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ABSTRACT: Organic synthesis is one of the key stumbling
blocks in medicinal chemistry. A necessary yet unsolved step
in planning synthesis is solving the forward problem: Given
reactants and reagents, predict the products. Similar to other
work, we treat reaction prediction as a machine translation
problem between simplified molecular-input line-entry system
(SMILES) strings (a text-based representation) of reactants,
reagents, and the products. We show that a multihead
attention Molecular Transformer model outperforms all
algorithms in the literature, achieving a top-1 accuracy above
90% on a common benchmark data set. Molecular Trans-
former makes predictions by inferring the correlations between the presence and absence of chemical motifs in the reactant,
reagent, and product present in the data set. Our model requires no handcrafted rules and accurately predicts subtle chemical
transformations. Crucially, our model can accurately estimate its own uncertainty, with an uncertainty score that is 89% accurate
in terms of classifying whether a prediction is correct. Furthermore, we show that the model is able to handle inputs without a
reactant−reagent split and including stereochemistry, which makes our method universally applicable.

■ INTRODUCTION

Organic synthesis, the making of complex molecules from
simpler building blocks, remains one of the key stumbling
blocks in drug discovery.1 Although the number of reported
molecules has reached 135 million, this still represents only a
small proportion of the estimated 1060 feasible drug-like
compounds.2,3 The lack of a synthetic route hinders access to
potentially fruitful regions of chemical space. Tackling the
challenge of organic synthesis with data-driven approaches is
particularly timely as generative models in machine learning for
molecules are coming of age.4−10 These generative models
enrich the toolbox of medicinal chemistry by suggesting
potentially promising molecules that lie outside of known
scaffolds.
There are three salient challenges in predicting chemical

reactivity and designing organic synthesis. First, simple
combinatorics would suggest that the space of possible
reactions is even greater than the already intractable space of
possible molecules. As such, strategies that involve handcrafted
rules quickly become intractable. Second, reactants seldom
contain only one reactive functional group. Designing a
synthesis requires one to predict which functional group will
react with a particular reactant and where a reactant will react
within a functional group. Predicting those subtle reactivity
differences is challenging because they are often dependent on
the what other functional groups are nearby. In addition, for
chiral organic molecules, predicting the relative and absolute

configuration of chiral centers adds another layer of complex-
ity. Third, organic synthesis is almost always a multistep
process where one failed step could invalidate the entire
synthesis. For example, the pioneering total synthesis of the
antibiotic tetracycline takes 18 steps;11 even a hypothetical
method that would be correct 80% of the time would have only
a 1% chance of getting 18 predictions correct in a row
(assuming independence). Therefore, tackling the synthesis
challenge requires methods that are both accurate and have
good uncertainty estimates. This would crucially allow us to
estimate the “risk” of the proposed synthesis path and put the
riskier steps in the beginning of the synthesis so that one can
fail fast and fail cheap.
The long history of computational chemical reaction

prediction has been extensively reviewed in refs 12 and 13.
Methods in the literature may be divided into two different
groups, namely, template-based and template-free.
Template-based methods14−16 use a library of reaction

templates or rules. These templates describe the atoms and
their bonds in the neighborhood of the reaction center before
and after the chemical reaction has occurred. Template-based
methods then consider all possible reactions centers in a
molecule and enumerate the possible transformations based on
the templates together with how likely each transformation is
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to take place. As such, the key steps in all template-based
methods are the construction of templates and the evaluation
of how likely the template is to apply. The focus of the
literature has thus far been on the latter question of predicting
whether a template applies.15,16 However, the problem with
the template-based paradigm is that templates themselves are
often of questionable validity. Previous methods generated
templates by hand using chemical intuition.17−19 Handcrafting
is obviously not scalable because the number of reported
organic reactions constantly increases, and a significant time
investment is needed to keep up with the literature. Recent
machine-learning approaches employ template libraries that
are automatically extracted from data sets of reactions.15,16

Unfortunately, automatic template extraction algorithms still
suffer from having to rely on meta-heuristics to define different
“classes” of reactions. More problematically, all automatic
template extraction algorithms rely on pre-existing atom
mapping, a scheme that maps atoms in the reactants to
atoms in the product. However, correctly mapping the product
back to the reactant atoms is still an unsolved problem,20 and,
more disconcertingly, commonly used tools to find the atom
mapping (e.g., NameRXN21,22) are themselves based on
libraries of expert rules and templates. This creates a vicious
circle. Atom-mapping is based on templates and templates are
based on atom mapping, and ultimately, seemingly automatic
techniques are actually premised on handcrafted and often
artisanal chemical rules.
To overcome the limitations of template-based approaches,

several template-free methods have emerged over the recent
years. Those methods can, in turn, be categorized into graph-
based and sequence-based. Jin et al. characterize chemical
reactions by graph edits that lead from the reactants to the
products.23 Their reaction prediction is a two-step process.
The first network takes a graph representation of the reactants
as input and predicts reactivity scores. On the basis of those
reactivity scores, product candidates are generated and then
ranked by a second network. An improved version, where
candidates with up to five bond changes are taken into account
and multidimensional reactivity matrices are generated, was
recently presented.24 Whereas a previous version of the model
included both reactants and reagents in the reaction center
determination step, the accuracy was significantly improved by
excluding the reagents from the reactivity score prediction in
the more recent versions. This requires the user to know the
identities of the reagents, which implicitly means that the user
must already know the product because the reagent is defined
as a chemical species that does not appear in the product!
Similarly, Bradshaw et al.25 separated reactants and reagents
and included the reagents only in a context vector for their
gated graph neural network. They represented the reaction
prediction problem as a stepwise rearrangement of electrons in
the reactant molecules. A side effect of phrasing reaction
prediction as predicting electron flow is that a preprocessing
step must be applied to eliminate reactions where the electron
flow cannot easily be identified. Bradshaw et al. considered
only a subset of the USPTO_MIT data set, containing only
73% of the reactions with a linear electron flow (LEF)
topology, thus by definition excluding pericyclic reactions and
other important workhorse organic reactions. A more general
version of the algorithm was recently presented in ref 26.
Perhaps most intriguingly, all graph-based template-free
methods in the literature require atom-mapped data sets to

generate the ground truth for training, and atom mapping
algorithms make use of reaction templates.
Sequence-based techniques have emerged as an alternative

to graph-based methods. The key idea is to use a text
representation of the reactants, reagents, and products (usually
simplified molecular-input line-entry system (SMILES)) and
treat reaction prediction as machine translation from one
language (reactants−reagents) to another language (products).
The idea of applying sequence-based models to the reaction
prediction problem was first explored by Nam and Kim.27

Schwaller et al.28 have shown that using analogies between
organic chemistry and human language sequence-to-sequence
models (seq-2-seq) could compete against graph-based
methods. Both previous seq-2-seq works were based on
recurrent neural networks (RNNs) for the encoder and the
decoder, with one single-head attention layer in between.29,30

Moreover, both previous seq-2-seq forward prediction works
separated reactants and reagents in the inputs using the atom
mapping, and ref 28 tokenized the reagent molecules as
individual tokens. To increase the interpretability of the model,
Schwaller et al.28 used attention weight matrices and
confidence scores that were generated together with the
most likely product.
In this work, we focus on the question of predicting products

given reactants and reagent. We show that a fully attention-
based model adapted from ref 31 with the SMILES32,33

representation, the Molecular Transformer, outperforms all
previous methods while being completely atom-mapping
independent and not requiring splitting the input into reactants
and reagents. Our model reaches 90.4% top-1 accuracy (93.7%
top-2 accuracy) on a common benchmark data set.
Importantly, our model does not make use of any handcrafted
rules. It can accurately predict subtle and selective chemical
transformations, getting the correct chemoselectivity, regiose-
lectivity, and, to some extent, stereoselectivity. In addition, our
model can estimate its own uncertainty. The uncertainty score
predicted by the model has an ROC−AUC of 0.89 in terms of
classifying whether a reaction is correctly predicted. Our model
has been made available since August 2018 in the backend of
the IBM RXN for Chemistry,34 a free web-based graphical user
interface, and has been used by several thousand organic
chemists worldwide to perform more than 40 000 predictions
so far.

■ DATA
Most of the publicly available reaction data sets were derived
from the patent mining work of Lowe,35 where the chemical
reactions were described using a text-based representation
called SMILES.32,33 To compare to previous work, we focus on
four data sets. The USPTO_MIT data set was filtered and split
by Jin et al.23 This data set was also used in ref 28 and adapted
to a smaller subset called USPTO_LEF by Bradshaw et al.25 to
make it compatible with their algorithm. In contrast with the
MIT and LEF data sets, USPTO_STEREO28 underwent less
filtering, and the stereochemical information was kept. To date,
only seq-2-seq models were used to predict on USPTO_S-
TEREO. Stereochemistry adds an additional level of complex-
ity because it requires the models to predict not only molecular
graph edge changes but potentially also changes in node labels.
Additionally, we used a nonpublic time-split test set, extracted
from the Pistachio database,36 to compare the performance on
a set containing more diverse reactions against a previous seq-
2-seq model.28
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by going from six layers of size 512 to four layers of size 256.
We experimented with label smoothing43 and the number of
attention heads. In contrast with the NMT model,31 we set the
label smoothing parameter to 0.0. As seen below, a nonzero
label smoothing parameter encourages the model to be less
confident and therefore negatively affects its ability to
discriminate between correct and incorrect predictions.
Moreover, we observed that at least four attention heads
were required to achieve peak accuracies. We, however, kept
the original eight attention heads because this configuration
achieved superior validation performance. For the training, we
used the ADAM optimizer44 and varied the learning rate as
described in ref 31 using 8000 warm up steps, the batch size
was set to ∼4096 tokens, and the gradients were accumulated
over four batches and normalized by the number of tokens.
The model and results can be found online.45

■ RESULTS AND DISCUSSION
Table 2 shows the performance of the model as a function of
different training variations. SMILES data augmentation46

leads to a significant increase in accuracy. We double the
training data by generating a copy of every reaction in the
training set, where the molecules were replaced by an
equivalent random SMILES (augm.) on the range of data
sets and preprocessing methods. Results are also improved by
averaging the weights over multiple checkpoints, as suggested
in ref 31, as well as increasing the training time. Our best single
models are obtained by training for 48 h on one GPU (Nvidia
P100), saving one checkpoint every 10 000 time steps, and
averaging the last 20 checkpoints. Ensembling different models
is known to increase the performance of NMT models;47

however, the performance increase (ens. of 5/10/20) is
marginal compared with parameter averaging. Nonetheless,
ensembling two models that contain the weight average of 20
checkpoints of two independently initialized training runs leads
to a top-1 accuracy of 91%. Whereas a higher accuracy and
better uncertainty estimation can be obtained by model
ensembles, they come at an additional cost of training or test
time. The top-5 accuracies of our best single models (weight
average of the 20 last checkpoints) on the different data sets
are shown in Table 3. The top-2 accuracy is significantly higher
than the top-1 accuracy, reaching >93% accuracy.
Comparison with Previous Work. Because all previous

works used single models, we consider only single models
trained on the data-augmented versions of the data sets rather
than ensembles for the remainder of this paper to have a fair
comparison. Table 4 shows that the Molecular Transformer
clearly outperforms all methods in the literature across the

different data sets. Crucially, although separating reactant and
reagent yields, the best model (perhaps unsurprisingly because
this separation implies knowledge of the product already), the
Molecular Transformer, still outperforms the literature when
reactant and reagents are mixed. Moreover, our model achieves
a reasonable accuracy in the _STEREO data set, where
stereochemical information is taken into account, whereas all
prior graph-based methods in the literature cannot account for
stereochemistry. We note that if one was to use a reaction
prediction algorithm to plan an N-step synthesis, then the
probability of getting the scheme right would be pN, where p is
the probability of a single-step prediction being correct
(assuming independence). Therefore, the performance gap
between models becomes exponentially amplified when one
deploys it to solve synthesis planning problems.
Coley et al.24 published their performance predictions by

dividing the reactions of the USPTO_MIT test set into
template popularity bins. The template popularity of the test
set reactions was computed by counting how many times the
corresponding reaction templates were observed in the training
set. In Figure 1, we compare the top-1 accuracy of our
USPTO_MIT models with the model of Coley et al.24

Although Coley et al. had separated the reagents in this
experiment, we outperform them across all popularity bins,
even with our model predicting on a mixed reactants−reagents
input, and the accuracy gap becomes larger as the template
popularity decreases. These findings suggest that the Molecular
Transformer is not simply memorizing the data and can
leverage information inferred from more common reactions to
make predictions on rarer reactions.
A looming question is how the Molecular Transformer

performs by reaction type. Table 5 shows that the weakest
predictions of the Molecular Transformer are on resolutions
(the transformation of absolute configuration of chiral centers,
where the reagents are often not recorded in the data) and the
ominous label of “unclassified” (where many mistranscribed
reactions will end up). Moreover, the Molecular Transformer
outperforms28 in virtually every single reaction class. This is
because the multihead attention layer in the Molecular

Table 2. Ablation Study of Molecular Transformer on the USPTO_MIT Data Set with Separated Reagentsa

top-1 (%) top-2 (%) top-3 (%) top-5 (%) training testing

Single Models
baseline 88.8 92.6 93.7 94.4 24 h 20 min
baseline augm. 89.6 93.2 94.2 95.0 24 h 20 min
baseline augm. 90.1 93.5 94.4 95.2 48 h 20 min
augm. av. 20 90.4 93.7 94.6 95.3 48 h 20 min

Ensemble Models
ens. of 5 90.5 93.8 94.8 95.5 48 h 1 h 25 min
ens. of 10 90.6 93.9 94.8 95.5 48 h 2 h 40 min
ens. of 20 90.6 93.8 94.9 95.6 48 h 5 h 3 min
ens. of 2 av. 20 91.0 94.3 95.2 95.8 2 × 48 h 32 min

aTraining and test times were measured on a single Nvidia P100 GPU. The test set contained 40k reactions.

Table 3. Single-Model Top-k Accuracy of the Molecular
Transformer

USPTO* top-1 (%) top-2 (%) top-3 (%) top-5 (%)

_MIT separated 90.4 93.7 94.6 95.3
_MIT mixed 88.6 92.4 93.5 94.2
_STEREO separated 78.1 84.0 85.8 87.1
_STEREO mixed 76.2 82.4 84.3 85.8
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Transformer can process long-range interactions between
tokens, whereas RNN models impose the inductive bias that
tokens far in sequence space are less related. This bias is
erroneous because the token location in SMILES space bears
no relation to the distance between atoms in 3D space.
Figure 2 qualitatively illustrates the systematic pitfalls of the

S2S RNN model28 because of its erroneous inductive bias of
assuming that only tokens close together in the SMILES string
are chemically related. Figure 2A is a nucleophilic substitution.
Although the reaction is simple, the RNN model predicts an
erroneous product that makes little chemical sense where distal
groups are joined together, an artifact of the location of those
groups in the SMILES representation. Figure 2B is a simple
Buchwald−Hartwig coupling reaction. RNN again predicts a
chemically nonsensible product with chemically unreasonable
bonds.
Examples of Chemical Challenges That Molecular

Transformer Tackles. In the following section, we demon-
strate the ability of Molecular Transformer to predict the
outcome of a wide range of organic reactions with nontrivial
selectivity involved. For some of the reactions discussed below,
an organic chemist familiar with that particular class of reaction
could predict the outcome after thorough reasoning. However,

Molecular Transformer can immediately provide us with the
ground-truth answer. All of the reactions discussed in this
section and shown in Figure 3 are not in the training set.
We first consider challenges in chemoselectivity. As

Molecular Transformer predicts, the treatment of the fused
polycycle 1 with peracetic acid results in the epoxidation of the
alkene and not the Baeyer−Villiger oxidation of the ketone.48

Molecular Transformer also successfully predicts the stereo-
chemistry around the two newly forming stereocenters in 2.
Selective esterification of the dicarboxylic acid 3 is possible by
the sequential addition of acetyl chloride and an alcohol.49,50

Careful thinking about the role of each reagent and the
reactivity of the cyclic anhydride intermediate suggests the
esterification of the unconjugated carboxylic acid. This is
indeed what is observed and what Molecular Transformer
predicts. The outcome of this reaction is the consequence of
the 1,5-relationship between the two carboxylic acids and the
presence of the conjugated double bond. Whereas it takes time
and experience for an organic chemist to recognize the
concurrent presence of these functional groups as their
implication on the reaction outcome, Molecular Transformer
can furnish the right product by inferring the reactivity of this
complex pattern of distant functional groups. The reduction of

Table 4. Comparison of Top-1 Accuracy (in %) Obtained by the Di� erent Single-Model Methods on the Current Benchmark
Data Sets

USPTO* S2S28 WLDN23 ELECTRO25 GTPN26 WLDN524 our work

_MIT separated 80.3 79.6 82.4 85.6 90.4
_MIT mixed 74 88.6
_LEF separated 84.0 87.0 87.4 88.3 92.0
_LEF mixed 90.3
_STEREO separated 65.4 78.1
_STEREO mixed 76.2

Figure 1. Molecular Transformer outperforms the state-of-the-art model across both common and rare reactions. The figure shows the top-1
accuracy of our augmented mixed and separated USPTO_MIT single model compared with the model from ref 24 on the USPTO_MIT test set,
divided into template popularity bins. (The number of times a particular reaction type is seen in the data set.) The dashed lines show the average
across all bins.
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5 using excess DIBAL-H was expected to lead to the
unselective reduction of the secondary and the tertiary
amides.51 However, 6 was observed as the major product, in
agreement with the prediction of Molecular Transformer. This
shows how Molecular Transformer can help design new

syntheses, ultimately saving many hours of human labor in the
laboratory.
We next consider challenges in regioselectivity. Predicting

the regioselectivity of electrophilic aromatic substitutions is
straightforward in many cases. However, the concomitant
presence of multiple directing groups and steric crowding can
sometimes make human predictions ambiguous. Molecular
transformer can deal with complicated examples such as the
bromination of 7 with N-bromosuccinimide, affording 8.52

Molecular Transformer successfully deals with transition-
metal-catalyzed reactions as well. It can predict the relative
reactivity of the different C−Cl bonds in 2,4,5-trichloropyr-
imidine 9 in the successive Suzuki coupling reactions with
phenylboronic acid.53

Our last examples illustrate the power of Molecular
Transformer in predicting the stereoselectivity of organic
reactions. The reduction of the fused bicyclic ketone 13 by
lithium aluminum hydride gives the major diastereoisomer 14,
successfully predicted by Molecular Transformer.54 The
formation of the (E)-alkene in 16 by the treatment of 15
with tosyl chloride and lithium tert-butoxide is also successfully
predicted.55

Comparing Molecular Transformer with Quantum-
Chemistry-Based Predictors. Having qualitatively discussed
a series of challenging examples of chemical selectivity that
Molecular Transformer successfully predicts, we next turn to
quantitatively explore whether Molecular Transformer has
inferred the physical principles that underlie chemical
selectivity. The general question of distilling interpretable
rationales from machine-learning models is still an active area

Table 5. Prediction of the Augm. Mixed STEREO Single
Model on the Pistachio_2017 Test Set Compared with Ref
28, Where the Reactants and Reagents Were Separated

count
S2S acc.
(%)28

our acc.
(%)

Pistachio_2017 15418 60.0 78.0
-classified 11817 70.2 87.6
-heteroatom alkylation and arylation 2702 72.8 86.6
-acylation and related processes 2601 81.5 90.0
-deprotections 1232 69.0 88.6
-C−C bond formation 329 55.6 81.2
-functional group interconversion
(FGI)

315 54.0 91.7

-reductions 1996 71.6 86.1
-functional group addition (FGA) 1090 71.8 89.3
-heterocycle formation 310 57.7 90.0
-protections 868 52.9 87.4
-oxidations 339 41.3 85.0
-resolutions 35 34.3 28.6
-unrecognized 3601 26.8 46.3
with stereochemistry 4103 48.2 67.9
without stereochemistry 11315 64.3 81.6
invalid smiles 2.8 0.5

Figure 2. Erroneous inductive bias of the S2S RNN model28 of assuming that only tokens close together in the SMILES string are chemically
related leads to systematic pitfalls for reagents with a long SMILES representation. Molecular Transformer correctly predicts the product for both
(A) and (B), whereas the RNN model predicts a product that is not only incorrect but also chemically unreasonable.
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of research. As such, we attempt to address a more limited
question: Can Molecular Transformer, trained on diverse
reactions harvested from patents, make accurate predictions on
a specific class of challenging reactions where the state-of-the-
art predictors are quantum -chemistry calculations motivated
by physical organic chemistry insights.
To this end, we consider the regioselectivity of electrophilic

aromatic substitution reactions in heteroaromatics, a key
reaction in medicinal chemistry. Although the reaction
mechanism is simple, regioselectivity is controlled by a subtle

balance of electronic and steric effects of substituents. We also
focus on this reaction because recent pioneering work has
systematically curated a large set of examples of halogenation
of heteroaromatics from the literature and developed a
quantum-chemistry model that quantitatively predicts selectiv-
ity,56 and thus there is a clear benchmark. The state-of-the-art
model, RegioSQM,56 employs quantum-chemistry calculations
and achieves a top-1 accuracy of 81% in predicting the site of
halogenation. Surprisingly, Molecular Transformer achieves a
top-1 accuracy of 83% and top-2 accuracy of 91% on the same

Figure 3. Examples of challenging chemo-, regio-, and stereoselective transformations that Molecular Transformer successfully predicts. Although
the figure separates reactants and reagents for clarity, the predictions were done without making this distinction using the model hosted on IBM
RXN.34
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data set when predicting on the 445 reactions that are not in
the training set of the Molecular Transformer and have a single
reactive site. Molecular Transformer is also significantly less
computationally expensive than quantum-chemistry calcula-
tions. Figure 4 shows examples where quantum-chemistry
calculations fail to predict the correct site of bromination,
whereas Molecular Transformer makes the correct prediction.
The observation that Molecular Transformer correctly

predicts those challenging reactions suggests that it might
have distilled specific physical chemistry principles from an
assortment of diverse reactions, a necessary condition
underlying a successful chemical modeling framework.
Comparison with Human Organic Chemists. Coley et

al.24 conducted a study where 80 random reactions from eight
different rarity bins were selected from the USPTO_MIT test
set and presented to 11 chemists (graduate students to
professors) to predict the most likely outcome. The
predictions of the human chemists were then compared
against those of the model. We performed the same test with

our model trained on the mixed USPTO_MIT data set and
achieve a top-1 accuracy of 87.5%, significantly higher than the
average of the best human (76.5%) and the best graph-based
model (72.5%). Additionally, as seen in Figure 5, Molecular
Transformer is generalizable and remains accurate, even for the
less common reactions.
Figure 6 shows the 6 of the 80 reactions for which our

model did not output the correct prediction in its top-2
choices. Even though our model does not predict the ground
truth, it usually predicts a reasonable most likely outcome: In
RXN 14, our model predicts that a primary amine acts as the
nucleophile in an amide formation reaction rather than a
secondary amine, which is reasonable on the grounds of sterics.
In RXN 68, the reaction yielding the reported ground truth is
via a nucleophilic substitution of Cl− by OH− by the addition−
elimination mechanism, followed by lactim−lactam tautomer-
ism. For the reaction to work, there must have been a source of
hydroxide ions, which is not indicated among the reactants. In
the absence of hydroxide ions, the best nucleophile in the

Figure 4. Molecular Transformer achieves a higher accuracy than quantum-chemistry calculations in predicting the regioselectivity of electrophilic
aromatic substitution reactions in heteroaromatics. The figure shows examples where RegioSQM,56 the state of the art, fails, whereas Molecular
Transformer makes the correct prediction.

Figure 5. Top-1 accuracy of our model (mixed, USPTO_MIT) on 80 chemical reactions across eight reaction popularity bins in comparison with a
human study and their graph-based model (WLDN5).24
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reaction mixture is the phenolate ion generated from the
phenol by deprotonation by sodium hydride. In RXN 72, the
correct product is predicted, but the ground truth additionally
reports a byproduct (which is mechanistically dubious because
HCl will react with excess amine to form the ammonium salt).
In RXN 76, a carbon atom is clearly missing in the ground
truth. In RXN 61, we predict a SN2 reaction where the anion of
the alcohol of the beta hydroxy ester acts as a nucleophile,
whereas the mechanism of the ground truth is presumably
ester hydrolysis, followed by the nucleophilic attack of the
carboxylate group. Proton transfers in protic solvents are
extremely fast, and thus deprotonation of the alcohol OH is
much faster than ester hydrolysis. Moreover, the carboxylate
anion is a poor nucleophile.
Uncertainty Estimation and Reaction Pathway Scor-

ing. Because organic synthesis is a multistep process, for a
reaction predictor to be useful, it must be able to estimate its
own uncertainty. The Molecular Transformer model provides a

natural way achieve this: The product of the probabilities of all
predicted tokens can be used as a confidence score.
Figure 7 plots the receiver operating characteristics (ROC)

curve and shows that the AUC−ROC is 0.89 if we use this
confidence score as a threshold to predict whether a reaction is
mispredicted. To obtain the ROC curves, we used a threshold
on the confidence score to decide whether a reaction was
mispredicted. We counted the predictions that matched the
products reported in the patent with a confidence score above
the threshold as true-positives (TPs), the predictions that did
not match the reported products and were below the threshold
as true-negatives (TNs), the predictions that matched the
reported products but were below the threshold as false-
negatives (FNs), and finally, the predictions that did not match
the reported products but were above the threshold as false-
positives (FPs). Then, we plotted the false-positive rate (= FP/
(FP + TN)) against the true-positive rate (= TP/(TP + FN))
for thresholds between 0.0 and 1.0. Interestingly, Figure 7
reveals that a subtle change in the training method, label

Figure 6. Six reactions in the human test set24 not predicted within top-2 using our model trained on the augmented mixed USPTO_MIT set.
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smoothing, has a minimal effect on the accuracy but a
surprisingly significant impact on the uncertainty quantifica-
tion. Label smoothing was introduced by Vaswani et al.31 for
NMT models. Instead of comparing the output of the model at
a given time step during training with a one-hot encoded target
vector, label smoothing reduces the mass of the correct token
in the target vector and distributes the smoothing mass across
all other tokens in the vocabulary. Therefore, the model learns
to be less confident about its predictions. Label smoothing
helps to generate higher-scoring translations in terms of the
accuracy and the BLEU score57 for human languages and also
helps in terms of reaching higher top-1 accuracy in reaction
prediction. The top-1 accuracy on the validation set (mixed,
USPTO_MIT) with the label smoothing parameter set to 0.01
is 87.44% compared with 87.28% for no smoothing. However,
Figure 7 shows that this small increase in accuracy comes at
the cost of no longer being to able to discriminate between a
good and a bad prediction. Therefore, no label smoothing was
used during the training of our models. The AUC−ROC of
our single mixed USPTO_MIT model measured on the test
set was also at 0.89. The uncertainty estimation metric allows
us to estimate the likelihood of a given reactant−product
combination, rather only predicting products given reactants,
and this could be used as a score to rank reaction
pathways.58,59

Within our uncertainty estimation framework, which is
based on the product of probabilities of all predicted tokens, a
potential unwanted bias is a bias against long-product
SMILES; a large molecule should not necessary imply
“difficult” predictions. Figure 8 provides reassuring empirical
evidence that this bias is absent. There is no correlation
between the confidence score and the length of the SMILES
string.
Chemically Constrained Beam Search. Because no

chemical knowledge was integrated into the model, technically,
the model could perform “alchemy”, for example, turning a
fluoride atom in the reactants into a bromide atom in the
products, which was not in the reactants at all. As such, an
interesting question is whether the model has learned to avoid
alchemy. To this end, we implemented a constrained beam
search, where the probabilities of atomic tokens not observed
in the reactants were set to 0.0 and hence not predicted.
However, there was no change in accuracy, showing that the

model had successfully inferred this constraint from the
examples shown during training.

■ CONCLUSIONS
We show that a multihead attention Transformer network, the
Molecular Transformer, outperforms all known algorithms in
the reaction prediction literature, achieving 90.4% top-1
accuracy (93.7% top-2 accuracy) on a common benchmark
data set. The model requires no handcrafted rules and
accurately predicts subtle chemical transformations. Moreover,
the Molecular Transformer can also accurately estimate its own
uncertainty, with an uncertainty score that is 89% accurate in
terms of classifying whether a prediction is correct. The
uncertainty score can be used to rank reaction pathways. We
point out that previous work has considered an unrealistically
generous setting of separated reactants and reagents. We
demonstrate an accuracy of 88.6% when no distinction is
drawn between reactants and reagents in the inputs, a score
that outperforms previous work as well. For the more noisy
USPTO_STEREO data set, our top-1 accuracies are 78.1
(separated) and 76.2%, respectively. The Molecular Trans-
former has been freely available since August 2018 through a
graphical user interface on the IBM RXN for Chemistry
platform34 and has so far been used by several thousand
organic chemists worldwide to perform more than 40 000
chemical reaction predictions.
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USPTO_MIT data set with a label smoothing parameter of 0.0. The
Pearson product moment correlation coefficient between the length
and the confidence score is 0.06.
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