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A deep learning virtual instrument for monitoring
extreme UV solar spectral irradiance
Alexandre Szenicer1,2*†, David F. Fouhey2,3*†, Andres Munoz-Jaramillo2,4, Paul J. Wright2,5,6,
Rajat Thomas2,7, Richard Galvez2,8, Meng Jin2,9,10, Mark C. M. Cheung2,5,9

Measurements of the extreme ultraviolet (EUV) solar spectral irradiance (SSI) are essential for understanding
drivers of space weather effects, such as radio blackouts, and aerodynamic drag on satellites during periods of
enhanced solar activity. In this paper, we show how to learn a mapping from EUV narrowband images to spectral
irradiance measurements using data from NASA’s Solar Dynamics Observatory obtained between 2010 to 2014.
We describe a protocol and baselines for measuring the performance of models. Our best performing machine
learning (ML) model based on convolutional neural networks (CNNs) outperforms other ML models, and a differ-
ential emission measure (DEM) based approach, yielding average relative errors of under 4.6% (maximum error
over emission lines) and more typically 1.6% (median). We also provide evidence that the proposed method is
solving this mapping in a way thatmakes physical sense and by paying attention tomagnetic structures known to
drive EUV SSI variability.

INTRODUCTION
The extreme ultraviolet (EUV) radiation from the Sun is the domi-
nant driver of the Earth’s thermosphere/ionosphere system. During
periods of elevated solar activity, enhanced solar EUV driving causes
adverse space weather effects such as radio communication black-
outs, increased aerodynamic drag on satellites in low-earth orbit,
and scintillation of Global Navigation Satellite Systems (GNSS)
signals (1–3). NASA’s Solar Dynamics Observatory (SDO) (4) was
launched in 2010 with the goal to help us understand solar activity
and how their variations affect life on Earth. SDO carries three
instruments. The EUV Variability Experiment (EVE) instrument
suite (5) provides EUV solar spectral irradiance (SSI) measurements
integrated over the full Sun. The spectrummeasured by the Multiple
EUV Grating Spectrograph A (MEGS-A) and MEGS-B modules of
EVE contains emission lines from a variety of ions that exist at tem-
peratures ranging from 7000 K to 9.3 MK. Of these, 39 lines can be
extracted with relative ease and these define the level 2 lines data
product. The Atmospheric Imaging Assembly (AIA) instrument
(6) captures full-disk images of the Sun at 4096 × 4096 pixels in seven
EUV channels, two UV channels, and one visible wavelength
channel. The Helioseismic and Magnetic Imager (HMI) (7) delivers
photospheric vector magnetograms and Dopplergrams of the full
Sun at 4096 × 4096 pixels. The AIA and EVE instruments are two
separate, although complementary, entities, and they are both crucial
in their own right. EVE is meant to give us detailed information
about the radiative budget of the Sun and how it affects the Earth’s
atmosphere, but without any spatial resolution. On the other hand,

AIA is meant to give us information about the structure of the coro-
na, its density, temperature, and evolution, but with lower spectral
resolution than EVE. Presently, AIA, HMI, and theMEGS-Bmodule
of EVE continue to co-observe the Sun. However, an electrical mal-
function of the EVE MEGS-A channel compromised our ability to
monitor EUV SSI in the 5- to 37-nm wavelength range, which, as
shown in Fig. 1, contains roughly 60% of the solar irradiance in the
EUV. The goal of this work is to fill this gap in measurement capabil-
ities with a virtual replacement for MEGS-A. Toward this goal, we ex-
amine how well a differential emission measure (DEM)–based model
and learning-based models can use narrowband AIA images to repro-
duce MEGS-A EUV SSI measurements.

This approach is feasible due to both a wealth of data from when
AIAandEVE instruments co-observed the Sun and the commonunder-
lying solar dynamics that generate both sets of observations. Before it
was taken offline, both the MEGS-A channel and the AIA instrument
observed the Sun for roughly 4 years together, producing a set of paired
AIA andMEGS-A observations fromwhich we can learn a data-driven
mapping. This mapping ought to exist because of three reasons:

1) The same population of solar plasma is expected to be responsible
for emitting the EUV radiation observed by the two instruments.

2) As shown in Fig. 1, images taken by the AIA instrument have a
significant overlap with the EUV spectra measured by EVE’s MEGS-A
module.

3) As shown in Fig. 1, each of the AIA filters has a different and
overlapping response to radiation emitted by plasmas of different
temperature, enabling the use of AIA filters as basis of a mapping
between plasma temperature and irradiance.

There are currently two main approaches for using information
contained in AIA images to reconstruct solar EUV irradiance. The
first one uses AIA images to estimate the DEM of the solar corona (a
combined estimate of the density and temperature of the coronal plas-
ma along the line of sight) (8), in combination with the CHIANTI
Atomic Database (9, 10) to produce a full integrated spectrum. The sec-
ond uses an empirical segmentation and classification of pixels of AIA
images into different types of solar structures, each with a different ra-
diative output (11), which is also integrated to produce a complete
spectrum. However, because of the relatively sparse wavelength cover-
age ofAIA, simplifying physical assumptions used in bothmethods (i.e.,
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the assumption that emission is formed under coronal equilibrium
conditions and that elemental abundances are uniform in the solar co-
rona), and the empirical segmentation of images, inaccuracies in the
mapping fromAIA toMEGS-A are expected. In this work, we examine
how a data-driven approach can be used to provide an improved map-
ping between these two instruments.

We propose a data-driven approach that fuses two complementary
models and takes advantage of recent developments in machine
learning (ML). The first component is a linear model that transforms
global summary statistics about the AIA input to produce the EVE
MEGS-Aoutput; this handles the bulk of themapping, especially during
quiet periods in solar activity. The second component is a convolutional
neural network (CNN)model that usesAIA images to additively correct
the output of this linear model, often during flaring periods. Both com-
ponents are learned from data.

Given the fact that this is the first application of CNNs to the prob-
lem of EUV spectral irradiance reconstruction, one of the contributions
of this paper is a proper protocol and baselines for this application.
These include training and testing splits that can evaluate whether
the method is generalizing as opposed to memorizing, and proper

baselines to examine and better understand the contributions of more
advanced methods. We also report results from a DEM-based model
that aims todirectly reconstruct theDEMdistribution, aswell as simple
statistical models for the mapping problem, which can serve as bench-
marks that future, more complex methods of inferring EUV irradiance
need to outperform.

Our proposed method is able to achieve strong performance with
a median (across MEGS-A lines) average relative error of 1.6% and a
maximum error (on Fe XVI) of 4.6%, outperforming both our
baseline models: a linear model on engineered features and a physics
method based on DEM inversions. Furthermore, while our proposed
method improves the overall results, it is substantially better on chan-
nels that are spectrally far away from the AIA observations than our
baselines, and in circumstances that violate the underlying assump-
tions of the DEM-basedmodel. In addition, althoughMLmodels have
a reputation for being indiscernible black boxes, we show evidence
that our learned model is solving the task in a sensible way: A careful
specification of our neural network architecture provides spatially re-
solved maps that suggest how the CNN is using information to infer
irradiance, and these maps match our physical intuition.

Fig. 1. Spectral and temperature response of AIA and EVE. The spectra measured by the EVE Instrument (A) and spectral response of the narrowband images from
the AIA instrument onboard SDO (B) overlap. Each of the 14 emission lines we recover in this project (shown in all panels as vertical lines) has a characteristic tem-
perature associated with them (denoted using shades of color). Given that each of the AIA filters assembles light emitted by plasma of a wide range of temperatures (C),
it is possible to combine their information to recover the part of the spectrum that used to be measured by the MEGS-A instrument, which is no longer operational. For
these EVE spectra (A), the MEGS-A spectral region contains 60% of the total solar EUV irradiance. AIA images and EVE data from 5 January 2014.
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RESULTS
Data setup and evaluation criteria
We train and evaluate our learnedmappings using data from the period
between 1 January 2011 and 26 May 2014, when the SDO/AIA imager
and the SDO/EVE spectrograph co-observed the Sun. Our AIA data
derive from (12), consisting of nine-channelAIA images at 6-m cadence
(in total: 264K images) that have been corrected for angular resolution
variation and instrument degradation. We further downsample these
data spatially to 256 × 256. The EVE MEGS-A data are also obtained
from (12), consisting of a 15-channel signal at 10-s cadence. The Fe XVI
361 Å emission line has too few observations (available less than 1% of
the time compared to other lines) to learn a meaningful model, and
thus, we work with the remaining 14 lines. We assign to each AIA ob-
servation the MEGS-A observation that is closest to it in time (mean/
maximum time distance, 8.5 s/12 s). Thus, the problem becomes the
mapping of a 256 × 256 × 9measurement to a 1 × 1 × 14measurement.

Because the Sun’s dynamics at the level of total EUV irradiance
move at a far slower rate than our observations, it is crucial to prop-
erly split the data into training (used for fitting model parameters),
validation (for choosing model hyperparameters), and test (for eval-
uating prediction) sets. In particular, randomly splitting the data,
commonly done in other settings, will yield overly optimistic per-
formance estimates because access to one observation makes it easy
to predict the subsequent observation. We therefore split our data
year wise. We set aside years 2012 and 2013 as testing data, and
use the remaining data, covering 2011 and 2014, for training and val-
idation. We split this sequentially into 70% training (1 January 2011
to 18 December 2011) and 30% validation (18 December 2011 to
31 December 2011 and 1 January 2014 to 27 May 2014).

We evaluate predictions using the relative absolute error (i.e., if
y is the ground truth observed irradiance and yp is the predicted, we
report |y − yp|/|y|). This produces an error for every single observa-
tion and line. We summarize results into tables by taking the average
over the observations, i.e., producing an average relative absolute error.
We additionally report results only during flaring conditions. Rather
than manually specifying flaring times, we use ground truth EVE Fe
XX observations as a proxy variable for flare conditions and define
all observations in the top 5% of Fe XX emissions across the whole
dataset as flares.

Baseline models
To put our results into proper context, we first report the results of a
number of simplermethods.We begin with an approach thatmodels
the physics of the problem, and then report the performance of a set
of models that are data driven, but use only nonspatially resolved
summary statistics about AIA measurements. These results addi-
tionally provide future experiments aboutMEGS-A nowcasting with
proper baselines.
Differential emission measure model
To illustrate the need for a data-driven solution, we first analyze the
results of a model that uses only a physical model. In particular, we
transform each set of six EUV images (i.e., all AIA EUV channels
except the 30.4 nm) into DEM maps (8) spanning 18 temperature
bins from log T = 5.5 to 7.2 K, at DlogT = 0.1. This is done with the
assumption that the emitting plasma is optically thin, that the emis-
sion is formed under coronal equilibrium conditions, and that ele-
mental abundances are uniform in the solar corona. With the same
assumptions, the DEM solutions are then used to compute the emis-
sion of EUV lines observed by EVE MEGS-A. Once the pixel-by-

pixel EUV line emissions have been obtained, we integrate them
spatially to obtain the line irradiances (as reported by MEGS-A). The
specific inversion method used here is the neural DEM (DeepEM)
method outlined in (13). This implementation is able to provide solu-
tionswhere the underlying Linear Programming (LP) solver of standard
basis pursuit DEM inversion technique (8) fails to converge on a satis-
factory solution. The DeepEMmethod was trained on data from 2011,
mirroring our models.
Channel summary statistics models
We expect that many of the MEGS-A observations can be explained
empirically by the total intensity of the AIA images because AIA ob-
serves data at nearby wavelengths to the MEGS-A spectrum (see Fig. 1).
To demonstrate this, we use features that are the result of averaging spa-
tially, i.e., producing a single feature per-AIA channel, and then fit a
series of models to these summary statistics features.

As features, we use the average AIA data count and standard de-
viation of each AIA image (AIAm and AIAs, both nine-dimensional
feature vectors), i.e., AIAm;k ¼ 1

2562∑
256;256
i¼1;j¼1 AIAi;j;k and similarly for

AIAs. The first feature captures the total irradiance, and the second
feature reveals the extent to which that irradiance is constant across
the Sun. While AIAs is nonlinear with respect to the original AIA
image, AIAm is linear and any linear model fit to it demonstrates
to what extent a properly parameterized linear model explains the
observed MEGS-A data.

We report results for a number of models. All model parameters
were fit with the training set, and relevant hyperparameters were fit
on the validation set (see Materials and Methods for more precise
details). (i) We begin with the most basic model, a least-squares fit
to the average AIA image, or L2-Mean, which represents the most
basic data-driven approach to this problem. (ii) Our most complex
and effective method is Huber-Mean-Std, or finding a linear model
on AIAm and AIAs features that minimizes the robust Huber loss;
regularization and Huber parameters were optimized on the vali-
dation set. While it has few parameters, this model already involves
both feature and model engineering. (iii) To evaluate the importance
of the loss function compared to standard least squares, we also report
results for L2-Mean-Std, or the same model, but fit to minimize a
squared Euclidean distance. (iv) Similarly, to evaluate whether the
nonlinear standard deviation features help, we report Huber-Mean
or fitting the parameters only to AIAm. Note that because the mean
is a linear operator, this evaluates how well a properly fit linear
model can explain performance.

We report absolute relative error for the above methods in Table 1.
Before discussing the results in detail, we point out that some of the
MEGS-A channels should be readily predicted from AIA observations,
while others should not: SomeMEGS-A channels are spectrally close
to AIA observations.

The DEM-based model obtains strong performance on a number
of lines, with 6/14 lines predicted with under 3% error. Its performance
on the He II 304 Å is far worse, because the plasma is optically thick for
this line and because it forms in nonequilibrium conditions (14). For
these reasons, AIA DEM inversions do not even use data from the
He II 304 Å channel.With this inmind, it is not a surprise that the pure
DEM-based model gives predicted He II 304 Å irradiances that are a
factor 37 smaller than the corresponding MEGS-A measurement.
Themetrics for this line quoted inTable 1 have been adjusted to account
for this huge discrepancy.

Some other lines, such as Fe XX (which is sensitive to plasma at
about 10millionK), have discrepancies of ~10%during quiet conditions,
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but the average error can increase to 60% during flares. This may be
due to a number of reasons. First, saturation of the AIA charge-
coupled device (CCD) detectors during flares can result in bleeding
of signal along columns of pixels that overlap with the flaring site.
Second, automatic exposure control during flaring times (which aim
to mitigate CCD saturation) can degrade the signal-to-noise of AIA
images. Third, there is evidence that coronal plasma in the quiescent
state may have different elemental abundances than plasma that have
been impulsively evaporated to fill flare loops (15).

A properly fit linear model (Huber-Mean) results in better per-
formance on most lines compared to the physics model and strong
performance on many lines overall. Many emission lines (Fe VIII,
Fe IX, Fe XII, Fe XIII, and He II) can be explained well by a linear
transformation of the average of the AIA observation, with average
relative errors close to 1% and as low as 0.7%. While the linear
transformation is simple, choosing the right loss function is important:
The model fit with Huber regression consistently improves over L2.

While a linear model applied to the average of the AIA observation
does well on many lines, it performs poorly on many others, including
Fe XX, Fe XV, Fe XVI, and Mg IX. Adding standard deviations as a
feature gives a proxy variable for the presence of flares, and thus,
Huber-Mean-Std method improves performance on these flare sen-
sitive lines, reducing, e.g., Fe XVI prediction from 10.5% relative
error to 7.1%. This performance gain on flare-sensitive lines comes
at the cost of modest increases in error for the lines that are modeled

well by a linear transformation of the AIA data: The larger capac-
ity models start fitting to noise to better explain the training data.
Nonetheless, during flaring conditions, performance degrades: The Fe
XX emission prediction error is 440% of the error seen over all
conditions.

The best performing linear model (Huber-Mean-Std) is outper-
formed on some lines (Fe XV, Fe XVI, and Mg IX) by the physics
model, and one might naturally wonder whether the linear model is
simply underpowered. We experimented with two standard ways of
adding expressiveness to the model: adding pairwise interaction
features between all the terms (16) and applying gradient boosting
regression trees (17), a standard nonlinear model. Both failed to sub-
stantially improve upon performance of the Huber loss on Mean + Std
model, with average errors of 2.5 and 2.8%, respectively, as compared
to 2.5%. Additional information, it seems, should come either from
additional physics knowledge to provide a better fitting model (as used
in the DEM-based model) or by examining the spatial information in
the image (e.g., actually looking at the flare rather than inferring their
presence via features).

Convolutional neural networks
Having demonstrated what appear to be the limits of models that
consider only first and second moment summary statistics of AIA
data, we now present results frommodels that examine them spatial-
ly, in particular CNNs. These models build a single function that is

Table 1. Per-line average relative error for the methods evaluated in this paper. We provide summary statistics for different models for all lines, where the
values are percentages of the average relative error defined in the “Data setup and evaluation criteria” section in Results. The top part of the table indicates
results averaged over the entire test set, whereas for the bottom part only data points where the Fe XX line is in the 95th percentile are kept, to focus on flare
conditions. Numbers in bold indicate the best result within the given column.

Line and log T

He He Fe Fe Fe Mg Fe Fe Fe Fe Fe Fe Fe Fe

Min Mean Median Max
II II VIII IX X IX XI XII XIII XIV XV XVI XVIII XX

4.7 4.8 5.6 5.8 6.0 6.0 6.1 6.1 6.2 6.3 6.3 6.4 6.8 7.0

303 Å 256 Å 131 Å 171 Å 177 Å 368 Å 180 Å 195 Å 202 Å 211 Å 284 Å 335 Å 93 Å 132 Å

Overall

Physics 8.66 6.09 3.53 2.76 2.86 3.58 2.66 2.62 2.92 2.78 4.90 5.69 13.07 13.39 2.62 5.39 3.55 13.39

L2-Mean 2.70 2.48 1.95 1.53 1.95 3.80 1.76 1.63 2.05 1.97 4.28 10.03 1.78 11.71 1.53 3.54 2.01 11.71

L2-Mean-Std 2.48 2.40 2.72 2.15 2.77 4.56 2.30 2.30 2.63 3.34 3.81 7.48 2.53 10.85 2.15 3.74 2.67 10.85

Huber-Mean 1.15 1.36 1.70 0.68 2.00 4.90 2.36 1.83 1.80 2.00 5.63 10.51 1.74 3.55 0.68 2.94 1.92 10.51

Huber-Mean-Std 1.27 1.74 1.21 0.79 2.04 4.71 1.92 1.39 1.33 2.44 4.92 7.12 1.44 2.67 0.79 2.50 1.83 7.12

Linear + CNN 1.31 1.24 1.67 1.95 1.19 3.21 1.15 1.00 1.50 2.40 3.72 4.61 1.28 2.07 1.00 2.02 1.59 4.61

Flare conditions (Fe XX 95 percentile)

Physics 18.18 15.48 16.57 3.87 1.91 3.23 2.33 2.60 4.80 2.91 4.41 4.83 66.20 64.00 1.91 15.09 4.60 66.20

L2-Mean 2.16 2.25 2.99 2.07 3.02 5.06 2.84 2.57 2.94 2.93 3.20 5.98 4.36 11.52 2.07 3.85 2.97 11.52

L2-Mean-Std 4.18 4.64 5.35 3.71 4.79 7.02 3.96 4.13 4.18 5.06 5.62 5.70 5.20 11.09 3.71 5.33 4.93 11.09

Huber-Mean 1.58 1.47 2.15 0.98 1.96 4.59 1.72 1.27 1.25 1.76 4.31 8.45 2.64 17.91 0.98 3.72 1.86 17.91

Huber-Mean-Std 2.05 2.39 1.81 1.24 3.07 4.82 2.36 1.94 2.82 2.71 4.50 5.23 4.04 10.67 1.24 3.55 2.77 10.67

Linear + CNN 1.89 1.55 1.69 1.79 1.48 3.32 1.30 1.41 2.30 2.15 3.27 3.85 2.03 7.55 1.30 2.54 1.96 7.55
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optimized end to end, consisting of interleaved convolutions (that
aggregate spatial features) and nonlinearities (that enable the com-
position of these convolutions to learn nonlinear functions). In the pro-
cess, the model discovers features that, when extracted from the image,
help make good inferences.

These models face large learning challenges when applied to the
AIA to MEGS-A nowcasting problem. First, there is very little super-
vision available for learning the mapping: Only 80K data points are
available for training and are densely sampled in time, causing cor-
relations and decreasing the effective number of data points. Second,
a great deal, but not all, of the mapping can be explained by a linear
transformation of basic summary statistics of the AIA irradiance,
and the CNN must capture this linear mapping while also incor-
porating other features visible in the images. While the CNN could,
in principle, compute the average AIA intensity via a set of properly
designed filters, the CNN’s parameterization and random initializa-
tion in practice might encourage it to converge to a more complex
solution (e.g., consisting of a series of basis expansions followed by a
linear model).

We avoid this problem by training amodel that explicitly corrects
the predictions of the linearmodel, as shown in the bold components
in Fig. 2. We fit a linear model to the training set, using mean and
standard deviation features to represent each AIA observation and
minimizing Huber loss, and then compute the residual, ydiff = y –
ylinear, between ground truth EVE irradiance and the linear model’s
prediction on the training set. This ydiff serves as the learning target
for the CNN.We adjust the input of the CNN to compensate for this:
The CNN is predicting a variable that has had, in some sense, the
information about its average image removed and must then focus
on the spatial details. We accordingly compute the per-channel
mean of the image and subtract it, yielding an image that is, per
channel, each pixel’s deviation from the mean.

At inference time, the network produces an estimate of ydiff, which
is added to the prediction from the linear model. The inference time
procedure is thus computing per-channel statistics over the input and
making a prediction using the linear model, using this per-channel
mean of the AIA image to convert the AIA image to a deviation-
from-the-mean image, andmaking a correction prediction via a CNN.

As a side benefit, this method also uses the linear model to explain
a great deal of the variability in the output, which, we will show later,
has a number of advantages. One such advantage is that the linear
model can also be turned into a spatial model (i.e., produce a per-pixel
prediction), which we demonstrate in a subsequent section.
CNN model configurations
Because of the size of the data (recall the data are both <80K observa-
tions and samples are highly non-iid), we experimented primarily with
smaller networks. We obtained strong performance with a shallow
network derived from AlexNet (18) with approximately 1 million pa-
rameters. We could obtain similar performance from more standard
networks, including an 18-layer ResNet (19) (11.7 million parameters),
but found that the high capacity of the model coupled with limited
variability of the data led to severe overfitting even with regularization.
In contrast, the shallower approach worked more consistently. All net-
works were trained from random initialization (see implementation
details in Materials and Methods) to minimize the Huber loss. While
transfer learning typically improves results, early experiments yielded
negative results when initializing with ILSVRC-pretrained models (20)
[by replicating the RGB filters three times in the channel dimension to
create nine-channel filters similar to (21)].

Our proposed method, which we denote ANet3, consists of three
convolutional layers derived from AlexNet, followed by average pool-
ing, and a linear map. In particular, we use the convolutional blocks
from (18) (i.e., convolutions, ReLUs, and max-pools). We adapt the
input channel count to match AIA and append a batch normalization
layer after each convolution because batchnorm has been shown to be
empirically effective. After three convolutions, the feature map is aver-
aged just as in ResNet (19), passed through dropout for regularization,
and then linearly transformed into the EVE prediction.
Model results
We report results in Table 1. The method obtains the lowest overall
mean error. This error, however, conflates lines for which a linear
transformation of the total AIA-observed irradiance suffices and
lines for which a linear transformation is a poor model. The proposed
model improves on the best of either Huber-Mean and Huber-Mean-
Std on 9/14 lines, with especially strong performance gains on
modeling Fe XX, Fe XV, Fe XVI, and Mg IX, achieving a 26% error
reduction on Fe XVI. This trend continues under flaring conditions,
where the CNN reduces the error rate on Fe XX emission prediction
from 10.7% (Huber-Mean-Std) to 7.6%. At the same time, as was the
case with adding standard deviation features, the increased model ca-
pacity leads to performance losses on lines that are well described by a
linear model: In particular, lines like Fe IX, Fe XIV, and He II are
slightly degraded by the use of a CNN.

The methods used are far shallower than typical approaches used
in learning-based computer vision, and one might reasonably won-
der whether a more off-the-shelf approach might work. Here, we re-
port a number of additional experiments that help justify our
approach. Our early efforts tried a standard ResNet18 (19) trained
to directly map from AIA to MEGS-A. We trained these using stan-
dard parameters and ones in adjacent orders of magnitude, but the
networks overfit quickly, even with regularization, obtaining minimum
validation loss in very early epochs and producing poor results.We can-
not rule out the possibility that different parameter settings are needed
on this problem, but the number of parameters vastly outnumbers the
number of independent data points that would point to the problem
being that the network is simply far too parameterized.

We additionally show the distribution of predicted-versus-actual
irradiances in Fig. 3 for Fe XX emissions. The DEM inversion ap-
proach systematically overestimates irradiance. The least-squares
fit to mean AIA data count produces a substantially better fit but still
cannot accurately model emissions. Changing the loss function for
fitting the model and adding additional features produces a much
tighter fit, and as seen in Fig. 3 (and the 20% relative decrease in error),
using a CNN even further reduces errors.

While the goal of this study is to reproduce the 14 lines of EUV
SSI, we performed an additional experiment with the same method
on total irradiance to test the generality of the method. Specifically,
we trained the same linear + CNN model to predict the SSI over the
entire MEGS-A range as an additional output. This model performs
similarly well, obtaining a 1.22% relative error on the total irradiance
channel.

Opening the black box: Analysis of models
In addition to looking at the predictive abilities of the model, we can
analyze the models to evaluate how they are solving the problem. We
report analysis of both a channel summary statistic model and the full
model. Both suggest that the learning models are, generally, solving the
problem in the correct way.

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Szenicer et al., Sci. Adv. 2019;5 : eaaw6548 2 October 2019 5 of 10

 on O
ctober 10, 2019

http://advances.sciencem
ag.org/

D
ow

nloaded from
 

http://advances.sciencemag.org/


One of the simplest ways to visualize a model is to examine its
weights. In Fig. 4, we show visualizations of the linear weights for the
model using Huber loss on Mean + Std AIA features. As expected,
the largest contributor for each emission line tends to be the closest
AIA filter. This takes advantage of the direct overlap betweenmost of
the MEGS-A emission lines and at least one AIA filter wavelength
response (the only exceptions being He II, Fe XV, andMg IX). How-
ever, many of the emission lines use information frommore than one
AIA filter, as well as information about the variability of the ir-
radiance to adjust their predictions. A careful comparison between
each of the emission line weights in Fig. 3 with the AIA filters’ tem-
perature response of Fig. 1C shows that our model is using the AIA
filters’ temperature response as a basis for the reconstruction of EUV
SSI. Fe XVIII is a good example of this behavior: Fig. 1B shows that
this line is centered on the AIA 94 filter, but Fig. 4 shows clear con-
tributions from the 131, 193, 211, and 335 channels. All these chan-
nels can be seen to have similar values of response at the temperature
of the Fe XVIII line in Fig. 1C. This means that our model is essen-
tially working the way the DEM-based models do (i.e., performing
an internal assessment of the density and temperatures of the solar
plasma to estimate irradiance) while using wavelength proximity to

enhance the recovery of the MEGS-A emission lines using the AIA
image filters.

In the case of the combined linear + CNN model, as done in (22)
and similar to (23), it is possible to change the order of the averaging
and linear combination operations in the later stages of the CNN and
linear models to produce spatially resolved irradiance maps that can
be used as a diagnostic of the operation of the model. For example,
the CNN concludes by taking a 15 × 15 384-channel image, aver-
aging it spatially to a 384-dimensional feature vector, and applying
a linear transformation to produce the final 14-dimensional EVE
predictions. This is equivalent to a model in which the linear
transformation is applied per pixel in the 15 × 15 384-channel image
(producing a 15 × 15 14-channel image), followed by spatial aver-
aging to a 14-dimensional result. To get a sense of how the CNN
is solving the task, we can examine this preaveraged 14-dimensional
prediction.

As shown in the faint components of Fig. 2, we apply this tech-
nique to our best model by splitting the final prediction into the sum
of three linear models applied to: standard deviation AIA features
(linear model), average AIA features (linear model), and the average
of the last convolution layer (CNN). The first computation remains a

Fig. 2. Proposed neural network architecture. After computing summary statistics of the input AIA images and making a prediction via a linear model, a CNN makes
a prediction that corrects this linear model. The combined linear + CNN model is shown in bold colors and arrows. The numbers attached to the boxes denote the sizes
of the representations of the data as they goes through the network, e.g., the first block annotated with 256, 256, and 9 represents an input of 256 × 256 pixels
and 9 channels. We produce spatially resolved maps in units of irradiance to validate how the CNN is operating (see Fig. 5) by rearranging commutative
operations in the last two layers of the CNN (blue dashed path) and the linear model (red dashed path). These operations yield identical outputs as the original
(bold) model (illustrated with faint vertical lines), but recasting them this way enable the diagnosis of the model’s operation.
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per-channel scalar, and we rearrange the latter two, yielding spatially
resolved feature maps at 15 × 15 and 256 × 256, respectively. We
produce a final spatially resolved map by bilinearly upsampling all
components of the 15 × 15 images to 256 × 256 and summing all the
feature activation maps in the last convolutional layer. When aver-
aged, this spatial map produces the same results as the original
computation graph, but spatially resolved, as can be seen in Fig. 5.
These maps look remarkably like one would expect from a spectro-
scopic imager with bright patches that match the location of active
magnetic regions, surrounded by a darker quiet Sun, and even
brighter flaring regions. This is evidence that our combined model
is paying attention to the right sources of EUV irradiance in a way
that makes physical sense. This opens tantalizing opportunities to
further constrain them, validate them, and exploit their physicality
in future work, showing the potential that deep learning has to en-
hance the scientific output of solar data.

DISCUSSION
We have implemented an approach for nowcasting MEGS-A spec-
tral irradiance measurements from AIA images, achieving a median
error of 1.6% across MEGS-A lines and outperforming a variety of

alternate ML approaches and a DEM-based approach. In particular,
our approach produces substantially better performance on a variety
of lines that are not well reconstructed by our DEM model (e.g., the
flare-sensitive Fe XX line). In addition to quantitatively characteriz-
ing the performance of the method, our analysis has produced evi-
dence that the model is solving the AIA to MEGS-A mapping in a
physically sensible way. Although it is too early to claim that our ap-
proach can produce spatially resolvedmaps of EUV irradiance based
on AIA and EVE data, the results are promising enough that they are
worth pursuing. In future work, we plan to integrate the data-driven
and physically based techniques to produce models that, by design,
solve the problem in a physically valid way.

In this work, we have demonstrated that we can leverage 4 years’
worth of AIA and MEGS-A to create a virtual MEGS-A that will be
available as long as AIA is functioning. This showcases the incredible
potential that CNNs, and deep learning in general, have for heralding
a new age of virtual instruments. Other important examples of this
potential include the estimation of photospheric velocities based on
continuum images (24) and the assembly of superresolution magne-
tograms based on magneto-hydrodynamic simulations and photo-
spheric magnetograms (25). It is important to stress that these virtual
instruments will not be substitutes for their hardware counterparts, as it

Mean error:
    13.39%

Mean error:
     11.71%

Mean error:
     2.67%

Mean error:
    2.07%

DEM inversion L2-Mean

Fe XX (log T  = 6.97) emission prediction
Huber-Mean+Std Full model

Fig. 3. Emission prediction of Fe XX line for several models.We plot a histogram of the results of the prediction on the test set for different model implementations,
with a log scale color bar. The closer the points are scattered around the line, the better the predictions are when compared to observations. We can see that the data-
driven models greatly improve upon the DEM inversion, and the full model that includes the CNN further increases accuracy, especially on the less frequent, higher
amplitude flares.

Legend
Negative

Positive

Fig. 4. Linear weights for the Huber Mean + Std model per line. We visualize heatmaps, where red indicates positive weights and blue indicates negative weights
with intensity proportional to weight. The first row is features that are the average (i.e., total irradiance); the second is features that are the standard deviation (i.e.,
variance of irradiance). Most MEGS-A lines are primarily a function of nearby AIA observations (e.g., Fe IX is overwhelmingly just a rescaling of the AIA data). Other lines
make use of the standard deviation features (e.g., Fe XX is primarily driven by variance in 131 Å).
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is clear that this work would have been impossible without the data ta-
ken by AIA and theMEGS-A/EVE instruments. However, these virtual
instruments will leverage existing and historic scientific instruments to
yield similar levels of scientific data products as hardware missions cur-
rently do.

MATERIALS AND METHODS
Throughout, we used supervisedMLmethods. A complete introduc-
tion is beyond the scope of this paper and can be found in (26), but to
provide context, we will briefly introduce a few key concepts. Super-
vised learning aims to perform function approximation given a set
ofN training examples of inputs Xi :Xi∈X and desired outputs yi : yi
∈ Y. In our case, each Xi may be the 256 × 256 × 9 AIA in-
put∈R256×256×9 or a 19-dimensional summary statistic feature vec-
tor∈R19, and each yi is a MEGS-A line. Each of our methods is a
function parameterized by q, or f(Xi; q):X→Y. We fit these functions
by optimizing the parameters tominimize empirical risk for a given loss
function L [which measures how close f(Xi; q) is to yi], q

* =
argminq

1
N ∑

N
i¼1 Lð f ðXi; qÞ; yiÞ, or, in other words, q* is the set of para-

meters minimizing the average loss incurred on the training set. How
this is optimized depends on the form of each Xi, the form of f, and the
loss functionL, but generally, a standard optimization technique such as
gradient descent was used.

Some of our initial models are linear regression. For these, we
modeled f(Xi; q) as f ðXi; qÞ ¼ ∑Dj¼1 qjXij ¼ qTXi, where D is the di-
mensionality of the input (typically including a constant term to act
as a bias). If we set the loss function to L( f(Xi; q), y) = ( f(Xi; q) − y)

2, the
resulting minimization problem is ordinary least squares and can be
solved analytically both with and without Tikhonov/ridge regres-
sion regularization. For more complex loss functions (e.g., Huber),

we can optimize the loss function with gradient descent: Starting
with an initial point, we take the gradient of the loss (plus any reg-
ularization) with respect to q and iteratively update q to follow the
negative gradient.

Our full model incorporates a CNN, a complete introduction to
which can be found in (27). We have seen that the linear model rep-
resents the output of f(Xi; q) as a linear or affine transformation of
the input. Similarly, a CNN represents the output of f(Xi; q) as a
transformation of the input, this time involving multiple layers of
convolution or linear filtering, interleaved with nonlinearities, re-
sulting in a complex nonlinear function built of smaller simple com-
ponents. The parameter vector q is then all of the parameters of the
convolutions. While the resulting empirical risk minimization prob-
lem of minimizing the loss with respect to q is nonconvex, the local
minima of the networks tend to perform well in practice across most
problem domains.

The advantage of this model is that the desired output variables are
often linear transformations of the input variables and the network can
discover a transformation from inputs to a feature space, which is re-
lated by a linear transformation to the outputs. Without this sort of
model, it is common to need a heuristic nonlinear preprocessing step
(e.g., in our work for the baseline models, taking the standard deviation
of the input). In the case of CNNs, this transformation is discovered via
the data to minimize the final objective.

Models
Here, were report a number of implementation details about the
models:
Channel summary statistics model
As is common practice in ML, we appended 1 as a feature before fitting
all linear models to add a bias. This results in a 10-dimensional feature

AIA EUV channel inputs 

Spatially rearranged MEGS-A predictions

Fig. 5. Spatially rearranged predictions. Results from the model after it has been rearranged to produce spatial results. Global (i.e., image-sized 1 × 1) features are
due to linear model applied to standard deviation features; low-frequency (i.e., blocky 15 × 15) features are due to the CNN, which has low spatial resolution; high-
frequency details are due to the linear model on average AIA features (i.e., 256 × 256). The linear model has learned a largely correct model mapping AIA to MEGS-A,
which is corrected, especially during flaring events, by the CNN.
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vector for AIA mean models and a 19-dimensional one for mean and
standard deviation models.
L2 regression
This can be solved geometrically and has no hyperparameters.
Huber regression
We fit a model using Scikit Learn’s SGDRegressor per EVE channel,
using a Huber loss and L2 regularization.We standardized the varia-
bles (subtracting mean and dividing by standard deviation from the
train set) and used the validation set to pick the regularization
strength and Huber delta parameter.
Gradient boosting regression trees
We fit a model with Scikit Learn’s Gradient Boosting Regressor, mini-
mizing Huber loss to set weights and fitting 100 trees. We used the val-
idation set to pick theHuber delta parameter, tree depth, andminimum
number of samples per leaf. We found the default optimization pa-
rameters (e.g., convergence criteria) to work poorly with EVE’s small
magnitude and multiplied the target variables by a factor of 105.
Convolutional neural net
We used a modified AlexNet (18) containing three convolutional
layers, followed by average pooling and an affine (i.e., linear + bias)
transformation. Let C(k,n,s,p) denote a convolutional layer with
n filters of size k × k, applied with stride s and padding p; BN denote
batchnorm; R denote a ReLU; andMP(k,s) denotemax-pooling over a
k × k grid with stride s. The convolutional block is then C(11,64,4,2),
BN, R, MP(3,2), C(5,192,1,2), BN, R, MP(3,2), C(3,384,1,1), BN, R.
This is then followed by average pooling, dropout (P = 0.5), and a fully
connected layer with 14 outputs. We used dropout due to the small
amount of data.

The network is trained following standard practices from a ran-
dom initialization with stochastic gradient descent.We used pytorch
defaults for initialization, except for convolutional layers, whichwere
initialized with the Kaiming normal method. After initialization, we
trained the network with stochastic gradient descent with Nesterov
momentum (28) and weight decay of 10−9 for 24 epochs. We started
with a learning rate of 0.1 and multiplied it by 0.1 every 8 epochs.
We applied gradient clipping (to have maximum norm 0.5), which
we found anecdotally to improve performance.

Properly scaling the inputs is important. We divided each chan-
nel of an input AIA image with an average computed over the train-
ing set (and divided by this same value at test time). We treated the
residual EVE similarly, dividing by the average residual over the
training set, but we also multiplied it by 102 to make the order of
magnitude of the target values match our network’s initial outputs.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaaw6548/DC1
Fig. S1. Emission prediction of Fe XVIII line for several models.
Fig. S2. Emission prediction of He II line for several models.
Fig. S3. Emission prediction of Fe XI line for several models.
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