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Abstract
Excellent variational approximations to Gaussian
process posteriors have been developed which
avoid the O

(
N3
)

scaling with dataset size N .
They reduce the computational cost to O

(
NM2

)
,

with M � N being the number of inducing vari-
ables, which summarise the process. While the
computational cost seems to be linear in N , the
true complexity of the algorithm depends on how
M must increase to ensure a certain quality of
approximation. We address this by characteris-
ing the behavior of an upper bound on the KL
divergence to the posterior. We show that with
high probability the KL divergence can be made
arbitrarily small by growing M more slowly than
N . A particular case of interest is that for re-
gression with normally distributed inputs in D-
dimensions with the popular Squared Exponential
kernel, M = O(logDN) is sufficient. Our re-
sults show that as datasets grow, Gaussian process
posteriors can truly be approximated cheaply, and
provide a concrete rule for how to increase M in
continual learning scenarios.

1. Introduction
Gaussian processes (GPs) [Rasmussen & Williams, 2006]
are distributions over functions that are convenient priors
in Bayesian models. They can be seen as infinitely wide
neural networks [Neal, 1996], and are particularly popu-
lar in regression models, as they produce good uncertainty
estimates, and have closed-form expressions for the pos-
terior and marginal likelihood. The computational cost of
exact computation of these quantities is their most well-
known practical drawback, as it scales as O

(
N3
)

in time
and O

(
N2
)

in memory where N is the number of training
examples. Low-rank approximations [Quiñonero Candela
& Rasmussen, 2005] choose a small set of M inducing vari-
ables which summarise the entire posterior, reducing the
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cost to O
(
NM2 +M3

)
time and O

(
NM +M2

)
mem-

ory.

While the computational cost of adding inducing variables is
well understood, results on how many are needed to achieve
a good approximation are lacking. As the dataset size in-
creases, we cannot expect to keep the capacity of the ap-
proximation constant without the quality deteriorating. This
dependence of M on N is hidden in the computational scal-
ing bounds above. Taking into account the rate at which
M needs to increase with N to achieve a particular ap-
proximation accuracy determines a more realistic sense of
the costs of scaling Gaussian processes. If M is required
to scale linearly with N , low-rank approximation yields a
constant factor improvement, while a slower rate ensures
asymptotically better scaling.

The KL divergence to the true posterior is a common met-
ric for assessing the quality of an approximate posterior,
and is minimized by variational methods. Approximate
GPs are commonly trained using variational inference [Tit-
sias, 2009], which minimize the KL divergence between the
approximate and full process posteriors [Matthews et al.,
2016]. In this work, we choose the KL divergence as our
metric for the approximate posterior’s quality. We show that
under intuitive assumptions the number of inducing vari-
ables only needs to grow at a sublinear rate to make the evi-
dence lower bound (ELBO) tight to the marginal likelihood,
and for the KL between approximation and posterior to go
to zero. This shows that very sparse approximations can
likely be found for large datasets, without introducing much
bias into the hyperparameters selected using the ELBO, and
with an approximate posterior that accurately reflects the
predictions and uncertainties in the true posterior.

The core idea of our proof is to use upper bounds on the
KL divergence that depend on the quality of a Nyström
approximation to the data covariance matrix. Using existing
results, we show this error can be understood in terms of
the spectrum of an infinite-dimensional integral operator.
Specialized to the case of stationary prior kernels, our main
result proves that the greater the smoothness of functions in
the prior and the greater the concentration of observations
in input space, the sparser an approximation can be made.
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Main Results Our main results assume that the training
inputs are drawn i.i.d from some fixed distribution. We
prove bounds of the form,

KL(Q‖P̂ ) ≤ O
(
g(M,N)

δσ4
n

f(M)

)
with probability at least 1−δ. The function f(M) is rapidly
decaying, and depends on both the kernel and input distri-
bution. The function g is either quadratic or linear in N
depending on our assumption on training outputs and is
either linear or constant in M depending on the inducing
variables used for inference. Bounds of this form are proven
for a certain set of inducing variables using spectral knowl-
edge of the prior in Section 3 and for inducing points in
Section 4.

2. Background and Notation
2.1. Gaussian Process Regression

We are concerned with the problem of Gaussian process
regression. Namely, we have observed training data, D =
{xi, yi}Ni=1 with xi ∈ X and yi ∈ R. Our goal is to predict
outputs y∗ for new inputs x∗ while taking into account the
uncertainty we have about f(·) due to the limited size of
the training set. We follow a Bayesian approach by placing
a prior over f , and a likelihood to relate f to the observed
data through some observation noise. Our model is

f ∼ GP(ν(·), k(·, ·)), yi = f(xi) + εi, εi ∼ N (0, σ2
n),

where ν : X → R is the mean function and k : X ×X → R
is the covariance function. We take ν ≡ 0; the general case
can be derived similarly after first centering the process. We
use the posterior for making predictions, and the marginal
likelihood for selecting hyperparameters, both of which
have closed-form expressions for this model [Rasmussen &
Williams, 2006]. The marginal likelihood is of particular
interest to us, as the quality of its approximation and our
posterior approximation is linked. Its form is

L = −1

2
yTK−1n y − 1

2
log|Kn| − c, (1)

where c = N
2 log(2π), Kn = Kff + σ2

nI, and Kff de-
notes the data covariance matrix with entries [Kff ]i,j =
k(xi,xj).

2.2. Sparse Variational Gaussian Process Regression

While all quantities of interest have analytic expressions,
their computation is intractable for large datasets due to
the O

(
N3
)

time complexity of the determinant and inverse.
Numerous approaches have been proposed (e.g. Quiñonero
Candela & Rasmussen [2005] or Rahimi & Recht [2008]) to
avoid this cost, which rely on a low-rank approximation to

Kff that allows the necessary matrix inverse to be computed
in O

(
NM2

)
where M is the rank of the approximating

matrix.

We consider the variational framework developed by Titsias
[2009], which minimizes a KL divergence [Matthews et al.,
2016] to the true posterior process from an approximate GP
of the form

GP
(
k·uK−1uuµ, k·· + k·uK−1uu(Σ−Kuu)K

−1
uuku·

)
, (2)

where [ku·]i = k(·, zi), [Kuf ]m,i := k(zm,xi) and
[Kuu]m,n := k(zm, zn). The properties of this variational
distribution are determined by specifying the density of the
function values u ∈ RM at inducing points Z = {zm}Mm=1

to be q(u) = N (µ,Σ). The variational parameters consist
of Z, µ, and Σ.

Hensman et al. [2013] suggest optimizing all the variational
parameters as free parameters, so that minibatches over the
data can be used. The formulation originally developed by
Titsias [2009] found the minimum of the convex optimiza-
tion problem for µ and Σ explicitly, at the cost of requiring
a full sweep over the training data. This resulted in the
following evidence lower bound (ELBO):

Llower = −1

2
yTQ−1n y − 1

2
log|Qn| − c − t

2σ2
n

(3)

where Qn = Qff + σ2
nI, Qff = KT

ufK
−1
uuKuf and t =

Tr(Kff −Qff ). Matthews et al. [2016] showed that the KL
divergence between the approximate GP posterior (eq. 2)
and the true posterior process is equal to L − Llower:

KL
(
Q‖P̂

)
= L − Llower . (4)

Instead of maximizing the intractable marginal likelihood
(eq. 1), this framework suggests to jointly maximize the
ELBO w.r.t. the variational and hyperparameters. This
comes at the cost of introducing some bias in the hyper-
parameter estimation [Turner & Sahani, 2011], notably the
overestimation of the σ2

n [Bauer et al., 2016]. Adding extra
inducing points always reduces the KL gap [Titsias, 2009;
Matthews, 2016; Bauer et al., 2016], which allows the bias
to be practically eliminated when enough inducing variables
are used.

2.3. Interdomain Inducing Features

The posterior parameterized in Equation 2 does not necessar-
ily need to be parameterized by specifying the density q(u)
of function values of the GP. Lázaro-Gredilla & Figueiras-
Vidal [2009] showed that one can specify q(u) on integral
transformations of f(·). Using these interdomain inducing
variables can lead to sparser representations, or computa-
tional benefits [Hensman et al., 2018]. Interdomain inducing
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variables are defined by

um =

∫
X
f(x)g(x; zm)dx .

When g(x; zm) = δ(x − zm) the um are inducing points.
Interdomain features are practical, as they only require re-
placing ku· and Kuu in Equation 2 with transforms of the
original kernel k. We will investigate particular interdomain
transformations with interesting convergence properties.

2.4. Upper Bounds on the Marginal Likelihood

Combined with Equation 3, an upper bound on Equation 1
can show the KL divergence is small. This indicates infer-
ence has been successful and hyperparameter estimates are
likely to have little bias. Titsias [2014] introduced an upper
bound that can be computed in O

(
NM2

)
:

Lupper := −c−
1

2
log(|Qn|)−

1

2
yT(Qn + tI)

−1
y. (5)

This gives a data-dependent upper bound, that can be com-
puted after seeing the data.

2.5. Spectral Properties of the Covariance Matrix

While for specific, small datasets the properties of the co-
variance matrix can be analyzed numerically, in order to
understand these quantities for a typical dataset and for large
datasets, we need another approach. The covariance oper-
ator, K is an operator on function spaces that captures the
limiting properties of Kff for large N . It is defined by

Kg(x′) =
∫
X
g(x)k(x,x′)p(x)dx, (6)

where p(x) is some (unknown) probability density from
which the inputs are assumed to be drawn. We assume that
K is compact, which is the case if p is a probability density
and k(x,x′) is bounded. Under this assumption, the spectral
theorem tells us that K has only discrete eigenvalues. The
finite sequence of eigenvalues of 1

NKff approach the infinite
sequence of eigenvalues ofK [Koltchinskii et al., 2000], and
in a certain sense the eigenspaces of 1

NKff approach those
of K, [Koltchinskii, 1998]. Mercer [1909] tells us that we
can write our kernel as,

k(x,x′) =

∞∑
m=1

λmφm(x)φm(x′), (7)

where the (λm, φm)
∞
i=1 are eigenvalue-eigenfunction pairs

of the operator K. Additionally,
∞∑
m=1

λm <∞.

We assume without loss of generality the eigenfunctions are
orthonormal with respect to L2(X )p.

2.6. Selecting the Number of Inducing Variables

Sections 2.2 and 2.4 gave lower and upper bounds to the
marginal likelihood for a specific dataset. Their difference
upper bounds the KL divergence (eq. 4). These results im-
ply procedures for selecting the number of inducing points
to balance computational cost and approximation accuracy.
Based on the lower bound alone, common advice is to stop
increasing M when the lower bound no longer improves,
which is necessary but not sufficient for the bound to be
tight. If the upper bound is taken into consideration, a good
approximation is guaranteed when the difference between
the bounds converges to zero. When performing hyperpa-
rameter selection, we also need to guarantee that there are
no other settings of the hyperparameters which have higher
marginal likelihood than our current best estimate. In this
situation, we also require the upper bound for candidate
hyperparameters to be below the current lower bound. In
practice eliminating all choices of hyperparameters using
this approach is not feasible without additionally taking a
prior on values of hyperparameters, as the upper bound is
very loose for certain hyperparameter choices, notably small
choices of likelihood noise.

These procedures rely on bounds computed for a given
dataset. While practically useful, they do not make predic-
tions for a wide variety of tasks. In the following, we focus
on a priori bounds, and asymptotic behavior as N → ∞
and M grows as a function of N . These bounds provide
guarantees of how the variational method scales computa-
tionally for any dataset satisfying intuitive conditions. This
is particularly important for continual learning scenarios,
where we incrementally observe more data. With our a
priori results we can guarantee that the growth in required
computation will not exceed a certain rate.

3. Bounds on the KL Divergence for
Eigenfunction Inducing Features

In this section, we prove a priori and asymptotic bounds
on the KL divergence for regression using a certain type
of inducing variables. These inducing variables rely on
spectral knowledge of the covariance matrix or the associ-
ated operator, and have certain near optimal properties in
terms of minimizing the KL divergence in expectation over
training outputs generated according to the prior generative
model. The lemmas and proofs in this section form the
basis for bounds on the KL divergence for inducing points
(Section 4).

3.1. A posteriori Bounds on The KL divergence

We first consider a posteriori bounds on the KL divergence
that hold for any y. These are derived by looking at the dif-
ference between Lupper and Llower, and are primarily useful
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Figure 1. As N increases for fixed M the expected KL divergence
increases. t/2σ2

n is a lower bound for the expected value over the
KL divergence when y is generated according to our prior model.

in that they only depend on y through its norm. This makes
them amenable to use in asymptotic statements derived in
later sections.

Lemma 1. Let K̃ff = Kff −Qff . We use t to denote the
trace of this matrix and λ̃max to denote its largest eigen-
value. Then,

KL
(
Q‖P̂

)
≤ 1

2σ2
n

(
t+

λ̃max‖y‖22
σ2
n + λ̃max

)

≤ t

2σ2
n

(
1 +

‖y‖22
σ2
n + t

)
.

The proof bounds the difference between a refinement of
Lupper also proven by Titsias [2014] and Llower through an
algebraic manipulation and is given in Appendix A. The
second inequality is a consequence of t ≥ λ̃max.

We typically expect ‖y‖22 = O(N), which is the case when
the variance of the observed ys is bounded independent of
N, so if t� 1/N the KL divergence will be small.

3.2. A priori Bounds: Averaging over y

Lemma 1 is typically overly pessimistic. It assumes y is in
the span of the largest eigenvector of K̃ff . In this section,
we consider a bound that holds a priori over the training
outputs. This allows us to bound the KL divergence for a
‘typical’ dataset. To formalize this, we assume y is a sample
from our prior generative model.

Lemma 2. For any set of {xi}Ni=1, if the training outputs
{yi}Ni=1 are generated according to our prior generative
model, then

t

2σ2
n

≤ Ey
[
KL

(
Q‖P̂

)]
≤ t

σ2
n

(8)

The lower bound tells us that even if the training data is
contained in an interval of fixed length, we need to use
more inducing points for problems with large N if we want
to ensure the sparse approximation has converged. This
is shown in Figure 1 for data uniformly sampled on the
interval [0, 5] with 15 inducing points.

Sketch of Proof.

Ey
[
KL
(
Q‖P̂

)]
=

t

2σ2
n

+

∫
N (y; 0,Kn)

× log

(
N (y; 0,Kn)

N (y; 0,Qn)

)
dy

The second term on the right is a KL divergence between
centered Gaussian distributions. The lower bound follows
from Jensen’s inequality. The proof of the upper bound (Ap-
pendix B), bounds this KL divergence above by t/(2σ2

n).

3.3. Minimizing the Upper Bound: An Idealized Case

We now consider the set ofM interdomain inducing features
that minimize the upper bounds of both Lemmas 1 and 2.
Taking into account the lower bound in Lemma 2, they must
be within a factor of two of the optimal features defined
without reference to training outputs under the assumption
of Lemma 2. Consider

um :=

N∑
i=1

w
(m)
i f(xi)

where w(m)
i is the ith entry in the mth eigenvector of Kff .

That is, um is a linear combination of inducing points placed
at each data point, with weights coming from the entries of
the mth eigenvector of Kff . We show in Appendix C,

cov(um, uk) = w(m)TKffw(k) = λk(Kff )δm,k,

and

cov(um, f(xi)) =
[
Kffw(m)

]
i
= λm(Kff )w

(m)
i .

Inference with these features can be seen as the variational
equivalent of the optimal parametric projection of the model
derived by Ferrari-Trecate et al. [1999].

Computation with these features requires computing the
matrices Kuf and Kuu. Kuu contains the first M eigenval-
ues of Kff , Kuf contains the corresponding eigenvectors.
Computing the first M eigenvalues and vectors can be done
in O(N2M) using, for example, Lanczos iteration [Lanc-
zos, 1950]. The Qff matrix for these features is the optimal
rank-M approximation to Kff which leads to

λ̃max = λM+1(Kff ) and t =

N∑
m=M+1

λm(Kff ).

3.4. Eigenfunction Inducing Features

We now modify the construction given in Section 3.3 to no
longer depend on the specific Kff matrix (which in turn
depends of the specific training inputs) and instead depend



Rates of Convergence for Sparse Variational Gaussian Process Regression

on assumptions about the training data. This construction is
the a priori counterpart of the eigenvector inducing features,
as it is defined prior to observing a specific set of training
inputs.

Consider the limit as we have observed a large amount
of data, so that 1

NKff → K. This leads us to replace the
eigenvalues, λ(Kff ), with the operator eigenvalues, λ, and
the eigenvectors, w, with the eigenfunctions, φ, yielding

um =

∫
X
f(x)φm(x)p(x)dx, (9)

Now p(x) is a parameter of the inducing features that can be
treated variationally. We note that changing p also changes
the eigenvalues and eigenvectors. In Appendix C, we show

cov(um, uk) = λmδm,k and cov(um, f(xi)) = λmφm(xi).

These features can be seen as the variational equivalent of
methods utilizing truncated priors proposed in Zhu et al.
[1997], which are the optimal linear M dimensional para-
metric GP approximation defined a priori, in terms of mini-
mizing expected mean square error.

In the case of the SE-Kernel and Gaussian inputs, inference
with these features can be performed in O(NM2) using
the closed form expressions for eigenfunctions and values
[Zhu et al., 1997]. For Matérn kernels with inputs uniform
on [a, b], expressions for the eigenfunctions and eigenval-
ues needed for these computations can be found in Youla
[1957]. However, the formulas involve solving systems of
transcendental equations limiting the practical applicability
of inference with these features for the Matérn class.

3.5. A priori Bounds on the KL divergence for
Eigenfunction Features

Having developed the necessary preliminary results, we turn
our attention to the proof of bounds on the KL divergence
for inference with the eigenfunction features.
Theorem 1. Suppose N training inputs are drawn i.i.d ac-
cording to input density p(x). For inference with M eigen-
function inducing variables defined with respect to the prior
kernel and covariance, With probability at least 1− δ,

KL
(
Q‖P̂

)
≤ C

2σ2
nδ

(
1 +
‖y‖22
σ2
n

)
(10)

where we have defined C = N
∑∞
i=M+1 λi, and the λi are

the eigenvalues of the integral operator K associated to the
prior kernel and p(x).
Theorem 2. With the assumptions and notation of Theo-
rem 1 and the additional assumption that y is distributed
according to a sample from the prior generative model, with
probability at least 1− δ,

KL
(
Q‖P̂

)
≤ C

δσ2
n

, (11)

Sketch of Proof of Theorems 1 and 2. We first prove a
bound on t that holds in expectation over input data
matrices of size N with entries drawn i.i.d from p(x).
A direct computation of Qff shows that [Qff ]i,j =∑M

m=1 λmφm(xi)φm(xj). Using the Mercer expansion of
the kernel matrix and subtracting,

[
K̃ff

]
i,i

=

∞∑
m=M+1

λmφ
2
m(xi).

Summing this and taking the expectation,

EX[t] = N

∞∑
m=M+1

λmEx

[
φ2m(x)

]
= N

∞∑
m=M+1

λm.

The second equality follows from the eigenfunction having
unit norm in L2(X )p. Using this with Lemmas 1 and 2,
as well as Markov’s Inequality leads to Theorems 1 and 2
respectively.

Remark 1. Theorem 1 can be turned into a bound that
holds with high probability under additional assumptions
on the eigenfunctions (e.g. finite fourth moment) using the
assumption that the xi are i.i.d and a concentration inequal-
ity in place of Markov’s inequality.

3.6. Square Exponential Kernel and Gaussian Inputs

For the SE-kernel in one-dimension with hyperparameters
(v, `2) and p(x) ∼ N (0, σ2),

λm = v
√
2a/ABm−1

where a = 1/(4σ2), b = 1/(2`2), c =
√
a2 + 2ab, A =

a+b+c andB = b/A [Zhu et al., 1997]. In this case, using
the geometric series formula,

∞∑
m=M+1

λm =
v
√
2a

(1−B)
√
A
BM .

Using this bound with Theorems 1 and 2, we see that by
choosing M = O(logN), under the assumptions of either
theorem, as N tends to infinity, we can obtain a bound on
the KL divergence that tends to 0 as N tends to infinity.

3.7. Matérn Kernels and Uniform Measure

For the Matérn kernel k + 1/2, we have λm � m−2k−2

[Ritter et al., 1995], so
∑∞
m=M+1 λm = O(M−2k−1). In

order for the bound in Theorem 2 to converge to 0, we
need lim

N→∞
N/M2k+1 → 0. This holds if M = Nα for

α > 2k + 1. For k > 0, this bound tells us that the number
of inducing features can grow sublinearly with the amount
of data.
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4. Bounds for Inducing Points
We have shown that by exploiting spectral knowledge of
either Kff or K we can obtain bounds on the KL diver-
gence that indicate that the number of inducing features
can be taken much smaller than the number of data points.
While a mathematically elegant approach, the practical ap-
plicability of the interdomain features defined is limited by
computational considerations in the case of the eigenvector
features and by the lack of analytic expressions for Kuf

in most cases for the eigenfunction features, as well as the
need to define a parametric family containing the generally
unknown input density.

In contrast, inducing points can be efficiently applied to any
kernel. In this section, we show that with a good initializa-
tion based on the empirical input data distribution, inducing
points lead to bounds, that are only slightly weaker than the
interdomain approaches suggested so far.

Proving this amounts to obtaining bounds on the trace of the
error of a Nyström approximation to Kff . The Nyström ap-
proximation, popularized for kernel methods by [Williams
& Seeger, 2001], approximates a positive semi-definite sym-
metric matrix by subsampling columns. If M columns,
{ci}Mi=1, are selected from Kff , the approximation used is
Kff ≈ CC

−1
CT, where C = [c1, c2, . . . , cM] and C is

the M ×M principal submatrix associated to the {ci}Mi=1.
Note that if inducing points are placed at the points associ-
ated to each column in the data matrix, then Kuu = C and
KT

uf = C, so CC
−1

CT = Qff .

Lemma 3. [Belabbas & Wolfe, 2009] Given a symmetric
positive semidefinite matrix, Kff , ifM columns are selected
to form a Nyström approximation such that the probability
of selecting a subset of columns, Z is proportional to the
determinant of the principal submatrix formed by these
columns and the matching rows, then,

EZ [Tr(Kff −Qff )] ≤ (M + 1)

N∑
m=M+1

λm(Kff ). (12)

This lemma (along with the lower bound in Lemma 2) tells
us that on average well-initialized inducing points perform
within a multiplicative factor of (M + 1) of the eigenvector
inducing features, without the need to perform a spectral
decomposition of Kff .

The selection scheme described introduces negative corre-
lations between inducing points locations, leading the zi
to be well-dispersed amongst the training data, as shown
in Figure 2. The strength of these negative correlations is
tailored to the prior kernel used in inference.

The proposed initialization scheme is equivalent to sampling
Z according to a discrete k-Determinantal Point Process (k-
DPP), defined over X. Belabbas & Wolfe [2009] suggested

k-
DP

P 
=

2
k-

DP
P 

=
0.

5
Un

if.
 S

am
pl

e

Figure 2. Uniform subsampling of data may lead to inducing points
clustered in one area (bottom), while determinant based sampling,
shown with a SE kernel with ` = 2 (top) and with ` = .5 (mid-
dle) leads to better spacing. The bounds proven hold when the
kernel used for initializing points is the same as the kernel used in
inference.

that sampling from this distribution, which has support over(
N
M

)
subsets of columns, may be computationally infeasible.

However, as observed in Hennig & Garnett [2016], exact
sampling from a k-DPP can be performed sequentially. In
the discrete setting with a k-DPP defined over N points, this
algorithm has computational cost O(NM2). The algorithm
subsamples the next inducing point from the data with prob-
ability proportional to variance of a noiseless GP fit on the
already selected inducing points at candidate points. Details
of the algorithm are given in Appendix D.

4.1. A Priori Bounds On the KL Divergence for
Inducing Points

We now state the analogues of Theorems 1 and 2 for induc-
ing points.

Theorem 3. Suppose N training inputs are drawn i.i.d
according to some input density p(x). Sample M inducing
points from the training with the probability assigned to
any set of size M equal to the probability assigned to the
corresponding subset by a k − DPP with k = M . With
probability at least 1− δ,

KL
(
Q‖P̂

)
≤ T

2σ2
nδ

(
1 +
‖y‖22
σ2
n

)
(13)

where we have defined T = N(M+1)
∑∞
i=M+1 λi, and the

λi are the eigenvalues of the integral operator K associated
to the prior kernel and p(x).

Theorem 4. With the assumptions and notation of Theo-
rem 3 and the additional assumption that y is distributed
according to a sample from the prior generative model, with
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probability at least 1− δ,

KL
(
Q‖P̂

)
≤ T

δσ2
n

, (14)

Proof. We prove Theorem 4. Theorem 3 follows the same
argument replacing the expectation over y with the bound
given by Lemma 1.

EX

[
EZ
[
Ey

[
KL
(
Q‖P̂

)]]]
≤ σ−2n EX[EZ [t]]

≤ σ−2n (M + 1)EX

[
N∑

m=M+1

λm(Kff )

]

≤ (M + 1)Nσ−2n

∞∑
m=M+1

λm.

The first two inequalities use Lemmas 2 and 3. The third
follows from noting that the sum inside the expectation is
the error in trace norm of the optimal rankM approximation
to the covariance matrix for any given X, and is therefore
bounded above by the error from the rank M approximation
due to eigenfunction features. We showed that this error is
in expectation equal to N

∑∞
m=M+1 λm so this must be an

upper bound on the expectation in the second to last line.

As the KL divergence is non-negative, Markov’s inequality
can be applied, leading to for any δ ∈ (0, 1) with probability
at least 1− δ,

KL
(
Q‖P̂

)
≤ (M + 1)Nδ−1σ−2n

∞∑
m=M+1

λm.

Figure 3 compares the actual KL divergence, the a posteriori
bound derived by Lupper − Llower, and the bounds proven in
Theorems 3 and 4 on a dataset with normally distributed
training inputs and y drawn from the generative model.

5. Consequences of Theorem 3 and Theorem 4
Having established our main results, we investigate im-
plications for sparse GP regression. Our first two corol-
laries consider Gaussian inputs and the squared exponen-
tial kernel, and show that in D dimensions, choosing
M = O(logD(N)) is sufficient in order for the KL di-
vergence to converge with high probability. We then briefly
summarize convergence rates for other stationary kernels.
Finally we point out consequences of our definition of con-
vergence for the quality of the pointwise posterior mean and
uncertainty.

5.1. Comparison of Consequences of Theorems

Using the explicit formula for the eigenvalues given in Sec-
tion 3.6, we arrive at the following corollary:

Corollary 1. In the setting of regression with an SE-kernel
and Gaussian distributed inputs, take the assumptions of
Theorem 3 and the additional assumption ‖y‖22 ≤ RN,R ≥
0 with probability at least 0 < 1 − δ′ ≤ 1. Then for any
ε > 0, with probability at least 1− δ − δ′,

KL
(
Q‖P̂

)
≤ N−ε

(
R

σ2
n

+
1

N

)
. (15)

when inference is performed with M = (3+ε) log(N)+logD
log(B−1) ,

where D = v
√
2a

2
√
Aσ2

nδ(1−B)
.

Remark 2. The assumption ‖y‖22 ≤ RN with probability
at least 1 − δ′ > 0 is very weak. For example, if y is
actually a noisy realization of some integrable function with
homoscedastic noise,

N∑
i=1

y2i ≤
N∑
i=1

f(xi)
2 +

N∑
i=1

ε2i + small

The first sum is asymptotically N
∫
f(x)p(x)dx and the

second is Nσ2
n.

Remark 3. A slightly sharper, in terms of constants, ver-
sion of Corollary 1 can be obtained if we instead take the
assumptions of Theorem 4.
Remark 4. By choosing δ to be O(N−ε/2), and C to grow
slowly with N so that δ′, tends to zero we obtain a bound
that converges to zero with high probability still using only
O(log(N)) features.

The consequence of Corollary 1 is shown in Figure 4, in
which we gradually increase N, choosingM = C log(N)+
C0, and see the KL divergence converges as an inverse
power of N. The training outputs are generated from a
sample from the prior generative model.

We see that for the SE-kernel and Gaussian inputs, the dif-
ference in what we prove about the scaling of M with N be-
tween inducing points and the eigenfunction features differs
by only a constant. For the Matérn kernel k+1/2, this is not
the case. In particular, in order to prove the KL divergence
is small with our bound in Theorem 4, we need to choose
M = Nα with α > 1/(2k) instead of α > 1/(2k + 1).
This difference is particularly stark in the case of the pop-
ular Matérn 3/2 kernel, for which our bounds tell us that
inference with inducing points requires O(

√
N) as opposed

to O(N1/3) for the eigenfunction features. Whether this is
an artifact of the proof, caused by the initialization scheme,
or an inherent limitation for inducing points is an interesting
area for future work.

5.2. Multidimensional Data, Effect of Input Density
and other Kernels

If X = RD, it is common to choose a separable kernel,
meaning the kernel can be written as a product of kernels
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Figure 3. Rates of convergence as M increases on fixed dataset
of size N = 1000, with a squared exponential kernel with ` =
.3, v = 1, σn = 1 and x ∼ N (0, 1) and y sampled from the prior.

Figure 4. Corollary 1 tells us that increasing M like log(N) gives
an upper bound on the KL divergence that decays like an inverse
power of N .

along each dimension. If this choice of prior is made, and
input densities factor over the dimensions, then the eigen-
values of K are the product of the eigenvalues along each
dimension. In the case of the SE-ARD kernel and Gaus-
sian input distributions, this means λmD = O(BM ), where
B corresponds to the largest B value coming from any
of the one dimensional SE-kernels inolved in the product
and the associated marginal input densities. Omitting con-
stants, we obtain an analogous statement to Corollary 1 in
D-dimensions.

Corollary 2. For any fixed ε, δ > 0 under the assumptions
of Corollary 1, but with the SE-ARD kernel in D dimensions
and p(x) a multivariate Gaussian, we can choose M =
O(logD(N)) inducing points so that with probability at
least 1− δ,

KL
(
Q‖P̂

)
≤ δ−1ε.

While for the SE-kernel and Gaussian input density we
saw that M can grow polylogarithmically in N, and the
KL divergence still converges, this is not the case for other
regression with other kernels or input distribution.

In general, closed form expressions for the eigenvalues of
arbitrary kernels with respect to various distributions are
not known. However, for stationary kernels and compactly
supported input distributions the asymptotic rate of decay
of the eigenvalues of K are well-understood, thanks to the
work of Widom [1963; 1964] and Ritter et al. [1995]. The
intuitive explanation of these results is that smooth kernels,
with concentrated input distributions have rapidly decaying
eigenvalues. In contrast, kernels such as the Matérn-1/2 that

define processes that are not smooth have slowly decaying
eigenvalues. Table 1 summarizes these results and their
implications for the number of inducing points needed for
our bounds to converge with popular stationary kernels.

5.3. Pointwise Approximate Posterior

In practice, we are frequently concerned with pointwise
estimates of the posterior mean and variance. It is therefore
desirable to show that the approximate variational posterior
gives similar estimates of the quatities as the true posterior.

Huggins et al. [2018] derived an approximation method
for sparse GP inference with provable guarantees about
point-wise mean and variance estimates of the posterior
process. They additionally show that moderately large KL
divergence may result in large deviations in posterior mean
and variance estimates. In this section, we show that if M
is sufficiently large that the KL divergence converges to
zero, our variational estimates of mean and variance also
converge to the posterior values.

The chain rule of KL divergence [Matthews et al., 2016],
tells us that

KL(µX ‖νX ) = KL(µx∗‖νx∗)

+ Eµx∗

[
KL
(
µX\x∗|x∗‖νX\x∗|x∗

)]
≥ KL(µx∗‖νx∗).

In other words, the KL divergence between posterior pro-
cesses upper bounds the KL divergence between any of
the posterior marginals. Therefore, to provide pointwise
guarantees about posterior inference, we need only consider
bounds on the mean and variance of a one-dimensional
Gaussian with a small KL divergence.

In Appendix B, we prove:

Proposition 1. Suppose q and p are one dimensional Gaus-
sian distributions with means µ1 and µ2 and variances σ1
and σ2, such that 2KL(q‖p) = ε ≤ 1

5 , then

|µ1 − µ2| ≤ σ2
√
ε ≤ σ1

√
ε√

1−
√
3ε

and

(1−
√
3ε) <

σ2
1

σ2
2

< (1 +
√
3ε).

If ε → 0, proposition 1 implies µ1 → µ2 and σ1 → σ2.
Using this and Theorems 3 and 4, the posterior mean and
variance converge pointwise to those of the full model using
M � N inducing features.

6. Related Work
Statistical guarantees for convergence of parametric GP ap-
proximations [Zhu et al., 1997; Ferrari-Trecate et al., 1999],



Rates of Convergence for Sparse Variational Gaussian Process Regression

Table 1. The number of features needed for our bounds to converge for several kernels assuming D is fixed, these hold for any εD > 0.

KERNEL INPUT DISTRIBUTION λm M, THEOREM 3 M, THEOREM 4

SE-KERNEL COMPACT SUPPORT O
(
exp(−Am

d
log m

d
)
)
, A > 0 O(logD(N)) O(logD(N))

SE-KERNEL GAUSSIAN O
(
exp(−m

d

)
O(logD(N)) O(logD(N))

MATÉRN K+1/2 UNIFORM O
(
M−2k−2 log(M)2(d−1)(k+1)

)
O
(
N1/k+εD

)
O
(
N1/(2k)+εD

)

lead to similar conclusions about the choice of approximat-
ing rank. Ferrari-Trecate et al. [1999] showed that given
N data points, using a truncated SVD of the prior covari-
ance matrix with rank M such that λM � σ2

n/N results
in almost no change in the model, at least in terms of ex-
pected mean squared error. Our results can be considered
the equivalent for variational inference, showing that the-
oretical guarantees can be established for non-parametric
approximate inference. Our average case analysis leads to
choosing M such that

∑∞
m=M+1 λm � σ2

n/N with the
interdomain features or (M + 1)

∑∞
m=M+1 λm � σ2

n/N,
using inducing points in order to ensure the KL divergence
is small.

Connections between high-quality Nyström approximation
and computationally efficient models have also been uti-
lized in kernel ridge regression. Alaoui & Mahoney [2015]
showed that replacing the full covariance matrix with its
Nyström approximation, sampled according to the ‘leverage
scores’ converges in mean square error when the number of
columns scales with the effective dimensionality of the prob-
lem. The effective dimensionality is roughly the same as the
number of eigenvalues of Kff larger than the parameter of
ridge regression. This essentially coincides with the choice
proposed in Ferrari-Trecate et al. [1999] for GPs when pa-
rameter of ridge regression is set so that the posterior mean
coincides with the mean of a GP.

7. Conclusion
We proved bounds on the KL divergence from the variational
approximation of sparse GP regression to the posterior that
depend only on the decay of the eigenvalues of the covari-
ance operator for the prior kernel. These bounds prove the
intuitive result, smooth kernels with training data concen-
trated in a small region admit high quality, very sparse
approximations. These bounds prove that truly sparse non-
parametric inference withM � N can still provide reliable
estimates of the marginal likelihood and pointwise posterior.

Extensions to models with non-conjugate likelihoods, espe-
cially bounding the additional error introduced by sparsity
in the framework of Hensman et al. [2015], pose a promising
direction for future research.
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A. Proof Of Lemma 1
Titsias [2014] actually proves the tighter upper bound,

L ≤ L′upper := −
N

2
log(2π)

− 1

2
log(|Qn|)−

1

2
yT
(
Qn + λ̃maxI

)−1
y

Subtracting,

L′upper − Llower

=
t

2σ2
n

+
1

2

(
yT
(
Q−1n − (Qn + λ̃maxI)

−1
)
y
)
. (16)

Since Qff is symmetric positive semidefinite, Qn is positive
definite with eigenvalues bounded below by σ2

n. Write,
Qn = UΛUT, where U is unitary and Λ is a diagonal
matrix with non-increasing diagonal entries γ1 ≥ γ2 ≥
. . . ≥ γN ≥ σ2

n.

We can rewrite the second term (ignoring the factor of one
half) in Equation 16 as,

(UTy)T
(
Λ−1 − (Λ + λ̃maxI)

−1
)
(UTy).
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Define, z = (UTy). Since U is unitary, ‖z‖ = ‖y‖.
(UTy)T

(
Λ−1− (Λ + tI)−1

)
(UTy)

= zT
(
Λ−1 − (Λ + λ̃maxI)

−1
)
z

=
∑
i

z2i
λ̃max

γ2i + γiλ̃max

≤ ‖y‖2 λ̃max

γ2N + γN λ̃max
.

The last inequality comes from noting that the fraction in
the sum attains a maximum when γi is minimized. Since
σ2
n is a lower bound on the smallest eigenvalue of Qn, we

have,

yT
(
Q−1n − (Qn + λ̃maxI)

−1
)
y ≤ λ̃max‖y‖2

σ4
n + σ2

nλ̃max
.

Lemma 1 follows.

B. KL Divergence Gaussian Distributions
B.1. KL divergence between multivariate Gaussian

distributions

We make use of the formula for KL divergences between
multivariate Gaussian distributions in our proof of Lemma
2, and the univariate case in Proposition 1.

Recall the KL divergence from p1 ∼ N (m1,S1) to p2 ∼
N (m2,S2) both of dimension N is given by

KL(p1‖p2) =
1

2

(
Tr
(
S2
−1S1

)
+ log

(
|S2|
|S1|

)
−(m1 −m2)

T
S2
−1(m1 −m2)

)
≥ 0. (17)

The inequality is a special case of Jensen’s inequality.

B.2. Proof of Upper Bound in Lemma 2

In the main text we showed,

Ey
[
KL
(
Q‖P̂

)]
=

t

2σ2
n

+

∫
N (y; 0,Kn)

× log

(
N (y; 0,Kn)

N (y; 0,Qn)

)
dy

In order to complete the proof, we need to show that the
second term on the right hand side is bounded above by
t/(2σ2

n). Using Equation 17:

Ey
[
KL

(
Q‖P̂

)]
=

t

2σ2
n

− N

2
+

1

2
log

(
|Qn|
|Kn|

)
+

1

2
Tr
(
Q−1n (Kn)

)
≤ t

2σ2
n

− N

2
+

1

2
Tr
(
Q−1n (Qn + K̃ff )

)
. (18)

The inequality follows from noting the log determinant term
is negative, as Kn � Qn. Simplifying the last term,

1

2
Tr(I) +

1

2
Tr
(
Q−1n K̃ff )

)
≤ N/2 + tλ1

(
Q−1n

)
/2

= N/2 + t/(2σ2
n).

The final inequality uses that for positive semi-definite sym-
metric matrices Tr(AB) ≤ Tr(A)λ1(B) which is a special
case of Hölder’s inequality. The final line uses that, when
M < N, the largest eigenvalue of Q−1n is σ−2n (and more
generally it is bounded above by this quantity). Using this
in Equation 18 finishes the proof.

B.3. Proof of Proposition 1

Defining ε = 2KL(q‖p),

ε =
σ2
1 + (µ1 − µ2)

2

σ2
2

− log

(
σ2
1

σ2
2

)
− 1 (19)

≥ 1

2
(x− log(x)− 1)

where we have defined x =
σ2
1

σ2
2
.

Applying the lower bound x− log(x)− 1 ≥ (x− 1)2/2−
(x− 1)3/3,

ε ≥ (x− 1)2/2− (x− 1)3/3.

A bound on |x − 1| that holds for all ε can then be found
with the cubic formula. Under the assumption that ε < 1

5 ,
we have x− log(x) < 1.2 which implies x ∈ [0.49, 1.77].
For x in this range, we have

x− log(x)− 1 ≥ (x− 1)2/3

So,
|x− 1| ≤

√
ε

This proves that,

1−
√
3ε <

σ2
1

σ2
2

< 1 +
√
3ε.

From Equation 19 and x− log x > 1,

|µ1 − µ2| ≤ σ2
√
ε.

Using our bound on the ratio of the variances completes the
proof of Proposition 1.

C. Covariances for Interdomain Features
We compute the covariances for eigenvector and eigenfunc-
tion inducing features.
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C.1. Eigenvector inducing features

Recall we have defined eigenvector inducing features by,

um =

N∑
i=1

w
(m)
i f(xi).

Then,

cov(um, uk) = E

 N∑
i=1

w
(m)
i f(xi)

N∑
j=1

w
(k)
j f(xj)


=

N∑
i=1

w
(m)
i

N∑
j=1

w
(k)
j E[f(xi)f(xj)]

=

N∑
i=1

w
(m)
i

N∑
j=1

w
(k)
j k(xi,xj).

We know recognize this expression as w(m)TKffw(k). Us-
ing the defining property of eigenvectors as well as orthonor-
mality,

cov(um, uk) = λk(Kff )δm,k.

Similarly,

cov(um, f(xi)) = E

 N∑
j=1

w
(m)
j f(xj)f(xi)


=

N∑
j=1

w
(m)
j E[f(xj)f(xi)]

=

N∑
j=1

w
(m)
j k(xj ,xi)

This is the ith entry of the matrix vector product
Kffw(m) = λm(Kff )w

(m)
i .

C.2. Eigenfunction inducing features

Recall we have defined eigenfunction inducing features by,

um =

∫
φm(x)f(x)p(x)dx.

Then,

cov(um, uk)

= E
[∫

φm(x)f(x)p(x)dx

∫
φk(x

′)f(x′)p(x′)dx′
]

=

∫
φm(x)p(x)dx

∫
φk(x

′)E[f(x)f(x′)]p(x′)dx′

=

∫
φm(x)p(x)dx

∫
φk(x

′)k(x,x′)p(x′)dx′.

Algorithm 1 Initialization of Inducing Points
Input: Training inputs X = {xi}Ni=1, number of points
to choose, M , kernel k.
Returns: Z, a sample of M inducing points drawn pro-
portional to the determinant of KZ,Z

Initialize Z = {}
while |Z| < M do

for xi ∈ X \ Z do
[kZ,i]m := cov(zm,xi).
Vi = k(xi,xi)− ki,ZK−1Z,ZkZ,i,

end for
Sample xi with probability proportional to Vi
Add xi to Z

end while

The expectation and integration may be interchanged by
Fubini’s theorem, as both integrals converge absolutely
since p(x) is a probability density, the φm(x) are in
L2(X )p ∩ L1(X )p and k is bounded.

We may then apply the eigenfunction property to the inner
integral and orthonormality of eigenfunctions to the result
yielding,

cov(um, uk) = λk

∫
φk(x

′)φm(x)p(x)dx = λkδm,k.

With similar considerations,

cov(um, f(xi))

= E
[∫

φm(x)f(x)f(xi)p(x)dx

]
=

∫
φm(x)E[f(x)f(xi)]p(x)dx

= λmφm(xi).

D. Sampling from a Discrete k-DPP
In this section, we give the algorithm, Algorithm 1, de-
scribed in Hennig & Garnett [2016] adapted to the discrete
setting which is relevant to our application. We additionally
show that it can be implemented with complexityO(NM2).

D.1. Efficient Implementation of Algorithm 1

We will denote KZ = KZ,Z.We view KZ as a block matrix
of the form:

KZ =

[
KZ−1 km

kT
m k(zm, zm)

]
where km is an (m− 1)× 1 column vector with [km]i =
k(zi, zm). Using block matrix inversion,

K−1Z =

[
K−1Z−1 + 1

rK
−1
Z−1kmkm

TK−1Z−1 − 1
rK
−1
Z−1km

− 1
rkm

TK−1Z−1
1
r

]
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with r = k(zm, zm)− km
TK−1Z−1km. Define,

tZ,i = K−1Z kZ,i.

With this definition,

K−1Z =

[
K−1Z−1 + 1

r tZ−1,mtT
Z−1,m − 1

r tZ−1,m

− 1
r tZ−1,m

1
r

]
and

r = k(zm, zm)− km
TtZ−1,m.

where by an abuse of notation, we assumed zm is also xm.
Additionally,

Vi = k(xi,xj)− kZ,i
TtZ,i.

We assume the kernel can be evaluated in constant time. The
second term is an inner product between vectors of length
m, and therefore has computational cost O(m).

We need to show that given tZ−1,j for all j, tZ,i can be
updated in linear time. Using the formula for K−1Z and
writing

kZ,i =

[
kZ,i

k(zm,xi)

]
,

we arrive at:

tZ,i =

[
tZ−1,i +

1
r

(
tZ−1,mtT

Z−1,mkZ,i − k(zm,xi)tZ−1,m

)
1
r

(
−tT

Z−1,mkZ,i + k(zm,xi)
) ]

By performing the matrix operations in the correct order,
this also consists of only inner products of length (m− 1)
vectors and can be computed in O(m).


