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C O L L E C T I V E  B E H A V I O R

Minimal navigation solution for a swarm of tiny flying 
robots to explore an unknown environment
K. N. McGuire1*, C. De Wagter1, K. Tuyls2, H. J. Kappen3, G. C. H. E. de Croon1*

Swarms of tiny flying robots hold great potential for exploring unknown, indoor environments. Their small size 
allows them to move in narrow spaces, and their light weight makes them safe for operating around humans. 
Until now, this task has been out of reach due to the lack of adequate navigation strategies. The absence of external 
infrastructure implies that any positioning attempts must be performed by the robots themselves. State-of-the-art 
solutions, such as simultaneous localization and mapping, are still too resource demanding. This article presents 
the swarm gradient bug algorithm (SGBA), a minimal navigation solution that allows a swarm of tiny flying robots 
to autonomously explore an unknown environment and subsequently come back to the departure point. SGBA 
maximizes coverage by having robots travel in different directions away from the departure point. The robots 
navigate the environment and deal with static obstacles on the fly by means of visual odometry and wall-following 
behaviors. Moreover, they communicate with each other to avoid collisions and maximize search efficiency. To 
come back to the departure point, the robots perform a gradient search toward a home beacon. We studied the 
collective aspects of SGBA, demonstrating that it allows a group of 33-g commercial off-the-shelf quadrotors to 
successfully explore a real-world environment. The application potential is illustrated by a proof-of-concept 
search-and-rescue mission in which the robots captured images to find “victims” in an office environment. The 
developed algorithms generalize to other robot types and lay the basis for tackling other similarly complex missions 
with robot swarms in the future.

INTRODUCTION
Swarms of tiny autonomous flying robots hold great promise. Tiny 
flying robots can move in narrow spaces, can be so cheap that they 
may become disposable, and are safe in the presence of humans (1, 2). 
Moreover, whereas the individual robots may be inherently limited 
in their abilities both in terms of cognition and in terms of actions, 
together they may solve very complex problems. This kind of problem-
solving ability is abundant in nature. Two well-known examples are 
the shortest path finding by swarms of ants (3) and collective selection 
of profitable food resources by honeybees through waggle dances (4).

The core principle of swarm robotics is that the individual robots 
obey relatively simple control rules, merely based on their local sensory 
inputs and local communication with their neighbors. This principle 
fits well with the limited resources of tiny robots. Moreover, not 
relying on any central processing promises a high robustness of the 
system. A single failing robot will not endanger task execution 
because its role will be fulfilled by one of the many other robots. In 
addition, together, small robots will potentially be able to perform 
tasks—such as surveillance, construction, or exploration—quicker 
and more robustly. In the past few decades, a large body of research 
investigating swarm robotics has formed. For instance, in the 
Swarm-Bots project, controllers have been evolved for small driving 
robots to complete tasks such as gap crossing, which required them 
to attach themselves to each other to form a bridge, and movement 
of objects bigger than each individual (5). Moreover, swarms of robots 
have been demonstrated in applications ranging from constructing 
small preplanned structures (6) to forming shapes with their own 

bodies (7, 8) and to performing tasks such as dispersion, aggregation, 
and surveillance (9).

Concerning flying robot swarms, the major challenge lies in 
achieving autonomous robot navigation and coordination between 
the robots in real-world environments. There have been impressive 
shows with many simultaneously flying robots, such as Intel’s 
Shooting Star drones (10), which were used in the 2017 Super Bowl 
halftime and the 2018 Winter Olympics. However, those robots 
purely followed preprogrammed Global Positioning System (GPS)–
based trajectories, so they did not make local decisions based on their 
surroundings. In contrast, in (11, 12) and, more recently, (13), swarms 
of flying robots performed coordinated swarming behaviors together 
in outdoor environments. In the latter study, the main behavioral 
parameters were optimized with an evolutionary process such that 
robots stayed together, even in the presence of no-fly zones. The 
studies (11–13) all still crucially relied on GPS. The flying robots 
communicated their GPS locations to each other to determine 
the relative locations to other robots that serve as input to the local 
controllers. In all above studies, the swarms essentially flew in open 
environments or, in the case of (13), had access to a global map of 
no-fly zones.

Navigation of a swarm of tiny flying robots in a cluttered, 
GPS-denied environment has been an unsolved problem. The major 
challenge derives from the highly restricted nature of these tiny robots. 
The mainstream solution to navigation consists of simultaneous 
localization and mapping (SLAM) based on camera images (14) or 
laser range finders (15). However, typical, metric SLAM methods make 
detailed three-dimensional (3D) maps, which is very demanding in 
terms of computational and memory resources. State-of-the-art 
SLAM methods, like large-scale direct monocular SLAM (LSD-SLAM) 
(16), often need to be computed by an external ground station com-
puter (17). Multirobot SLAM, in which a group of robots jointly creates 
and maintains a shared map of the environment (18), places an 
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additional load on the communication bandwidth. One can also opt 
for the slightly more efficient visual inertial odometry (19). However, 
this is subject to drift. To illustrate the challenge of navigating with tiny 
flying robots, we show (Fig. 1) the processing power of the robot used 
in our experiments (Bitcraze’s Crazyflie 2.0) beside two recent, state-of-
the-art–embedded processing units used in SLAM approaches. Flying 
robots like the Crazyflie use about 7 W to fly. To not substantially 
affect their flight time, the processing should therefore use only a 
fraction of this power. The Crazyflie carries an STM32F4 micropro-
cessor, with a clock speed of 168 MHz and 192 kB of random-access 
memory (RAM). Typical state-of-the-art robots used for autonomous 
flight [e.g., (20, 21)] use processors like the NVIDIA TX2, which has 
a six-core central processing unit, each with a clock speed of 2 GHz, a 
256-core NVIDIA graphics processing unit, and 8 GB of RAM. Hence, 
we need to solve the navigation problem with orders of magnitude 
less memory and processor speed. This calls for a completely different 
navigation strategy.

One potential approach to efficient navigation is to draw inspi-
ration from biology, for instance, by looking at honeybee navigation 
strategies. Honeybees navigate by combining path integration with 
landmark recognition (22). Path integration is well understood 
and can be implemented with very limited systems, as in the recently 
presented AntBot (23). Whereas walking insects can count their 
steps for path integration, flying insects rely more heavily on the 
integration of optical flow (24). Path integration alone does not 
suffice for navigation because it drifts over time. This drift can 

be cancelled by means of landmark detection and visual homing, 
but it is not obvious how landmark recognition is performed by 
biological systems. The dominant model is the snapshot model 
(25), in which pictures are stored of the surroundings and later 
compared with the visual inputs. Unfortunately, current implemen-
tations of landmark recognition still require substantial processing 
and memory [e.g., (26)], making it unsuitable for navigation by tiny 
robots. Moreover, they mostly thrive on texture-rich environments, 
which are commonly found in nature but not in repetitive man-made 
environments.

Biological systems provide interesting suggestions for arriving 
at the minimal requirements for navigation. The maps created by 
metric SLAM can be used for navigating from any point to any 
other point in the map. The navigation strategies followed by insects 
suggest that it may be possible to save on computation and memory 
by requiring less accurate maps. Biological navigation strategies 
show a parallel with topological SLAM (27), in which a robot only 
stores important landmarks and their relations in terms of distance 
and direction. This no longer allows a robot to travel anywhere in 
the explored space with high accuracy, but this may not be necessary 
for successful behavior. In some cases, it may only be important to 
explore and come back to the “nest,” i.e., to only perform accurate 
homing. A navigation strategy that only demands homing and does 
not rely on computationally complex visual navigation has strong 
potential for downscaling to tiny robots.

A minimal navigation solution
The main contribution of this article is a minimal autonomous 
navigation solution for a swarm of tiny flying robots to explore an 
unknown, unstructured environment and subsequently to come back 
to the departing point. “Exploration” here means to move through 
as large a part of an unknown environment as possible, with a goal 
to gather application-dependent information. The proposed navigation 
solution was implemented in a swarm of tiny flying robots and 
shown to work in a large real-world indoor environment that has 
no external infrastructure for exact positioning. Moreover, in the 
same environment, we illustrate how the solution enabled a specific 
proof-of-concept search-and-rescue exploration mission, in which 
the swarm gathered images to find “victims” in the environment.

Particularly, we introduce the swarm gradient bug algorithm 
(SGBA). As the name suggests, the method is inspired by “bug 
algorithms” (28–30), which originated as simple maze-solving 
algorithms. The core concept is that navigating from A to B is 
performed not by planning in a global map with known obstacles 
but by reacting to obstacles as they come within range of the sensors. 
This way of dealing with obstacles results in a highly computationally 
efficient navigation. However, existing bug algorithms in the literature 
remain rather theoretical and are not suitable for application to 
navigation in real, GPS-denied environments because they typically 
rely on either a known global position or perfect odometry. For 
example, in (31, 32), real-world robots used their wheel odometry 
for navigation within an indoor environment; nevertheless, the 
testing environments were too small to experience the full extent 
of the possible odometry drift. A flying robot typically relies on 
visual odometry and, due to the vibrations and texture dependence, 
is even more prone to odometry inaccuracies than a driving robot. 
When realistic levels of odometry drift were introduced, the navi-
gation performance of bug algorithms from the literature dropped 
steeply (33).
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Fig. 1. Hardware specifications and comparison. (A) Crazyflie 2.0 with the flow 
and multi-ranger expansion decks and (B) the autopilot (STM32F4) compared with 
the specifications of the NVIDIA TX2, the Odroid-C2, and a laptop (Dell Latitude 
E7450). Note that the Dell specifications do not fit within the chart (as indicated 
with the top triangles).
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The bug algorithm proposed in this article, SGBA, departs sub-
stantially from existing bug algorithms because it has been designed 
explicitly for allowing a swarm of tiny robots to explore a real-world, 
GPS-denied environment. Figure 2B shows the main concept: A 
swarm of robots departs their base station for outbound travel. 
Each robot has a different preferential direction toward which it 
will try to go. When robots encounter obstacles, they follow the 
obstacles’ contours. This process is called “wall following” in the 
bug algorithm literature. When a robot’s preferred direction is free 
of obstacles again, it will continue to follow its preferred direction. 
As soon as the robot’s battery is around 60%, it starts inbound travel 
(Fig. 2C). To come back to the original location, the robots use a 
mix of (coarse) odometry and, on longer time scales, an observable 
gradient to the base station. In our experiments, we used the re-
ceived signal strength intensity (RSSI) to a radio beacon located at 
the base station. Because bug algorithms do not make maps, there 
is a danger that they get stuck in loops without realizing it. For 
instance, this can happen in rooms where there is only one way out, 
which may be missed when the robot leaves the wall in its preferred 
direction, just to navigate to the opposite wall again. Hence, during 
both outbound and inbound travel, the odometry was also exploited 
to detect short-term loops that could result in robots getting stuck 
in a particular part of the environment. The robots also needed 
to avoid each other and to communicate their desired direction 
to each other. In the experiments, we used wireless onboard inter-
robot communication to both these ends. Specifically, for the intra-
swarm collision avoidance, the inter-robot RSSI was used instead 
of communicating a global position (which is not known by the 
robots). Moreover, when robots noticed the presence of other 
robots in the direction of their preferred heading, they adapted 
their preference, thus enhancing the exploration for the outbound 
flight.

A simplified version of the finite state machine (FSM) of SGBA 
can be found in Fig. 2A. The SGBA method and the FSM are 
presented in more detail in Materials and Methods. The innovation 
of SGBA lies in its suitability for the real-world properties of 
tiny, exceptionally computationally restricted robots and in the 

combination of the various subcomponents. Many of the sub-
components themselves have already been proposed in the literature. 
For instance, traveling toward a wireless beacon with a bug algorithm 
was also proposed in (34, 35). However, the proposed methods 
in those studies were too sensitive to the real-world noise of RSSI 
measurements. Because of the difficulties of real-world interference, 
refraction, and scattering of the signal, the experiments eventually 
involved an infrared beacon instead, which was visible from all 
locations in the environment. This setup would not be useful in 
a real scenario. The work in (36) used the gradient of real-world, 
noisy RSSI values to guide exploration on a real robot (without a 
bug algorithm type of behavior). However, the platform still required 
a full SLAM method on board because the precise positions of 
the RSSI samples were needed to estimate the location of the Wi-Fi 
source. In contrast to these methods, we have implemented a home 
beacon search tactic that dealt with real-world, noisy, 2.4-GHz, 
Wi-Fi RSSI values and did not rely on exact positioning. Another 
asset is SGBA’s use of multiple robots. The idea of using multiple 
robots for bug algorithms was first forwarded and studied in simulation 
in (37). However, they used it to explore the local obstacle boundary 
and not for efficiently exploring the environment. The swarming 
mechanisms of SGBA involve (i) imprinting of different initial 
preferential directions, (ii) collision avoidance, and (iii) adaptation 
of preferential directions when robots notice that their preferred 
direction overlaps too much with that of another robot. More 
elaborate swarming mechanisms are possible, but the results show 
that these straightforward mechanisms, which do not require accurate 
relative positions between the robots, already significantly increase 
exploration efficiency.

From the explanation above, it can be deduced that SGBA re-
quires five main functionalities: (i) following a given direction; (ii) 
wall following; (iii) odometry; (iv) inter-robot detection, communi-
cation, and avoidance; and (v) a gradient-based search toward the 
departure point. Although we mainly focused on flying robots in 
this article, the five functionalities can be implemented with various 
types of hardware and software on different types of robots. We used 
flying robots for the real-world experiments and driving robots in 

Fig. 2. Main concept of the SGBA. (A) A simplified state machine of SGBA derived from the one presented in Materials and Methods. (B) Outbound travel of SGBA. The 
purple shading illustrates the local signal strength around each drone used for intra-swarm avoidance. (C) Inbound travel. The pink shading represents the signal strength 
of the wireless beacon at the ground station to which the drones navigate. The interswarm avoidance is still active on the inbound flight but is not depicted. The fuchsia 
arrow at each drone’s position illustrates the robot’s estimated direction to the beacon.
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the simulation experiments detailed below. The difference in imple-
mentation of SGBA includes, for instance, that functionality (iii) is 
performed with optical flow–based odometry on the flying robot 
and wheel-based odometry on the driving robot. Hence, the SGBA 
algorithm can be applied to different types of mobile robots with 
limited resources, as long as they are endowed with the above re-
quired functionalities.

RESULTS
We performed both simulation and real-world experiments to gauge 
the performance of SGBA as an autonomous navigation solution 
for exploration missions. Navigation here means spreading out in 
the environment, covering the environment as much as possible, and 
coming back to the departure point. The two main performance 
metrics are (i) the area coverage and (ii) the return rate of the robots. 
With these metrics, we mainly assessed the navigational characteristics 
of SGBA because these are important to exploration missions in 
general. We varied the number of robots to investigate the advan-
tages of the swarming aspect of SGBA. After the main simulation and 
real-world experiments focusing on the navigation performance, 
we also investigated a search-and-rescue scenario in which the robots 
had to find possible victims in the environment. For this scenario, 
the robots carried onboard cameras and secure digital (SD) cards for 
storing images of the environment because transmitting live streams 
was not feasible. When returning to the base station, the robots 
could upload the images to the base station, and a human end user 
could look at the images to find the victims. Hence, only returning 
robots provided useful information on the task. Because this will be 
the case in many real-world exploration scenarios where SGBA is a 
suitable method, we considered as a third performance metric, (iii) 
the area covered by returning robots—termed “coverage returned.” 
In the specific search-and-rescue experiment, we evaluated whether 
the victims were present in the images.

Simulation experiment results
We first implemented the SGBA in simulation. The goal of the simula-
tion experiments was to investigate the performance of the algorithm 
in many artificially generated environments. Moreover, in simulation, 
we could perform extensive experiments for gathering sufficient 
statistics on trends such as the relation between the performance 
and the number of robots. As a simulator, we have chosen ARGoS 
(Fig. 3A) because it has especially been developed for multirobot 
systems (38). A Robot Operating System (ROS) environment was 
used to connect the SGBA controller, the automatic environment 
generator, and the simulator together, in a similar manner as in (33), 
by using ARGoS for ROS (39) [all code repositories for the simula-
tion experiments can be found in (40)]. In simulation, the robots 
were adapted ARGoS foot-bots, which were originally modeled on 
the MarXbot (41). These ground-based nonholonomic robots are 
different from the airborne holonomic robots used in the real-world 
experiments (see text S5 for an overview of how we implemented 
SGBA’s five functionalities on the simulated foot-bot and on the 
flying robots used in the real-world experiments). The use of 
ground-based robots in the simulation experiments illustrates that 
SGBA can be applied to different types of robots.

The simulated robots started around the home beacon in the 
middle of the environment. With SGBA, each of them sequentially 
started moving into their preferred direction, which in this case 

were the angles 45°, 135°, −135°, and −45° [the modulus of the 
robot’s identification number  (ID) from 4 determines the preferred 
direction]. In simulation, the outbound travel lasted for 5 min. 
After spreading out into the environment, the simulated robots 
tried to head back to the home beacon within another 5 min (10 min 
of total simulation time), for which they used the noisy and locally 
perturbed RSSI of the base station beacon. Figure 3 (B and C) shows 
two examples of the simulated experiments with four and six robots. 
We experimented with 2, 4, 6, 8, and 10 robots per simulated 
environment. Per test configuration, 100 environments were produced 
with the procedural environment generator, as developed in (33). 
The coverage statistics can be found in Fig. 3D and the return rates 
in Fig. 3E. Despite their extremely restricted onboard resources, 
10 small robots were able to explore, on average, 90% of a simulated 
20 m by 20 m environment in 10 min [dark blue bar in Fig. 3D, 
example trajectory in Fig. 3 (B and C)].

The utility of the collective aspect of SGBA is shown by the dark 
blue bars in Fig. 3D; adding more robots leads to a higher coverage 
in the same amount of time. The trend of the bars indicates that the 
coverage is subject to a law of diminishing returns; adding two more 
robots has more effect when going from two to four robots than when 
going from 8 to 10 robots. The results suggest that this effect is 
mainly due to covering the same areas in the environment and not 
due to robots interfering with each other. Namely, the coverage per 
robot (Fig. 3D, yellow bars) and the return rate (Fig. 3E, light blue 
bars) did not decrease for the studied number of robots. The return 
rate is also of interest for the envisaged proof-of-concept search-and-
rescue mission, in which the robots would store images onboard and 
only robots that return to the base station provide information on the 
task. The return rate was lower than 100%, mainly because SGBA 
can lead to suboptimal paths back to the base station (too slow for the 
total mission time). The coverage by the group of returned robots is 
shown in turquoise in Fig. 3D. Last, the variances of all performance 
characteristics became smaller for higher number of drones, showing 
that adding more agents increased the certainty of the outcome. This 
seems mainly due to the reduced effect of variations in individual 
performance on total coverage. For instance, with two robots, an early 
failing robot could halve the coverage, whereas with 10 robots, 
the effect would be much less noticeable, underlining swarm 
robustness. The logging data can be found in (42), and statistical 
tests of the simulation results can be found in text S4.1, which 
show that the trend of the total coverage and coverage returned are 
significantly related to the total number of robots. This is not the 
case for the coverage per robot and the return rate.

Last, we have studied the contributions of the different swarming 
mechanisms in SGBA: (i) sending them off in different directions, 
(ii) performing an avoidance maneuver when close to another robot, 
and (iii) changing preferential direction. All three mechanisms 
contributed to reducing collisions and increasing coverage. For ex-
ample, for the “full” SGBA with six robots, there were, on average, 
0.2 collisions per exploration trial. When sending off all robots in 
the same direction, this rose to 1.7 collisions. When only switching 
off the avoidance maneuvers, there were, on average, 1.2 collisions 
per trial. Text S6 contains these test results.

Real-world experiment results
Subsequently, we performed real-world experiments. The goal of 
these experiments was to show that SGBA works in the real world 
and to investigate whether the results align with the findings from 
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simulation. Particularly, we implemented SGBA on the small com-
mercial off-the-shelf (COTS) Crazyflie 2.0 drone developed by Bitcraze 
AB (43). The hardware package of the drones consisted of the follow-

ing modules. The multi-ranger deck (44) was used for obstacle 
detection and wall following. It has four tiny laser rangers that point 
to the front, left, right, and back. The flow deck (45) was used for 
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coarse visual odometry. It consists of a downward looking camera 
that determines translational optical flow and a downward pointing 
laser ranger that scales the flow to obtain height and translational 
velocity. Bitcraze’s own communication hardware, “Crazyradio,” with 
the 2.4-GHz Wi-Fi band (46) was used for ranging to other drones 
and to the wireless beacon. The firmware running on the Crazyflies 
can be found in (40). It also served as a communication channel 
between the drones for exchanging desired headings. These three 
light-weight and low-power hardware modules were sufficient for 
our navigation solution. We performed the experiments in an empty 
hallway of the faculty of Aerospace Engineering at Delft University of 
Technology because it allowed us to perform extensive testing (Fig. 4A; 
see text S1 for a more detailed description). We conducted real-
world tests with two, four, and six Crazyflies at the same time. For 
each number of drones, five different flights were performed.

As in the simulation experiments, the robots started in the middle 
of the environment. From here, they flew with SGBA to their own 
preferred outbound flight direction for about one third of their battery 
life, which was about 2 min. Afterward, they needed to return again 
using the RSSI of the home beacon. Along the entire path, they 
avoided each other by using the RSSI of the inter-robot connection, 
which was handled by the communication scheme presented in 
Materials and Methods. Because we did not have access to ground-truth 
global coordinates, we determined the coverage performance in terms 
of the number of visited rooms, excluding the hallway.

SGBA also allowed tiny robots in the real world to explore the 
environment, with six tiny drones, on average, flying into 83% of 
the open rooms in the 40 m by 12 m environment within 7.5 min 
(Fig. 4D, dark blue bar). Figure 4 (B and C) shows two example 
trajectories with four and six Crazyflies, respectively. The trajectories 
show that when a drone entered a room, it typically flew along its 
complete boundaries. Hence, upon entry, we considered the room 
“covered.” Note that the rather accurate trajectories in Fig. 4 (B and C) 
have only been reconstructed for visualization purposes and did not 
play any role in the navigation. The trajectories were plotted on the 
basis of the coarse onboard odometry, adjusted with the video footage 
of the external cameras on the scene using post-processing (text S3 
explains the procedure and shows the difference between the original 
and adjusted odometry). The trajectories show how, generally, the 
drones explored different parts of the environment, thanks to the 
different preferential directions. In Fig. 4C, an example can be seen 
where drone 5 lost connection with the beacon in the far top-left room 
of the environment, so the external camera had to provide the additional 
trajectory information. Losing the connection was no problem for 
autonomous navigation because the FSM ran on board the Crazyflie. 
The visual odometry and wall-following behaviors allowed the drone 
to escape the room and to reconnect with the home beacon. Video 
compilations of the flight from Fig. 4C can be found in movie S1.

Figure 4D shows that, as in simulation, a clear trend can be seen 
that the total coverage increases with the number of drones. How-
ever, the increase of the coverage by returned drones seems less 
steep than in simulation. The reason for this is that both the coverage 
per robot and the return rate (Fig. 4E) slightly decreased when adding 
more Crazyflies. This is due to many issues, such as hardware mal-
functions, sensing failures, and (even for six drones) a collision 
between two drones (see the pie chart of Fig. 4E). Having a limited 
battery capacity is a real-world problem as well but was taken into 
account in the simulation in the form of a time limit for the results 
in Fig. 3. Concerning the collision avoidance, in all 15 real-world 

experiments, there were 54 encounters between drones and only one 
collision. This corresponds to a 98% success rate of the implemented 
avoidance maneuver. The logged data can be found in (42), and sta-
tistical tests of the real-world results can be found together with a 
table with the numbers of encounters and collisions in text S4.2. In 
addition, the real-world results (Fig. 4D) show that the trend of the 
total coverage is significantly related to the total number of drones.

Proof-of-concept search-and-rescue mission
Last, to illustrate the potential application of SGBA, we applied it to 
a search-and-rescue exploration mission. The light-weight Crazyflies 
carried a mission-relevant payload: A forward-looking camera and 
an SD card (see Materials and Methods for the exact setup), which 
resulted in a flight time of 5.5 min in total. This extra camera allowed 
storage of images captured during flight for inspection by a human. 
Although the proposed navigation solution worked with COTS 
Crazyflie modules, for the proof-of-concept search-and-rescue mission, 
we had to make a custom, lighter weight, and lower power laser-
ranging module to accommodate the extra camera and SD card. This 
custom ranging module replaced the Crazyflie’s multi-ranger module.

The experiment simulated a search-and-rescue scenario, in which 
two human-size wooden figures were placed in two different rooms 
in the hallway. The same starting position was used for the four-
camera–equipped Crazyflies as in the previous test. To cope with 
the limited flight time of the prototypes, we chose to perform only the 
outbound flight. The trajectories in Fig. 5C were inferred from the 
onboard camera footage in combination with the external cameras.

Both victims were found by the drones. In Fig. 5 (A and B), we 
can see that Crazyflies 1 and 4 were flying in the rooms where the 
victims were located. Drone 4 was able to capture the victim on its 
onboard camera (Fig. 5E). However, Crazyflie 1 stopped recording 
right before it flew into the room with the victim. Luckily, the victim 
was spotted by drone 3 from another angle (Fig. 5D). This example 
shows the advantage of using swarming, which can yield redundant 
observations in an exploration task. A video compilation can be 
found in movie S2.

As explained, the drones did not make a map of their environment 
for navigation. After the drones came back, their collected images 
could be downloaded to the base station. A human end user can 
then go through the images, and, when finding a victim, look at the 
video of the robot in fast-forward to find the location. If a map is 
desired by the end user, the base station computer could also generate 
a map based on the onboard images with state-of-the-art SLAM 
methods [e.g., (16)]. This map generation may be challenging due 
to real-world factors such as quick motions, motion blur from 
vibrations, lack of texture, etc.

DISCUSSION
The purpose of this work was to develop an alternative for navigating 
a group of tiny, resource-limited flying robots in an unknown, 
GPS-denied environment. We presented the SGBA, which fit onboard 
the Crazyflie robot, weighing a mere 33 g. Owing to the STM32F4 
microprocessor and added sensing capabilities (multi-ranger and 
flow-deck expansion decks), it navigated through a real office envi-
ronment. Moreover, while communicating with its peers, it avoided 
other Crazyflies and increased coverage in the overall exploration task. 
The algorithm enabled a group of small and limited flying robots to 
fully autonomously navigate in a real environment by using their 
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onboard sensors and processing capabilities. Still, there are several 
elements to consider for extending this work to bigger and more 
complex environments as seen, for instance, in real-world search-
and-rescue scenarios.

There are several options that would improve navigation perfor-
mance. First, we expect that using Ultra Wide Band (UWB) instead 
of the Crazyradio PA would substantially improve both localization 
with respect to the beacon and sensing of other drones [see e.g., (47)]. 
The Crazyradio is heavily influenced by other 2.4-GHz sources 
(Wi-Fi), and the inter-Crazyflie chatter and the RSSI-based distance 
measurements are particularly noisy and heading dependent. The 
good overall results show the robustness of SGBA. Still, communi-
cation could be considerably improved by using UWB communication 
with time-of-flight ranging. For instance, a single DecaWave DWM1000 
module can provide ranging to another such module for a distance 
up to 290 m, through walls and obstacles, with ~10-cm accuracy 
(48). Because SGBA only needs ranging to a single beacon, it can 

use the full extent of the UWB range to notably improve the in-
bound flight.

In addition, the collision avoidance between drones may benefit 
from using UWB. The experimental results showed an increase in 
coverage when adding more drones to the swarm. However, the 
increase follows a law of diminishing returns. We expect this 
phenomenon to be fundamental because having more robots neces-
sarily means covering more of the same area when they start from 
the same point, and it also means that robots will spend more time 
avoiding each other. Still, in our current implementation, using too 
many drones also led to communication overload during the flight. 
In our current communication scheme (see Materials and Methods), 
the more drones there were, the slower they communicated with 
each other. Increasing the number of drones may cause problems of 
miscoordination or, even worse, a higher likelihood of interdrone 
crashes. We saw in the real-world results (Fig. 4E) that the latter did 
not occur with two and four drones, but it did once with six drones. 

Starting
Location BarrierBarrier

M
on
ito
r r
oo
m

1
2
3
4

-25 -20 -15 -10 -5 0 5 10 15 20 25

-6

-4

-2

0

2

4

6

video loss

2:53 2:59

4:032:54

External
video
Onboard
video

Victim

start end

Trajectory ID

A B

C

D E

video loss

M
on
ito
r r
oo
m

Fig. 5. Proof-of-concept search-and-rescue mission. The results of the experiment in which the Crazyflies carry a camera to detect victims in the environment. (A and 
B) Screenshots of the external cameras capturing the Crazyflies during their flight. (C) Trajectory of the four Crazyflies (inferred from the onboard and external camera). 
(D and E) Screenshots of the onboard Hubsan camera, with the two human-shaped silhouettes captured during the exploration flight.

 by guest on O
ctober 24, 2019

http://robotics.sciencem
ag.org/

D
ow

nloaded from
 

http://robotics.sciencemag.org/


McGuire et al., Sci. Robot. 4, eaaw9710 (2019)     23 October 2019

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

9 of 14

The optimal number of drones will depend on the size of the environ-
ment and, with the current implementation of interswarm avoid-
ance, the communication hardware and protocol. Because of UWB’s 
greater robustness with respect to interference and its higher 
throughput, we expect it to also improve the scalability of the current 
proposed scheme for drone collision avoidance.

During the real-world experiments, there was almost always a 
connection between the home beacon and all drones. In Fig. 4C, a 
disconnected drone kept executing its tasks autonomously because 
the FSM runs fully on board. It was therefore able to get out of a 
communication dead zone eventually. However, the question still 
arises: How will the robots be able to get home if the beacon is lost 
completely? Even with the earlier mentioned UWB improvement, 
there are situations where the environment is larger than the range 
of the beacon. A useful addition to cope with the home beacon loss 
problem in bigger environments is to make more use of the swarm. 
As the Crazyflies are communicating with each other, they can also 
be used as a beacon themselves. As soon as a drone loses connection 
with the homing beacon, it could try to find another Crazyflie that is still 
connected to the beacon and navigate toward that position first, re-
connect with the original home beacon, and resume its navigation 
to the starting position [a strategy that reminds of “chains” of robots 
as used in, e.g., (49), but that would be more economical in terms of 
the number of used robots]. Yet, this requires that at least several 
Crazyflies always need to stay connected to the home beacon and 
therefore are limited in their own missions.

Improving the robots’ sensing capabilities would also improve the 
results. Specifically, the multi-ranger deck proved to be sufficient for 
our test environment, yet there are limitations. For instance, it cannot 
see very thin objects and relies on the flow deck to work properly. 
Although the flow deck and the existing sensor fusion provided stable 
velocity-driven flight, the dark floor in the office environment turned 
out to be challenging. Therefore, a Crazyflie would occasionally drift 
and move into a direction where obstacles were present in the blind 
spots of the multi-ranger. A higher robustness to collisions from a 
protective cage, as proposed in (50), would help. The wall following 
and obstacle detection can also be made more robust. A possible 
solution is to add a light-weight vision system, as in (51, 52). Vision 
can provide distance estimates in an entire field of view and aid the 
velocity estimation and odometry by means of frontal optical flow 
[see (53)]. This would reduce problems with textureless floors. Even 
so, a fundamental limitation of using the multi-rangers, cameras, 
or optical flow sensors is that they will be ineffective if the sur-
roundings are filled with smoke. In that case, different sensors such 
as sonar or radar can be used, whereas the navigation can remain 
identical.

The high efficiency of SGBA in terms of sensing, computation, 
and memory comes at the cost of navigation efficiency. Not build-
ing a global map and not performing computationally expensive 
optimal path planning results in suboptimal paths. Drones can 
revisit rooms multiple times or can visit rooms that were already 
visited by other drones. This could perhaps be solved in a relatively 
efficient manner, e.g., involving visual landmark recognition. Still, 
the experimental results have shown that multiple measurements 
from the same area can be beneficial. Camera footage can get tem-
porarily occluded or even lost, as happened with drone 1 in Fig. 5C. 
Moreover, the fact that drones’ views overlap with each other can 
make a substantial difference in the data collection if not all robots 
are able to return.

We illustrated the potential of SGBA by implementing it on the 
smallest possible commercially available quadrotor. However, the 
discussion above suggests that the method would perhaps be even 
more successful on a custom-designed drone. One option is to im-
plement SGBA on a smaller platform while keeping a similar per-
formance. Making SGBA work on a smaller drone is possible because 
a custom design would not have to be as modular and easy to use as 
the Crazyflie decks. That this is possible is already shown by the 
lighter and more energy-efficient custom laser ranger deck that was 
made for the proof-of-concept search-and-rescue mission. Another 
option is to implement SGBA on a slightly bigger drone for better 
performance. We expect that using a slightly bigger drone with better 
sensing, communication devices, and more battery capacity would 
notably improve the return rate of the drones because it would 
reduce collisions both with obstacles and with other drones, make 
the inbound flight more efficient, and extend the flight time available 
for returning. Even if such a drone could have a bit more processing 
available, the current proposed navigation solution remains of high 
interest because it will leave much room for other types of functional-
ities. This may be used by vision algorithms to enhance the navigation 
or by other algorithms performing mission-specific tasks.

In the future, more processing power will become available to 
small robots [see, e.g., (54)]. In comparison with 3D SLAM, SGBA 
will always be available to smaller robots. For instance, it is not un-
thinkable that SGBA may be applied to the 80-mg RoboBee (55). 
Furthermore, small robots will have to use their onboard computing 
power for all tasks that they need to perform autonomously. It is 
essential for small robots to have computationally efficient algorithms 
for all tasks they perform. Using SGBA implies that there is more 
computational power and memory available for other mission-relevant 
tasks. Hence, we expect SGBA to remain relevant even with the further 
progress in the miniaturization of computing devices.

Last, we suggest application scenarios for which the developed 
swarm exploration seems suitable. We performed a preliminary 
investigation into SGBA’s use for search and rescue. However, the 
proposed method is also suitable for other tasks because it allows a 
swarm of small robots to quickly explore a potentially unknown en-
vironment. Hence, we believe that it is also suitable for exploring an 
unknown cave or inspecting the inside of a building that is about to 
collapse. Apart from unknown environments, SGBA can also be 
applied to known environments, for instance, in surveillance appli-
cations. In the case of surveillance for security, one may typically 
think of robots performing regular trajectories, e.g., along the property’s 
perimeter, but a less predictable swarm-based surveillance may be 
better in countering unwanted intruders. In many applications, robots 
will need to operate for longer times. For example, in an inventory-
tracking scenario, a swarm of safe, tiny drones may buzz around the 
warehouse, continuously flying out to scan products and then re-
turning to base to recharge. Similar setups may also serve blue algae 
monitoring by little robot boats or floor cleaning by small garbage 
collection robots. A swarm of tiny robots has benefits because the 
robots are safe, cheap, navigate in narrow spaces, and, as a group, 
can quickly cover relatively large areas.

CONCLUSION
To conclude, we presented a minimal navigation solution, the SGBA, 
that allows tiny flying robots to successfully explore a real-world 
environment. In our experiments, the Crazyflie robots only used 
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their inertial measurement unit, four tiny 1D laser range finders, an 
optical flow deck, and a very light 2.4-GHz radio chip. The processing 
fit easily in the single 32-bit, 168-MHz, 196-kB RAM microcontroller 
of the Crazyflie in addition to all flight control code. Instead of 
building a map of the environment like conventional SLAM tech-
niques, our navigation solution consists of a combination of simple 
behaviors and behavioral transitions to accomplish the complex 
tasks of autonomous exploration and homing. The guiding principle 
here is to trade off properties such as path optimality and accuracy 
with resource efficiency, allowing for autonomous swarm navigation. 
We believe that this principle can offer inspiration for solving other 
complex robotic tasks as well with swarms of cheap and safe tiny robots.

MATERIALS AND METHODS
Here, we explain the exploration and homing strategy of SGBA, 
starting with the navigation of a single robot and then expanding to 
larger numbers of robots. Afterward, we explain the hardware used 
for the real-world experiments.

Outbound travel
We start our explanation of the FSM with the outbound travel of 
a single robot. Figure 6 (A and B) illustrates the entire FSM, where 
the robot starts at “Init.” For the outbound travel, it is important to 
realize that the robot just needs to explore the available space and 
does not need to go to a specific location. Therefore, it will only be 
assigned a preferred heading. After it encounters, follows, and then 
leaves an obstacle, it will follow that same heading again (Fig. 6C). 
Of course, there will be heading drift over time. In the case of the 
Crazyflie robots used in the real-world experiments, the drift was 
~0.10°/s (48° over the 8-min flight time). Still, because the main 
goal of the heading estimate was to send multiple robots into roughly 
different directions, the drift did not significantly affect SGBA’s 
performance.

After the robot detects an obstacle with its front laser range sensor, 
it will start the wall-following behavior. First, it chooses an initial 
“local direction,” which decides whether to follow the wall on the 
right- or left-hand side. We chose a local direction policy based on 
the strategies of DistBug (56) and FuzzyBug (57), namely, by adopt-
ing the “angle of attack” as the robot approaches the wall. With the 
current hardware of the four laser range sensors in all four directions 
of the horizontal plane, the robot could easily determine the angle 
of the wall by evaluating whether the side range sensors are triggered 
in combination with the front one. The main assumption here is 
that the wall needs to be straight. However, if this is not the case, 
this does not mean that the strategy will fail. If the local direction 
ends up being a less optimal one, this will be corrected for at a later 
time. From here on, the robot starts following the boundary of the 
obstacle and the wall.

SGBA uses memory for loop detection. Memoryless bug algo-
rithms are prone to getting stuck in loops because they may encounter 
an obstacle, perform wall following, and then leave the obstacle in a 
direction, which will lead them back to exactly the same obstacle. 
This will lead to an endless loop, devastating the navigation perfor-
mance. An example of this can happen in a room, where a robot’s 
preferred direction is away from the only door in the room. It may 
then enter the room and travel through the room until it detects the 
wall on the opposite side of the room. Subsequently, it will follow 
the walls of the room until it is following the wall with the door 

entry. However, because its preferred direction is away from the 
door, it may leave that wall again before reaching the door, travelling 
to the opposite wall again. The occurrence of this type of loop is why 
during wall following SGBA keeps track of its position relative to 
the location where the robot first detected the obstacle (termed the 
“hit point”). If the robot tracks back, due to the environment charac-
teristics, and crosses the area behind the hit point, it will detect that 
as a loop. This means that once the robot leaves the obstacle and en-
counters another, which is usually the same hit point as last time, it will 
not base its local direction on the current wall angle but on the reverse 
of the direction chosen at the previous saved hit point. This position 
tracking is illustrated in Fig. 6D and is done completely with relative 
position estimations of the onboard odometry. Because this procedure 
is only used for local decision-making within small rooms, this was 
a sufficient tactic to handle loops within our experiment environment. 
However, this probably will not prevent a potential loop in large 
areas because the drift will be too severe. We have studied the effect 
that SGBA’s loop detection has on the return rate (text S6). The 
results show that for one robot, the return rate dropped substantially 
when there was no loop detection, but for six robots, the effect was 
less evident. Upon detailed inspection, we noticed that inter-robot 
encounters are responsible for getting stuck robots out of a loop. 
With this, they can cope with the lack of a proper loop detection, 
which is an interesting feature of the swarming element of SGBA.

Wireless communication-based inbound travel
After a few minutes, either after a time threshold has passed or based 
on the remaining voltage of the battery, the robot needs to return to 
its base station. This is extremely important for robots that store 
their measurements onboard and do not stream their results to the 
operator. To achieve this, SGBA keeps track of the gradient of the 
filtered RSSI (see text S2 for raw measurements) while it is perform-
ing the wall following, as seen in Fig. 6E. During the straight parts of 
the procedure, it has a circular buffer, corresponding to the heading 
of the robot, where the values in the buffer track the directions in 
which the RSSI has increased over time. In the direction of the RSSI 
increase, the buffer value is incremented, whereas the value in the 
opposite (−180°) direction is decremented to give it a lower influ-
ence. For an RSSI decrease, the exact opposite procedure is done, 
and for no RSSI change, the buffer values stay the same. Both incre-
mentation and decrementation, based on the RSSI’s derivative, are 
done for every N meter, where N is a decimal number defined by the 
user. Every N × k meter, where k is a scalar value, a vanishing function 
is applied to decrease the influence of older RSSI measurements. This 
RSSI change in function of the heading allows the robots to estimate 
the direction to the home beacon, which they will use for the return 
travel any time they are not forced to follow an obstacle or wall. 
Because the RSSI increase is noisy and irregular, this will usually 
not be an exact angle but a coarse indication of where the bea-
con is. This proved to be enough for the robot to return to its home 
base. Any drift in the robot’s heading estimate is not problematic 
for the inbound travel because the direction to the home beacon is 
determined with respect to this internal heading representation.

Coordination among drones
A single robot could use the SGBA-FSM by itself to navigate. How-
ever, it only has a limited battery capacity and therefore will not be 
able to explore the entire environment. For this reason, it is more 
advantageous to use a swarm of robots. However, using multiple 
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robots poses a new set of problems. First, 
the robots need to avoid each other, 
and second, they should coordinate 
the search with each other to achieve 
maximum dispersion and avoid conflicts. 
This was done with their communicated 
information and range measurements 
(range or RSSI) and implemented by the 
“move out of way” state in Fig. 6A. For 
collision avoidance, if two robots come 
really close to each other (Rother < Rth_coll), 
the robot with the high-priority (and 
in our case lower ID, IDlow) will have 
the right of way. The low-priority robot 
(IDhigh) will perform an action enabling 
IDlow to smoothly move past it. After 
staying out of IDlow’s way until Rother > 
Rth_coll, IDhigh resumes navigation. For 
the coordination of the search, the robots 
dynamically adapt their preferred heading. 
Initially, each robot is assigned a preferred 
heading, chosen out of K different direc-
tions. If during outbound travel a robot 
comes nearby another one (Rother < Rth) 
and these robots have a similar preferred 
heading, then the low-priority robot IDhigh 
will change the sign of its preferred 
heading and carry on (Fig. 6F). The next 
time it leaves the obstacle, it will therefore 
move away from the search area of the 
robot with the higher priority, IDlow. A 
change in preferred heading is triggered 
earlier than a collision avoidance action 
(Rth_coll < Rth), and it is only performed 
during outbound travel. During inbound 
travel, the preferred heading is going 
toward to the home beacon. Hence, during 
inbound travel, the range between robots 
is only used for collision avoidance. The 
different implementations for simulated 
and real-world robotic platforms can be 
found in text S5.

Hardware
For the experiments, we used Bitcraze’s 
platform Crazyflie 2.0 (43), augmented 
with the flow deck v2.0 (45) and the multi-
ranger (44) expansion decks, which can 
be seen in Fig. 7A. An alternative battery 
with more capacity was added for a longer 
flight time, namely, the Turnigy nano-
tech 300 mAh (1S 45-90C) LiPo battery, 
providing an average power supply of 
3.7 V. To make sure the entire path in 
front of the drone is free of obstacles 
using the 20° field-of-view laser ranger, 
the minimum required detection range 
is 50 cm, for which the VL53L1xs (58) laser 
ranger on the multi-ranger is sufficient. 
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state machine for the outbound flight (green), where (F) shows that the robot will change its goal heading if another 
drone (with higher priority) has its preferred heading in the same direction. In case the drones are even closer, the 
one with the lowest priority will move out of the way completely for both inbound and outbound travel.
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The flow deck contains a PMW3901MB optical flow sensor (59) to 
detect motion, with an additional VL53L1x for height detection and 
control. Within the existing state estimation (60), the Crazyflie 
achieved excellent hover and velocity control, and optical flow 
was detected on most surfaces. Nevertheless, dark colors should be 
avoided. The dark low-texture floors in our real-world environment 
were challenging (Fig. 4A), and the flyable height where motion 
detection was still reliable was only 0.5 m.

For the onboard video recording experiments, we designed a 
custom expansion board, which included configuration of the lower 
power VL53L0x time-of-flight (61) sensors (the predecessor of the 
VL53L1xs on Bitcraze’s multi-ranger deck) and a camera module, 

meant as a spare part of the Hubsan X4 H107C RC Quadcopter 
(62). This camera module carries an SD card to record the videos 
captured during the SGBA navigation of the Crazyflies. This config-
uration is displayed in Fig. 7B. The weight of the platforms and the 
average power consumption per expansion board are shown in 
Fig. 7C, which resulted in approximate flight times of 7.5 min for 
the left-hand Crazyflie configuration and 5.5 min for the right-hand 
Crazyflie configuration in Fig. 7.

To fully execute the SGBA, a communication protocol (Fig. 7E) 
has been flashed into the NRF51 microprocessor, which handles the 
Crazyradio communication (2.4-GHz Wi-Fi protocol and Bluetooth), 
and the power distribution. Each drone has its own unique ID 

Components                                  Weight [g]        
CrazyFlie 2.0 (with motors)
                                                        20.64             ~1350 mA (in hover)
Turnigy 3.7 Battery                           8.39                  350 mAh 
Flow Deck v1                                     1.71                  40 mA
Multi-ranger Deck                             2.28                  90 mA
Custom Multi-ranger                          2.00                  70 mA
Hubson Camera module                   3.48                  100 mA

A

B

C

D

1

2

3

4

5

6

Drone ID

Channel

30

40

50
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80

Communication
Command

 
0          1          2           3          4          5

E

Total weight: 35.68 g.
Flight time:~ 5.5 min

Total weight: 33.02 g.
Flight time: ~ 7.5 min

Transmit 
msg to
other 
channel

5 x VL53L1x 

4 x VL53L0x 

Power Consumption/
Capacity

Fig. 7. Hardware and communication specifics. (A) Crazyflie used for outbound and inbound travel and (B) the assembly used for the video recording of the environ-
ment. (C) Components on the Crazyflie, including weight and battery consumption. (D) Total of six Crazyflies used including six Crazyradio PAs and (E) the communication 
scheme shown for the six-drone experiment. Here, a counter is regulating when the drone will transmit a message (msg) to another drone (for counter 1: drone 1 to 2, 
drone 2 to 3, etc.). Between the regulated counter, the drone transmits its message to another drone with a time offset based on its ID. Six PAs were used for the six com-
munication channels to receive logging of the Crazyflies for statistics; however, these can be replaced by one if no telemetry is required.
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number; We consider numbers one to six in this explanation. This 
ID also indicates in which channel (ID × 10 + 20) the Crazyflie 
communicates with the computer for logging the onboard variables, 
as can be seen in Fig. 7E. This separation of channels was done to 
reduce interference between the Crazyflies. The variable logging of 
each Crazyflie to the computer was done at 0.5 Hz, which includes 
the position estimation, the RSSI of the beacon and other robots, 
the SGBA status of the state machine, etc. In our experiments, 
because we needed to receive the onboard data of each Crazyflie 
separately for the statistics in this paper, each drone had its own 
individual Crazyradio PA (Fig. 7D). This reduced the possibility of 
package loss of the telemetry data; however, technically, only one 
beacon is necessary. If the Crazyradio PA quickly switches and 
transmits empty packages on all the available channels, the SGBA 
does not require any additional knowledge except for the RSSI 
value.

The communication between the Crazyflies was done with a 
counter to prevent package loss due to message collisions (Fig. 7E). 
The counter regulates when one drone will send a package to another 
drone, which will be incremented every 0.5 s. For this, it switches to 
the primary transmitter (PT) mode, changes its communication 
channel to the other drone’s channel, sends the message within a 
short timeframe, and switches back immediately to its own channel 
in primary receiver mode to receive messages from the other Crazy-
flies and to receive an RSSI of the home beacon. Between the regulat-
ing counter increments, the moment to switch to PT depends on the 
drone’s ID. This should prevent the Crazyflies from simultaneously 
sending messages, therefore reducing the possibility of interdrone 
package loss. The information that the Crazyflies send to each other 
is their ID and preferred heading. This is necessary for changing 
direction on the outbound travel. At the same time, the receiving 
drone also knows the signal strength and hereby has an indication 
of the proximity of the other robot. Not all Crazyflies send a similar 
number of messages. The highest priority robot (lowest ID = highest 
priority) transmits to every channel because all others would need 
to avoid it, and the lowest priority robot does not send a message at 
all because it needs to avoid everybody else.

In the experiments, the earlier-mentioned counter was regulated 
by the computer; however, each Crazyflie would be able to do this 
by itself after clock synchronization of the autopilots. The separa-
tion of channels on the Crazyradio modules was necessary to enable 
stable communication between Crazyflies. It should be possible to 
put multiple Crazyflies on one channel; however, the number of usable 
channels and the number of robots per channel are limited. This poses 
a restriction for the total number of robots that the 2.4-GHz Crazyradio 
protocol is useful for; however, this could be further scaled by using 
UWB instead and a more sophisticated scheduling protocol such as 
self-organized time-division multiple access (STDMA) as in (63).
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