12 September 2014.

 17. E. López, S. García, R. Barea, L. Bergasa, E. Molinos, R. Arroyo, E. Romera, S. Pardo,
A multi-sensorial simultaneous localization and mapping (SLAM) system for low-cost
micro aerial vehicles in GPS-denied environments. Sensors 17, E802 (2017).

 18. C. Forster, S. Lynen, L. Kneip, D. Scaramuzza, Collaborative monocular slam with multiple
micro aerial vehicles, paper presented at the 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, Japan, 3 to 7 November 2013.

 19. A. Weinstein, A. Cho, G. Loianno, V. Kumar, Visual inertial odometry swarm:
An autonomous swarm of vision-based quadrotors. IEEE Robot. Autom. Lett. 3, 1801–1807
(2018).

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/cgi/content/full/4/35/eaaw9710/DC1
https://newsroom.intel.com/news-releases/intel-drone-light-show-breaks-guinness-world-records-title-olympic-winter-games-pyeongchang-2018
https://newsroom.intel.com/news-releases/intel-drone-light-show-breaks-guinness-world-records-title-olympic-winter-games-pyeongchang-2018
https://newsroom.intel.com/news-releases/intel-drone-light-show-breaks-guinness-world-records-title-olympic-winter-games-pyeongchang-2018
http://robotics.sciencemag.org/

McGuire et al., Sci. Robot. 4, eaaw9710 (2019) 23 October 2019

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

14 of 14

 20. S. Jung, S. Hwang, H. Shin, D. H. Shim, Perception, guidance, and navigation for indoor
autonomous drone racing using deep learning. IEEE Robot. Autom. Lett. 3, 2539–2544 (2018).

 21. N. J. Sanket, C. D. Singh, K. Ganguly, C. Fermüller, Y. Aloimonos, Gapflyt: Active vision
based minimalist structure-less gap detection for quadrotor flight. IEEE Robot. Autom. Lett.
3, 2799–2806 (2018).

 22. M. V. Srinivasan, Honeybees as a model for the study of visually guided flight, navigation,
and biologically inspired robotics. Physiol. Rev. 91, 413–460 (2011).

 23. J. Dupeyroux, J. R. Serres, S. Viollet, AntBot: A six-legged walking robot able to home like
desert ants in outdoor environments. Science Robotics 4, eaau0307 (2019).

 24. M. Srinivasan, S. Zhang, N. Bidwell, Visually mediated odometry in honeybees. J. Exp. Biol.
200, 2513–2522 (1997).

 25. B. A. Cartwright, T. S. Collett, Landmark learning in bees-experiments and models.
J. Comp. Physiol. 151, 521–543 (1983).

 26. A. Denuelle, M. V. Srinivasan, A sparse snapshot-based navigation strategy for UAS
guidance in natural environments, paper presented at the 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16 to 21 May 2016.

 27. E. Garcia-Fidalgo, A. Ortiz, Vision-based topological mapping and localization methods:
A survey. Robot. Autonom. Syst. 64, 1–20 (2015).

 28. V. Lumelsky, A. Stepanov, Dynamic path planning for a mobile automaton with limited
information on the environment. IEEE Trans. Autom. Control 31, 1058–1063 (1986).

 29. I. Kamon, E. Rivlin, Sensory-based motion planning with global proofs. IEEE Trans. Robot. Autom.
13, 814–822 (1997).

 30. A. Sankaranarayanan, M. Vidyasagar, A new path planning algorithm for moving a point
object amidst unknown obstacles in a plane, paper presented at the IEEE International
Conference on Robotics and Automation (ICRA), Cincinnati, OH, 13 to 18 May 1990.

 31. F. Mastrogiovanni, A. Sgorbissa, R. Zaccaria, Robust navigation in an unknown environment
with minimal sensing and representation. IEEE Trans. Syst. Man Cybern. Part B 39, 212–229 (2009).

 32. Q. M. Nguyen, L. N. M. Tran, T. C. Phung, A study on building optimal path planning
algorithms for mobile robot, paper presented at the 2018 4th International Conference
on Green Technology and Sustainable Development (GTSD), Ho Chi Minh City, Vietnam,
23 to 24 November 2018.

 33. K. McGuire, G. de Croon, K. Tuyls, A comparative study of bug algorithms for robot
navigation. Robot. Autonom. Syst. 121, 103261 (2019).

 34. K. Taylor, S. M. LaValle, I-Bug: An intensity-based bug algorithm, paper presented at the 2009 IEEE
International Conference on Robotics and Automation (ICRA), Kobe, Japan, 12 to 17 May 2009.

 35. K. Taylor, S. M. LaValle, Intensity-based navigation with global guarantees. Auton. Robots
36, 349–364 (2014).

 36. J. N. Twigg, J. R. Fink, L. Y. Paul, B. M. Sadler, RSS gradient-assisted frontier exploration
and radio source localization, paper presented at the 2012 IEEE International Conference
on Robotics and Automation (ICRA), Saint Paul, MN, 14 to 18 May 2012.

 37. M. Chinnaaiah, K. Anusha, B. Bharat, M. Divya, P. S. Raju, S. Dubey, Deliberation of
curvature type Obstacles: A new approach using FPGA based robot, paper presented at
the 2018 International Conference on Control, Power, Communication and Computing
Technologies (ICCPCCT), Kannur, India, 23 to 24 March 2018.

 38. C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Mathews, E. Ferrante,
G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, M. Dorigo, ARGoS: A modular, parallel,
multi-engine simulator for multi-robot systems. Swarm Intelligence 6, 271–295 (2012).

 39. A. Vardy, ARGos Bridge (2016, 2017); https://github.com/BOTSlab/argos_bridge.
 40. K. McGuire, SGBA_code_SR_2019 (2019); https://github.com/tudelft/SGBA_code_SR_2019.
 41. M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz, D. Burnier, G. Roulet, F. Vaussard,

H. Bleuler, F. Mondada, The marXbot, a miniature mobile robot opening new perspectives
for the collective-robotic research, paper presented at the 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18 to 22 October 2010.

 42. K. McGuire, Dataset for “Minimal navigation solution for a swarm of tiny flying robots to explore
an unknown environment” (DataverseNL, 2019); https://hdl.handle.net/10411/YVP873.

 43. Bitcraze AB, Crazyflie 2.0 (2019); www.bitcraze.io/crazyflie-2/.
 44. Bitcraze AB, Multi-ranger deck (2019); www.bitcraze.io/multi-ranger-deck/.
 45. Bitcraze AB, Flow deck v2 (2019); www.bitcraze.io/flow-deck-v2/.
 46. Bitcraze AB, Crazyradio PA (2019); www.bitcraze.io/crazyradio-pa/.
 47. S. van der Helm, M. Coppola, K. N. McGuire, G. C. H. E. de Croon, On-board range-based

relative localization for micro air vehicles in indoor leader–follower flight. Auton. Robots
2019, 1–27 (2019).

 48. Decawave, DWM1000 Productbrief p. 1, V1.2, 2018; www.decawave.com/product/
dwm1000-module/.

 49. M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T. Baaboura, M. Birattari,
M. Bonani, M. Brambilla, A. Brutschy, D. Burnier, A. Campo, A. L. Christensen,

A. Decugniere, G. Di Caro, F. Ducatelle, E. Ferrante, A. Forster, J. M. Gonzales, J. Guzzi,
V. Longchamp, S. Magnenat, N. Mathews, M. M. de Oca, R. O'Grady, C. Pinciroli, G. Pini,
P. Retornaz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stutzle, V. Trianni, E. Tuci,
A. E. Turgut, F. Vaussard, Swarmanoid: a novel concept for the study of heterogeneous
robotic swarms. IEEE Robot. Autom. Mag. 20, 60–71 (2013).

 50. Y. Mulgaonkar, A. Makineni, L. Guerrero-Bonilla, V. Kumar, Robust aerial robot swarms
without collision avoidance. IEEE Robot. Autom. Lett. 3, 596–603 (2018).

 51. C. De Wagter, S. Tijmons, B. D. Remes, G. C. de Croon, Autonomous flight of a 20-gram
flapping wing MAV with a 4-gram onboard stereo vision system, paper presented at the
2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong,
China, 31 May to 7 June 2014.

 52. D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza, L. Benini, A 64mW DNN-based visual
navigation engine for autonomous nano-drones. IEEE Internet of Things Journal 2019, 1–1
(2019).

 53. K. McGuire, G. de Croon, C. De Wagter, K. Tuyls, H. Kappen, Efficient optical flow
and stereo vision for velocity estimation and obstacle avoidance on an autonomous
pocket drone. IEEE Robot. Autom. Letters 2, 1070–1076 (2017).

 54. S. Jones, M. Studley, S. Hauert, A. F. T. Winfield, A two teraflop swarm. Front. Robot. AI 5,
11 (2018).

 55. N. T. Jafferis, E. F. Helbling, M. Karpelson, R. J. J. N. Wood, Untethered flight of an
insect-sized flapping-wing microscale aerial vehicle. 570, 491 (2019).

 56. I. Kamon, E. Rimon, E. Rivlin, Range-sensor based navigation in three dimensions, paper
presented at the Proceedings 1999 IEEE International Conference on Robotics and
Automation (ICRA), Detroit, MI, 10 to 15 May 1999.

 57. S. Lee, T. M. Adams, B.-y. Ryoo, A fuzzy navigation system for mobile construction robots.
Automation in construction 6, 97–107 (1997).

 58. STMicroelectronics, VL53L1x (2019); www.st.com/en/imaging-and-photonics-solutions/vl53l1x.html.
 59. P. I. Inc., PMW3901MB-TXQT (2019); www.pixart.com/products-detail/44/PMW3901MB-TXQT.
 60. M. W. Mueller, M. Hehn, R. D’Andrea, Covariance correction step for kalman filtering

with an attitude. J. Guid. Control Dynam. 40, 2301–2306 (2016).
 61. STMicroelectronics, VL53L0X (2019); www.st.com/en/imaging-and-photonics-solutions/

vl53l0x.html.
 62. Hubsan, HD Camera module 720P (2019); www.hubsan.com/eur/index.php?main_

page=product_info&products_id=228.
 63. M. Coppola, K. N. McGuire, K. Y. W. Scheper, G. C. H. E. de Croon, On-board communication-

based relative localization for collision avoidance in Micro Air Vehicle teams. Auton. Robots
42, 1787–1805 (2018).

Acknowledgments: We thank V. Trianni for helpful comments on the early manuscript. We
also thank L. Schrover and J. Siebring for allowing us to use a portion of the building of the TU
Delft faculty of Aerospace Engineering for our experiments. We also acknowledge the great
help of E. van der Horst for his advice on setting up the communication protocol. Moreover,
we are grateful to Bitcraze AB’s for help with multiple hardware-related issues with the
Crazyflie. Funding: This work was financed by the Dutch Research Council (NWO) under grant
no. 656.000.006 within the Natural Artificial Intelligence Programme. Author contributions:
All authors contributed to the conception of the project and were involved in the analysis of
the results and revising and editing the manuscript. G.C.H.E.d.C. and K.N.M. have forwarded
the idea of a swarm bug algorithm with a beacon for homing. K.N.M. has designed and
implemented the SGBA specifics for the experiments with support of C.D.W. and
G.C.H.E.d.C. The manuscript was primarily written by K.N.M., C.D.W., G.C.H.E.d.C., and K.T., and
H.J.K. revised the intermediate versions. K.M. contributed to this work while at Delft University
of Technology and has moved to Bitcraze AB. K.T. contributed to this work while at the
University of Liverpool and now has moved to DeepMind. Competing interests: The authors
declare that they have no competing interests. Data and materials availability: All data
needed to evaluate the conclusions in the article are present in the paper or the
Supplementary Materials.

Submitted 9 April 2019
Accepted 30 September 2019
Published 23 October 2019
10.1126/scirobotics.aaw9710

Citation: K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen, G. de Croon, Minimal navigation
solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 4,
eaaw9710 (2019).

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

https://github.com/BOTSlab/argos_bridge
https://github.com/tudelft/SGBA_code_SR_2019
https://hdl.handle.net/10411/YVP873
https://www.bitcraze.io/crazyflie-2/
https://www.bitcraze.io/multi-ranger-deck/
https://www.bitcraze.io/flow-deck-v2/
https://www.bitcraze.io/crazyradio-pa/
https://www.decawave.com/product/dwm1000-module/
https://www.decawave.com/product/dwm1000-module/
https://www.st.com/en/imaging-and-photonics-solutions/vl53l1x.html
http://www.pixart.com/products-detail/44/PMW3901MB-TXQT
https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
https://www.hubsan.com/eur/index.php?main_page=product_info&products_id=228
https://www.hubsan.com/eur/index.php?main_page=product_info&products_id=228
http://robotics.sciencemag.org/

environment
Minimal navigation solution for a swarm of tiny flying robots to explore an unknown

K. N. McGuire, C. De Wagter, K. Tuyls, H. J. Kappen and G. C. H. E. de Croon

DOI: 10.1126/scirobotics.aaw9710
, eaaw9710.4Sci. Robotics

ARTICLE TOOLS http://robotics.sciencemag.org/content/4/35/eaaw9710

MATERIALS
SUPPLEMENTARY http://robotics.sciencemag.org/content/suppl/2019/10/18/4.35.eaaw9710.DC1

CONTENT
RELATED http://robotics.sciencemag.org/content/robotics/3/20/eaat3536.full

REFERENCES

http://robotics.sciencemag.org/content/4/35/eaaw9710#BIBL
This article cites 33 articles, 5 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

 is a registered trademark of AAAS.Science Robotics
American Association for the Advancement of Science. No claim to original U.S. Government Works. The title
New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee

(ISSN 2470-9476) is published by the American Association for the Advancement of Science, 1200Science Robotics

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from

http://robotics.sciencemag.org/content/4/35/eaaw9710
http://robotics.sciencemag.org/content/suppl/2019/10/18/4.35.eaaw9710.DC1
http://robotics.sciencemag.org/content/robotics/3/20/eaat3536.full
http://robotics.sciencemag.org/content/4/35/eaaw9710#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://robotics.sciencemag.org/

